summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_aops.c
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2016-07-22 01:56:38 +0200
committerDave Chinner <david@fromorbit.com>2016-07-22 01:56:38 +0200
commit28b783e47ad702b8e0f4861ef94cdfce6abd7c80 (patch)
treef0932d39ef60a005d7a8053841730b3398cf8caa /fs/xfs/xfs_aops.c
parentxfs: allocate log vector buffers outside CIL context lock (diff)
downloadlinux-28b783e47ad702b8e0f4861ef94cdfce6abd7c80.tar.xz
linux-28b783e47ad702b8e0f4861ef94cdfce6abd7c80.zip
xfs: bufferhead chains are invalid after end_page_writeback
In xfs_finish_page_writeback(), we have a loop that looks like this: do { if (off < bvec->bv_offset) goto next_bh; if (off > end) break; bh->b_end_io(bh, !error); next_bh: off += bh->b_size; } while ((bh = bh->b_this_page) != head); The b_end_io function is end_buffer_async_write(), which will call end_page_writeback() once all the buffers have marked as no longer under IO. This issue here is that the only thing currently protecting both the bufferhead chain and the page from being reclaimed is the PageWriteback state held on the page. While we attempt to limit the loop to just the buffers covered by the IO, we still read from the buffer size and follow the next pointer in the bufferhead chain. There is no guarantee that either of these are valid after the PageWriteback flag has been cleared. Hence, loops like this are completely unsafe, and result in use-after-free issues. One such problem was caught by Calvin Owens with KASAN: ..... INFO: Freed in 0x103fc80ec age=18446651500051355200 cpu=2165122683 pid=-1 free_buffer_head+0x41/0x90 __slab_free+0x1ed/0x340 kmem_cache_free+0x270/0x300 free_buffer_head+0x41/0x90 try_to_free_buffers+0x171/0x240 xfs_vm_releasepage+0xcb/0x3b0 try_to_release_page+0x106/0x190 shrink_page_list+0x118e/0x1a10 shrink_inactive_list+0x42c/0xdf0 shrink_zone_memcg+0xa09/0xfa0 shrink_zone+0x2c3/0xbc0 ..... Call Trace: <IRQ> [<ffffffff81e8b8e4>] dump_stack+0x68/0x94 [<ffffffff8153a995>] print_trailer+0x115/0x1a0 [<ffffffff81541174>] object_err+0x34/0x40 [<ffffffff815436e7>] kasan_report_error+0x217/0x530 [<ffffffff81543b33>] __asan_report_load8_noabort+0x43/0x50 [<ffffffff819d651f>] xfs_destroy_ioend+0x3bf/0x4c0 [<ffffffff819d69d4>] xfs_end_bio+0x154/0x220 [<ffffffff81de0c58>] bio_endio+0x158/0x1b0 [<ffffffff81dff61b>] blk_update_request+0x18b/0xb80 [<ffffffff821baf57>] scsi_end_request+0x97/0x5a0 [<ffffffff821c5558>] scsi_io_completion+0x438/0x1690 [<ffffffff821a8d95>] scsi_finish_command+0x375/0x4e0 [<ffffffff821c3940>] scsi_softirq_done+0x280/0x340 Where the access is occuring during IO completion after the buffer had been freed from direct memory reclaim. Prevent use-after-free accidents in this end_io processing loop by pre-calculating the loop conditionals before calling bh->b_end_io(). The loop is already limited to just the bufferheads covered by the IO in progress, so the offset checks are sufficient to prevent accessing buffers in the chain after end_page_writeback() has been called by the the bh->b_end_io() callout. Yet another example of why Bufferheads Must Die. cc: <stable@vger.kernel.org> # 4.7 Signed-off-by: Dave Chinner <dchinner@redhat.com> Reported-and-Tested-by: Calvin Owens <calvinowens@fb.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
Diffstat (limited to 'fs/xfs/xfs_aops.c')
-rw-r--r--fs/xfs/xfs_aops.c15
1 files changed, 12 insertions, 3 deletions
diff --git a/fs/xfs/xfs_aops.c b/fs/xfs/xfs_aops.c
index 6135787500fc..f1c7f8cec22a 100644
--- a/fs/xfs/xfs_aops.c
+++ b/fs/xfs/xfs_aops.c
@@ -87,6 +87,12 @@ xfs_find_bdev_for_inode(
* We're now finished for good with this page. Update the page state via the
* associated buffer_heads, paying attention to the start and end offsets that
* we need to process on the page.
+ *
+ * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
+ * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
+ * the page at all, as we may be racing with memory reclaim and it can free both
+ * the bufferhead chain and the page as it will see the page as clean and
+ * unused.
*/
static void
xfs_finish_page_writeback(
@@ -95,8 +101,9 @@ xfs_finish_page_writeback(
int error)
{
unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
- struct buffer_head *head, *bh;
+ struct buffer_head *head, *bh, *next;
unsigned int off = 0;
+ unsigned int bsize;
ASSERT(bvec->bv_offset < PAGE_SIZE);
ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
@@ -105,15 +112,17 @@ xfs_finish_page_writeback(
bh = head = page_buffers(bvec->bv_page);
+ bsize = bh->b_size;
do {
+ next = bh->b_this_page;
if (off < bvec->bv_offset)
goto next_bh;
if (off > end)
break;
bh->b_end_io(bh, !error);
next_bh:
- off += bh->b_size;
- } while ((bh = bh->b_this_page) != head);
+ off += bsize;
+ } while ((bh = next) != head);
}
/*