summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_file.c
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2021-06-03 00:00:38 +0200
committerDarrick J. Wong <djwong@kernel.org>2021-06-03 00:00:38 +0200
commit977ec4ddf0b75b30afa443cf71ae80e20f501b15 (patch)
treec35aa2c7f9f3ea5daaa61ce5472fbb70a1944b9e /fs/xfs/xfs_file.c
parentxfs: mark xfs_bmap_set_attrforkoff static (diff)
downloadlinux-977ec4ddf0b75b30afa443cf71ae80e20f501b15.tar.xz
linux-977ec4ddf0b75b30afa443cf71ae80e20f501b15.zip
xfs: don't take a spinlock unconditionally in the DIO fastpath
Because this happens at high thread counts on high IOPS devices doing mixed read/write AIO-DIO to a single file at about a million iops: 64.09% 0.21% [kernel] [k] io_submit_one - 63.87% io_submit_one - 44.33% aio_write - 42.70% xfs_file_write_iter - 41.32% xfs_file_dio_write_aligned - 25.51% xfs_file_write_checks - 21.60% _raw_spin_lock - 21.59% do_raw_spin_lock - 19.70% __pv_queued_spin_lock_slowpath This also happens of the IO completion IO path: 22.89% 0.69% [kernel] [k] xfs_dio_write_end_io - 22.49% xfs_dio_write_end_io - 21.79% _raw_spin_lock - 20.97% do_raw_spin_lock - 20.10% __pv_queued_spin_lock_slowpath IOWs, fio is burning ~14 whole CPUs on this spin lock. So, do an unlocked check against inode size first, then if we are at/beyond EOF, take the spinlock and recheck. This makes the spinlock disappear from the overwrite fastpath. I'd like to report that fixing this makes things go faster. It doesn't - it just exposes the the XFS_ILOCK as the next severe contention point doing extent mapping lookups, and that now burns all the 14 CPUs this spinlock was burning. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Diffstat (limited to 'fs/xfs/xfs_file.c')
-rw-r--r--fs/xfs/xfs_file.c42
1 files changed, 31 insertions, 11 deletions
diff --git a/fs/xfs/xfs_file.c b/fs/xfs/xfs_file.c
index 396ef36dcd0a..c068dcd414f4 100644
--- a/fs/xfs/xfs_file.c
+++ b/fs/xfs/xfs_file.c
@@ -384,21 +384,30 @@ restart:
}
goto restart;
}
+
/*
* If the offset is beyond the size of the file, we need to zero any
* blocks that fall between the existing EOF and the start of this
- * write. If zeroing is needed and we are currently holding the
- * iolock shared, we need to update it to exclusive which implies
- * having to redo all checks before.
+ * write. If zeroing is needed and we are currently holding the iolock
+ * shared, we need to update it to exclusive which implies having to
+ * redo all checks before.
+ *
+ * We need to serialise against EOF updates that occur in IO completions
+ * here. We want to make sure that nobody is changing the size while we
+ * do this check until we have placed an IO barrier (i.e. hold the
+ * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
+ * spinlock effectively forms a memory barrier once we have the
+ * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
+ * hence be able to correctly determine if we need to run zeroing.
*
- * We need to serialise against EOF updates that occur in IO
- * completions here. We want to make sure that nobody is changing the
- * size while we do this check until we have placed an IO barrier (i.e.
- * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
- * The spinlock effectively forms a memory barrier once we have the
- * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
- * and hence be able to correctly determine if we need to run zeroing.
+ * We can do an unlocked check here safely as IO completion can only
+ * extend EOF. Truncate is locked out at this point, so the EOF can
+ * not move backwards, only forwards. Hence we only need to take the
+ * slow path and spin locks when we are at or beyond the current EOF.
*/
+ if (iocb->ki_pos <= i_size_read(inode))
+ goto out;
+
spin_lock(&ip->i_flags_lock);
isize = i_size_read(inode);
if (iocb->ki_pos > isize) {
@@ -426,7 +435,7 @@ restart:
drained_dio = true;
goto restart;
}
-
+
trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
NULL, &xfs_buffered_write_iomap_ops);
@@ -435,6 +444,7 @@ restart:
} else
spin_unlock(&ip->i_flags_lock);
+out:
return file_modified(file);
}
@@ -500,7 +510,17 @@ xfs_dio_write_end_io(
* other IO completions here to update the EOF. Failing to serialise
* here can result in EOF moving backwards and Bad Things Happen when
* that occurs.
+ *
+ * As IO completion only ever extends EOF, we can do an unlocked check
+ * here to avoid taking the spinlock. If we land within the current EOF,
+ * then we do not need to do an extending update at all, and we don't
+ * need to take the lock to check this. If we race with an update moving
+ * EOF, then we'll either still be beyond EOF and need to take the lock,
+ * or we'll be within EOF and we don't need to take it at all.
*/
+ if (offset + size <= i_size_read(inode))
+ goto out;
+
spin_lock(&ip->i_flags_lock);
if (offset + size > i_size_read(inode)) {
i_size_write(inode, offset + size);