summaryrefslogtreecommitdiffstats
path: root/fs/xfs
diff options
context:
space:
mode:
authorDarrick J. Wong <darrick.wong@oracle.com>2020-05-02 01:00:47 +0200
committerDarrick J. Wong <darrick.wong@oracle.com>2020-05-08 17:49:58 +0200
commit1094d3f12363474b2a3d1a6c06124bec25dd1555 (patch)
treef23e9bba919d77247f4c91a67c3aa81df6001f51 /fs/xfs
parentxfs: refactor log recovery item dispatch for pass1 commit functions (diff)
downloadlinux-1094d3f12363474b2a3d1a6c06124bec25dd1555.tar.xz
linux-1094d3f12363474b2a3d1a6c06124bec25dd1555.zip
xfs: refactor log recovery buffer item dispatch for pass2 commit functions
Move the log buffer item pass2 commit code into the per-item source code files and use the dispatch function to call it. We do these one at a time because there's a lot of code to move. No functional changes. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
Diffstat (limited to 'fs/xfs')
-rw-r--r--fs/xfs/libxfs/xfs_log_recover.h23
-rw-r--r--fs/xfs/xfs_buf_item_recover.c790
-rw-r--r--fs/xfs/xfs_log_recover.c798
3 files changed, 820 insertions, 791 deletions
diff --git a/fs/xfs/libxfs/xfs_log_recover.h b/fs/xfs/libxfs/xfs_log_recover.h
index 19e24b8877c9..91fe954a796c 100644
--- a/fs/xfs/libxfs/xfs_log_recover.h
+++ b/fs/xfs/libxfs/xfs_log_recover.h
@@ -37,6 +37,26 @@ struct xlog_recover_item_ops {
/* Do whatever work we need to do for pass1, if provided. */
int (*commit_pass1)(struct xlog *log, struct xlog_recover_item *item);
+
+ /*
+ * This function should do whatever work is needed for pass2 of log
+ * recovery, if provided.
+ *
+ * If the recovered item is an intent item, this function should parse
+ * the recovered item to construct an in-core log intent item and
+ * insert it into the AIL. The in-core log intent item should have 1
+ * refcount so that the item is freed either (a) when we commit the
+ * recovered log item for the intent-done item; (b) replay the work and
+ * log a new intent-done item; or (c) recovery fails and we have to
+ * abort.
+ *
+ * If the recovered item is an intent-done item, this function should
+ * parse the recovered item to find the id of the corresponding intent
+ * log item. Next, it should find the in-core log intent item in the
+ * AIL and release it.
+ */
+ int (*commit_pass2)(struct xlog *log, struct list_head *buffer_list,
+ struct xlog_recover_item *item, xfs_lsn_t lsn);
};
extern const struct xlog_recover_item_ops xlog_icreate_item_ops;
@@ -101,5 +121,8 @@ struct xlog_recover {
void xlog_buf_readahead(struct xlog *log, xfs_daddr_t blkno, uint len,
const struct xfs_buf_ops *ops);
bool xlog_add_buffer_cancelled(struct xlog *log, xfs_daddr_t blkno, uint len);
+bool xlog_is_buffer_cancelled(struct xlog *log, xfs_daddr_t blkno, uint len);
+bool xlog_put_buffer_cancelled(struct xlog *log, xfs_daddr_t blkno, uint len);
+void xlog_recover_iodone(struct xfs_buf *bp);
#endif /* __XFS_LOG_RECOVER_H__ */
diff --git a/fs/xfs/xfs_buf_item_recover.c b/fs/xfs/xfs_buf_item_recover.c
index e2d9599f67df..4ba2e27a15ca 100644
--- a/fs/xfs/xfs_buf_item_recover.c
+++ b/fs/xfs/xfs_buf_item_recover.c
@@ -18,6 +18,10 @@
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
+#include "xfs_error.h"
+#include "xfs_inode.h"
+#include "xfs_dir2.h"
+#include "xfs_quota.h"
/*
* Sort buffer items for log recovery. Most buffer items should end up on the
@@ -82,9 +86,795 @@ xlog_recover_buf_commit_pass1(
return 0;
}
+/*
+ * Validate the recovered buffer is of the correct type and attach the
+ * appropriate buffer operations to them for writeback. Magic numbers are in a
+ * few places:
+ * the first 16 bits of the buffer (inode buffer, dquot buffer),
+ * the first 32 bits of the buffer (most blocks),
+ * inside a struct xfs_da_blkinfo at the start of the buffer.
+ */
+static void
+xlog_recover_validate_buf_type(
+ struct xfs_mount *mp,
+ struct xfs_buf *bp,
+ struct xfs_buf_log_format *buf_f,
+ xfs_lsn_t current_lsn)
+{
+ struct xfs_da_blkinfo *info = bp->b_addr;
+ uint32_t magic32;
+ uint16_t magic16;
+ uint16_t magicda;
+ char *warnmsg = NULL;
+
+ /*
+ * We can only do post recovery validation on items on CRC enabled
+ * fielsystems as we need to know when the buffer was written to be able
+ * to determine if we should have replayed the item. If we replay old
+ * metadata over a newer buffer, then it will enter a temporarily
+ * inconsistent state resulting in verification failures. Hence for now
+ * just avoid the verification stage for non-crc filesystems
+ */
+ if (!xfs_sb_version_hascrc(&mp->m_sb))
+ return;
+
+ magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
+ magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
+ magicda = be16_to_cpu(info->magic);
+ switch (xfs_blft_from_flags(buf_f)) {
+ case XFS_BLFT_BTREE_BUF:
+ switch (magic32) {
+ case XFS_ABTB_CRC_MAGIC:
+ case XFS_ABTB_MAGIC:
+ bp->b_ops = &xfs_bnobt_buf_ops;
+ break;
+ case XFS_ABTC_CRC_MAGIC:
+ case XFS_ABTC_MAGIC:
+ bp->b_ops = &xfs_cntbt_buf_ops;
+ break;
+ case XFS_IBT_CRC_MAGIC:
+ case XFS_IBT_MAGIC:
+ bp->b_ops = &xfs_inobt_buf_ops;
+ break;
+ case XFS_FIBT_CRC_MAGIC:
+ case XFS_FIBT_MAGIC:
+ bp->b_ops = &xfs_finobt_buf_ops;
+ break;
+ case XFS_BMAP_CRC_MAGIC:
+ case XFS_BMAP_MAGIC:
+ bp->b_ops = &xfs_bmbt_buf_ops;
+ break;
+ case XFS_RMAP_CRC_MAGIC:
+ bp->b_ops = &xfs_rmapbt_buf_ops;
+ break;
+ case XFS_REFC_CRC_MAGIC:
+ bp->b_ops = &xfs_refcountbt_buf_ops;
+ break;
+ default:
+ warnmsg = "Bad btree block magic!";
+ break;
+ }
+ break;
+ case XFS_BLFT_AGF_BUF:
+ if (magic32 != XFS_AGF_MAGIC) {
+ warnmsg = "Bad AGF block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_agf_buf_ops;
+ break;
+ case XFS_BLFT_AGFL_BUF:
+ if (magic32 != XFS_AGFL_MAGIC) {
+ warnmsg = "Bad AGFL block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_agfl_buf_ops;
+ break;
+ case XFS_BLFT_AGI_BUF:
+ if (magic32 != XFS_AGI_MAGIC) {
+ warnmsg = "Bad AGI block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_agi_buf_ops;
+ break;
+ case XFS_BLFT_UDQUOT_BUF:
+ case XFS_BLFT_PDQUOT_BUF:
+ case XFS_BLFT_GDQUOT_BUF:
+#ifdef CONFIG_XFS_QUOTA
+ if (magic16 != XFS_DQUOT_MAGIC) {
+ warnmsg = "Bad DQUOT block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dquot_buf_ops;
+#else
+ xfs_alert(mp,
+ "Trying to recover dquots without QUOTA support built in!");
+ ASSERT(0);
+#endif
+ break;
+ case XFS_BLFT_DINO_BUF:
+ if (magic16 != XFS_DINODE_MAGIC) {
+ warnmsg = "Bad INODE block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_inode_buf_ops;
+ break;
+ case XFS_BLFT_SYMLINK_BUF:
+ if (magic32 != XFS_SYMLINK_MAGIC) {
+ warnmsg = "Bad symlink block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_symlink_buf_ops;
+ break;
+ case XFS_BLFT_DIR_BLOCK_BUF:
+ if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
+ magic32 != XFS_DIR3_BLOCK_MAGIC) {
+ warnmsg = "Bad dir block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_block_buf_ops;
+ break;
+ case XFS_BLFT_DIR_DATA_BUF:
+ if (magic32 != XFS_DIR2_DATA_MAGIC &&
+ magic32 != XFS_DIR3_DATA_MAGIC) {
+ warnmsg = "Bad dir data magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_data_buf_ops;
+ break;
+ case XFS_BLFT_DIR_FREE_BUF:
+ if (magic32 != XFS_DIR2_FREE_MAGIC &&
+ magic32 != XFS_DIR3_FREE_MAGIC) {
+ warnmsg = "Bad dir3 free magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_free_buf_ops;
+ break;
+ case XFS_BLFT_DIR_LEAF1_BUF:
+ if (magicda != XFS_DIR2_LEAF1_MAGIC &&
+ magicda != XFS_DIR3_LEAF1_MAGIC) {
+ warnmsg = "Bad dir leaf1 magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_leaf1_buf_ops;
+ break;
+ case XFS_BLFT_DIR_LEAFN_BUF:
+ if (magicda != XFS_DIR2_LEAFN_MAGIC &&
+ magicda != XFS_DIR3_LEAFN_MAGIC) {
+ warnmsg = "Bad dir leafn magic!";
+ break;
+ }
+ bp->b_ops = &xfs_dir3_leafn_buf_ops;
+ break;
+ case XFS_BLFT_DA_NODE_BUF:
+ if (magicda != XFS_DA_NODE_MAGIC &&
+ magicda != XFS_DA3_NODE_MAGIC) {
+ warnmsg = "Bad da node magic!";
+ break;
+ }
+ bp->b_ops = &xfs_da3_node_buf_ops;
+ break;
+ case XFS_BLFT_ATTR_LEAF_BUF:
+ if (magicda != XFS_ATTR_LEAF_MAGIC &&
+ magicda != XFS_ATTR3_LEAF_MAGIC) {
+ warnmsg = "Bad attr leaf magic!";
+ break;
+ }
+ bp->b_ops = &xfs_attr3_leaf_buf_ops;
+ break;
+ case XFS_BLFT_ATTR_RMT_BUF:
+ if (magic32 != XFS_ATTR3_RMT_MAGIC) {
+ warnmsg = "Bad attr remote magic!";
+ break;
+ }
+ bp->b_ops = &xfs_attr3_rmt_buf_ops;
+ break;
+ case XFS_BLFT_SB_BUF:
+ if (magic32 != XFS_SB_MAGIC) {
+ warnmsg = "Bad SB block magic!";
+ break;
+ }
+ bp->b_ops = &xfs_sb_buf_ops;
+ break;
+#ifdef CONFIG_XFS_RT
+ case XFS_BLFT_RTBITMAP_BUF:
+ case XFS_BLFT_RTSUMMARY_BUF:
+ /* no magic numbers for verification of RT buffers */
+ bp->b_ops = &xfs_rtbuf_ops;
+ break;
+#endif /* CONFIG_XFS_RT */
+ default:
+ xfs_warn(mp, "Unknown buffer type %d!",
+ xfs_blft_from_flags(buf_f));
+ break;
+ }
+
+ /*
+ * Nothing else to do in the case of a NULL current LSN as this means
+ * the buffer is more recent than the change in the log and will be
+ * skipped.
+ */
+ if (current_lsn == NULLCOMMITLSN)
+ return;
+
+ if (warnmsg) {
+ xfs_warn(mp, warnmsg);
+ ASSERT(0);
+ }
+
+ /*
+ * We must update the metadata LSN of the buffer as it is written out to
+ * ensure that older transactions never replay over this one and corrupt
+ * the buffer. This can occur if log recovery is interrupted at some
+ * point after the current transaction completes, at which point a
+ * subsequent mount starts recovery from the beginning.
+ *
+ * Write verifiers update the metadata LSN from log items attached to
+ * the buffer. Therefore, initialize a bli purely to carry the LSN to
+ * the verifier. We'll clean it up in our ->iodone() callback.
+ */
+ if (bp->b_ops) {
+ struct xfs_buf_log_item *bip;
+
+ ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
+ bp->b_iodone = xlog_recover_iodone;
+ xfs_buf_item_init(bp, mp);
+ bip = bp->b_log_item;
+ bip->bli_item.li_lsn = current_lsn;
+ }
+}
+
+/*
+ * Perform a 'normal' buffer recovery. Each logged region of the
+ * buffer should be copied over the corresponding region in the
+ * given buffer. The bitmap in the buf log format structure indicates
+ * where to place the logged data.
+ */
+STATIC void
+xlog_recover_do_reg_buffer(
+ struct xfs_mount *mp,
+ struct xlog_recover_item *item,
+ struct xfs_buf *bp,
+ struct xfs_buf_log_format *buf_f,
+ xfs_lsn_t current_lsn)
+{
+ int i;
+ int bit;
+ int nbits;
+ xfs_failaddr_t fa;
+ const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot);
+
+ trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
+
+ bit = 0;
+ i = 1; /* 0 is the buf format structure */
+ while (1) {
+ bit = xfs_next_bit(buf_f->blf_data_map,
+ buf_f->blf_map_size, bit);
+ if (bit == -1)
+ break;
+ nbits = xfs_contig_bits(buf_f->blf_data_map,
+ buf_f->blf_map_size, bit);
+ ASSERT(nbits > 0);
+ ASSERT(item->ri_buf[i].i_addr != NULL);
+ ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
+ ASSERT(BBTOB(bp->b_length) >=
+ ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
+
+ /*
+ * The dirty regions logged in the buffer, even though
+ * contiguous, may span multiple chunks. This is because the
+ * dirty region may span a physical page boundary in a buffer
+ * and hence be split into two separate vectors for writing into
+ * the log. Hence we need to trim nbits back to the length of
+ * the current region being copied out of the log.
+ */
+ if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
+ nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
+
+ /*
+ * Do a sanity check if this is a dquot buffer. Just checking
+ * the first dquot in the buffer should do. XXXThis is
+ * probably a good thing to do for other buf types also.
+ */
+ fa = NULL;
+ if (buf_f->blf_flags &
+ (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
+ if (item->ri_buf[i].i_addr == NULL) {
+ xfs_alert(mp,
+ "XFS: NULL dquot in %s.", __func__);
+ goto next;
+ }
+ if (item->ri_buf[i].i_len < size_disk_dquot) {
+ xfs_alert(mp,
+ "XFS: dquot too small (%d) in %s.",
+ item->ri_buf[i].i_len, __func__);
+ goto next;
+ }
+ fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
+ -1, 0);
+ if (fa) {
+ xfs_alert(mp,
+ "dquot corrupt at %pS trying to replay into block 0x%llx",
+ fa, bp->b_bn);
+ goto next;
+ }
+ }
+
+ memcpy(xfs_buf_offset(bp,
+ (uint)bit << XFS_BLF_SHIFT), /* dest */
+ item->ri_buf[i].i_addr, /* source */
+ nbits<<XFS_BLF_SHIFT); /* length */
+ next:
+ i++;
+ bit += nbits;
+ }
+
+ /* Shouldn't be any more regions */
+ ASSERT(i == item->ri_total);
+
+ xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
+}
+
+/*
+ * Perform a dquot buffer recovery.
+ * Simple algorithm: if we have found a QUOTAOFF log item of the same type
+ * (ie. USR or GRP), then just toss this buffer away; don't recover it.
+ * Else, treat it as a regular buffer and do recovery.
+ *
+ * Return false if the buffer was tossed and true if we recovered the buffer to
+ * indicate to the caller if the buffer needs writing.
+ */
+STATIC bool
+xlog_recover_do_dquot_buffer(
+ struct xfs_mount *mp,
+ struct xlog *log,
+ struct xlog_recover_item *item,
+ struct xfs_buf *bp,
+ struct xfs_buf_log_format *buf_f)
+{
+ uint type;
+
+ trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
+
+ /*
+ * Filesystems are required to send in quota flags at mount time.
+ */
+ if (!mp->m_qflags)
+ return false;
+
+ type = 0;
+ if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
+ type |= XFS_DQ_USER;
+ if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
+ type |= XFS_DQ_PROJ;
+ if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
+ type |= XFS_DQ_GROUP;
+ /*
+ * This type of quotas was turned off, so ignore this buffer
+ */
+ if (log->l_quotaoffs_flag & type)
+ return false;
+
+ xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
+ return true;
+}
+
+/*
+ * Perform recovery for a buffer full of inodes. In these buffers, the only
+ * data which should be recovered is that which corresponds to the
+ * di_next_unlinked pointers in the on disk inode structures. The rest of the
+ * data for the inodes is always logged through the inodes themselves rather
+ * than the inode buffer and is recovered in xlog_recover_inode_pass2().
+ *
+ * The only time when buffers full of inodes are fully recovered is when the
+ * buffer is full of newly allocated inodes. In this case the buffer will
+ * not be marked as an inode buffer and so will be sent to
+ * xlog_recover_do_reg_buffer() below during recovery.
+ */
+STATIC int
+xlog_recover_do_inode_buffer(
+ struct xfs_mount *mp,
+ struct xlog_recover_item *item,
+ struct xfs_buf *bp,
+ struct xfs_buf_log_format *buf_f)
+{
+ int i;
+ int item_index = 0;
+ int bit = 0;
+ int nbits = 0;
+ int reg_buf_offset = 0;
+ int reg_buf_bytes = 0;
+ int next_unlinked_offset;
+ int inodes_per_buf;
+ xfs_agino_t *logged_nextp;
+ xfs_agino_t *buffer_nextp;
+
+ trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
+
+ /*
+ * Post recovery validation only works properly on CRC enabled
+ * filesystems.
+ */
+ if (xfs_sb_version_hascrc(&mp->m_sb))
+ bp->b_ops = &xfs_inode_buf_ops;
+
+ inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
+ for (i = 0; i < inodes_per_buf; i++) {
+ next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
+ offsetof(xfs_dinode_t, di_next_unlinked);
+
+ while (next_unlinked_offset >=
+ (reg_buf_offset + reg_buf_bytes)) {
+ /*
+ * The next di_next_unlinked field is beyond
+ * the current logged region. Find the next
+ * logged region that contains or is beyond
+ * the current di_next_unlinked field.
+ */
+ bit += nbits;
+ bit = xfs_next_bit(buf_f->blf_data_map,
+ buf_f->blf_map_size, bit);
+
+ /*
+ * If there are no more logged regions in the
+ * buffer, then we're done.
+ */
+ if (bit == -1)
+ return 0;
+
+ nbits = xfs_contig_bits(buf_f->blf_data_map,
+ buf_f->blf_map_size, bit);
+ ASSERT(nbits > 0);
+ reg_buf_offset = bit << XFS_BLF_SHIFT;
+ reg_buf_bytes = nbits << XFS_BLF_SHIFT;
+ item_index++;
+ }
+
+ /*
+ * If the current logged region starts after the current
+ * di_next_unlinked field, then move on to the next
+ * di_next_unlinked field.
+ */
+ if (next_unlinked_offset < reg_buf_offset)
+ continue;
+
+ ASSERT(item->ri_buf[item_index].i_addr != NULL);
+ ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
+ ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
+
+ /*
+ * The current logged region contains a copy of the
+ * current di_next_unlinked field. Extract its value
+ * and copy it to the buffer copy.
+ */
+ logged_nextp = item->ri_buf[item_index].i_addr +
+ next_unlinked_offset - reg_buf_offset;
+ if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
+ xfs_alert(mp,
+ "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
+ "Trying to replay bad (0) inode di_next_unlinked field.",
+ item, bp);
+ return -EFSCORRUPTED;
+ }
+
+ buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
+ *buffer_nextp = *logged_nextp;
+
+ /*
+ * If necessary, recalculate the CRC in the on-disk inode. We
+ * have to leave the inode in a consistent state for whoever
+ * reads it next....
+ */
+ xfs_dinode_calc_crc(mp,
+ xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
+
+ }
+
+ return 0;
+}
+
+/*
+ * V5 filesystems know the age of the buffer on disk being recovered. We can
+ * have newer objects on disk than we are replaying, and so for these cases we
+ * don't want to replay the current change as that will make the buffer contents
+ * temporarily invalid on disk.
+ *
+ * The magic number might not match the buffer type we are going to recover
+ * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
+ * extract the LSN of the existing object in the buffer based on it's current
+ * magic number. If we don't recognise the magic number in the buffer, then
+ * return a LSN of -1 so that the caller knows it was an unrecognised block and
+ * so can recover the buffer.
+ *
+ * Note: we cannot rely solely on magic number matches to determine that the
+ * buffer has a valid LSN - we also need to verify that it belongs to this
+ * filesystem, so we need to extract the object's LSN and compare it to that
+ * which we read from the superblock. If the UUIDs don't match, then we've got a
+ * stale metadata block from an old filesystem instance that we need to recover
+ * over the top of.
+ */
+static xfs_lsn_t
+xlog_recover_get_buf_lsn(
+ struct xfs_mount *mp,
+ struct xfs_buf *bp)
+{
+ uint32_t magic32;
+ uint16_t magic16;
+ uint16_t magicda;
+ void *blk = bp->b_addr;
+ uuid_t *uuid;
+ xfs_lsn_t lsn = -1;
+
+ /* v4 filesystems always recover immediately */
+ if (!xfs_sb_version_hascrc(&mp->m_sb))
+ goto recover_immediately;
+
+ magic32 = be32_to_cpu(*(__be32 *)blk);
+ switch (magic32) {
+ case XFS_ABTB_CRC_MAGIC:
+ case XFS_ABTC_CRC_MAGIC:
+ case XFS_ABTB_MAGIC:
+ case XFS_ABTC_MAGIC:
+ case XFS_RMAP_CRC_MAGIC:
+ case XFS_REFC_CRC_MAGIC:
+ case XFS_IBT_CRC_MAGIC:
+ case XFS_IBT_MAGIC: {
+ struct xfs_btree_block *btb = blk;
+
+ lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
+ uuid = &btb->bb_u.s.bb_uuid;
+ break;
+ }
+ case XFS_BMAP_CRC_MAGIC:
+ case XFS_BMAP_MAGIC: {
+ struct xfs_btree_block *btb = blk;
+
+ lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
+ uuid = &btb->bb_u.l.bb_uuid;
+ break;
+ }
+ case XFS_AGF_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
+ uuid = &((struct xfs_agf *)blk)->agf_uuid;
+ break;
+ case XFS_AGFL_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
+ uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
+ break;
+ case XFS_AGI_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
+ uuid = &((struct xfs_agi *)blk)->agi_uuid;
+ break;
+ case XFS_SYMLINK_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
+ uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
+ break;
+ case XFS_DIR3_BLOCK_MAGIC:
+ case XFS_DIR3_DATA_MAGIC:
+ case XFS_DIR3_FREE_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
+ uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
+ break;
+ case XFS_ATTR3_RMT_MAGIC:
+ /*
+ * Remote attr blocks are written synchronously, rather than
+ * being logged. That means they do not contain a valid LSN
+ * (i.e. transactionally ordered) in them, and hence any time we
+ * see a buffer to replay over the top of a remote attribute
+ * block we should simply do so.
+ */
+ goto recover_immediately;
+ case XFS_SB_MAGIC:
+ /*
+ * superblock uuids are magic. We may or may not have a
+ * sb_meta_uuid on disk, but it will be set in the in-core
+ * superblock. We set the uuid pointer for verification
+ * according to the superblock feature mask to ensure we check
+ * the relevant UUID in the superblock.
+ */
+ lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
+ if (xfs_sb_version_hasmetauuid(&mp->m_sb))
+ uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
+ else
+ uuid = &((struct xfs_dsb *)blk)->sb_uuid;
+ break;
+ default:
+ break;
+ }
+
+ if (lsn != (xfs_lsn_t)-1) {
+ if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
+ goto recover_immediately;
+ return lsn;
+ }
+
+ magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
+ switch (magicda) {
+ case XFS_DIR3_LEAF1_MAGIC:
+ case XFS_DIR3_LEAFN_MAGIC:
+ case XFS_DA3_NODE_MAGIC:
+ lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
+ uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
+ break;
+ default:
+ break;
+ }
+
+ if (lsn != (xfs_lsn_t)-1) {
+ if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
+ goto recover_immediately;
+ return lsn;
+ }
+
+ /*
+ * We do individual object checks on dquot and inode buffers as they
+ * have their own individual LSN records. Also, we could have a stale
+ * buffer here, so we have to at least recognise these buffer types.
+ *
+ * A notd complexity here is inode unlinked list processing - it logs
+ * the inode directly in the buffer, but we don't know which inodes have
+ * been modified, and there is no global buffer LSN. Hence we need to
+ * recover all inode buffer types immediately. This problem will be
+ * fixed by logical logging of the unlinked list modifications.
+ */
+ magic16 = be16_to_cpu(*(__be16 *)blk);
+ switch (magic16) {
+ case XFS_DQUOT_MAGIC:
+ case XFS_DINODE_MAGIC:
+ goto recover_immediately;
+ default:
+ break;
+ }
+
+ /* unknown buffer contents, recover immediately */
+
+recover_immediately:
+ return (xfs_lsn_t)-1;
+
+}
+
+/*
+ * This routine replays a modification made to a buffer at runtime.
+ * There are actually two types of buffer, regular and inode, which
+ * are handled differently. Inode buffers are handled differently
+ * in that we only recover a specific set of data from them, namely
+ * the inode di_next_unlinked fields. This is because all other inode
+ * data is actually logged via inode records and any data we replay
+ * here which overlaps that may be stale.
+ *
+ * When meta-data buffers are freed at run time we log a buffer item
+ * with the XFS_BLF_CANCEL bit set to indicate that previous copies
+ * of the buffer in the log should not be replayed at recovery time.
+ * This is so that if the blocks covered by the buffer are reused for
+ * file data before we crash we don't end up replaying old, freed
+ * meta-data into a user's file.
+ *
+ * To handle the cancellation of buffer log items, we make two passes
+ * over the log during recovery. During the first we build a table of
+ * those buffers which have been cancelled, and during the second we
+ * only replay those buffers which do not have corresponding cancel
+ * records in the table. See xlog_recover_buf_pass[1,2] above
+ * for more details on the implementation of the table of cancel records.
+ */
+STATIC int
+xlog_recover_buf_commit_pass2(
+ struct xlog *log,
+ struct list_head *buffer_list,
+ struct xlog_recover_item *item,
+ xfs_lsn_t current_lsn)
+{
+ struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
+ struct xfs_mount *mp = log->l_mp;
+ struct xfs_buf *bp;
+ int error;
+ uint buf_flags;
+ xfs_lsn_t lsn;
+
+ /*
+ * In this pass we only want to recover all the buffers which have
+ * not been cancelled and are not cancellation buffers themselves.
+ */
+ if (buf_f->blf_flags & XFS_BLF_CANCEL) {
+ if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
+ buf_f->blf_len))
+ goto cancelled;
+ } else {
+
+ if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
+ buf_f->blf_len))
+ goto cancelled;
+ }
+
+ trace_xfs_log_recover_buf_recover(log, buf_f);
+
+ buf_flags = 0;
+ if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
+ buf_flags |= XBF_UNMAPPED;
+
+ error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
+ buf_flags, &bp, NULL);
+ if (error)
+ return error;
+
+ /*
+ * Recover the buffer only if we get an LSN from it and it's less than
+ * the lsn of the transaction we are replaying.
+ *
+ * Note that we have to be extremely careful of readahead here.
+ * Readahead does not attach verfiers to the buffers so if we don't
+ * actually do any replay after readahead because of the LSN we found
+ * in the buffer if more recent than that current transaction then we
+ * need to attach the verifier directly. Failure to do so can lead to
+ * future recovery actions (e.g. EFI and unlinked list recovery) can
+ * operate on the buffers and they won't get the verifier attached. This
+ * can lead to blocks on disk having the correct content but a stale
+ * CRC.
+ *
+ * It is safe to assume these clean buffers are currently up to date.
+ * If the buffer is dirtied by a later transaction being replayed, then
+ * the verifier will be reset to match whatever recover turns that
+ * buffer into.
+ */
+ lsn = xlog_recover_get_buf_lsn(mp, bp);
+ if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
+ trace_xfs_log_recover_buf_skip(log, buf_f);
+ xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
+ goto out_release;
+ }
+
+ if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
+ error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
+ if (error)
+ goto out_release;
+ } else if (buf_f->blf_flags &
+ (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
+ bool dirty;
+
+ dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
+ if (!dirty)
+ goto out_release;
+ } else {
+ xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
+ }
+
+ /*
+ * Perform delayed write on the buffer. Asynchronous writes will be
+ * slower when taking into account all the buffers to be flushed.
+ *
+ * Also make sure that only inode buffers with good sizes stay in
+ * the buffer cache. The kernel moves inodes in buffers of 1 block
+ * or inode_cluster_size bytes, whichever is bigger. The inode
+ * buffers in the log can be a different size if the log was generated
+ * by an older kernel using unclustered inode buffers or a newer kernel
+ * running with a different inode cluster size. Regardless, if the
+ * the inode buffer size isn't max(blocksize, inode_cluster_size)
+ * for *our* value of inode_cluster_size, then we need to keep
+ * the buffer out of the buffer cache so that the buffer won't
+ * overlap with future reads of those inodes.
+ */
+ if (XFS_DINODE_MAGIC ==
+ be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
+ (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
+ xfs_buf_stale(bp);
+ error = xfs_bwrite(bp);
+ } else {
+ ASSERT(bp->b_mount == mp);
+ bp->b_iodone = xlog_recover_iodone;
+ xfs_buf_delwri_queue(bp, buffer_list);
+ }
+
+out_release:
+ xfs_buf_relse(bp);
+ return error;
+cancelled:
+ trace_xfs_log_recover_buf_cancel(log, buf_f);
+ return 0;
+}
+
const struct xlog_recover_item_ops xlog_buf_item_ops = {
.item_type = XFS_LI_BUF,
.reorder = xlog_recover_buf_reorder,
.ra_pass2 = xlog_recover_buf_ra_pass2,
.commit_pass1 = xlog_recover_buf_commit_pass1,
+ .commit_pass2 = xlog_recover_buf_commit_pass2,
};
diff --git a/fs/xfs/xfs_log_recover.c b/fs/xfs/xfs_log_recover.c
index 2511f2874464..eaf2ea8da5d6 100644
--- a/fs/xfs/xfs_log_recover.c
+++ b/fs/xfs/xfs_log_recover.c
@@ -284,7 +284,7 @@ xlog_header_check_mount(
return 0;
}
-STATIC void
+void
xlog_recover_iodone(
struct xfs_buf *bp)
{
@@ -1985,7 +1985,7 @@ xlog_add_buffer_cancelled(
/*
* Check if there is and entry for blkno, len in the buffer cancel record table.
*/
-static bool
+bool
xlog_is_buffer_cancelled(
struct xlog *log,
xfs_daddr_t blkno,
@@ -2002,7 +2002,7 @@ xlog_is_buffer_cancelled(
* buffer is re-used again after its last cancellation we actually replay the
* changes made at that point.
*/
-static bool
+bool
xlog_put_buffer_cancelled(
struct xlog *log,
xfs_daddr_t blkno,
@@ -2035,791 +2035,6 @@ xlog_buf_readahead(
}
/*
- * Perform recovery for a buffer full of inodes. In these buffers, the only
- * data which should be recovered is that which corresponds to the
- * di_next_unlinked pointers in the on disk inode structures. The rest of the
- * data for the inodes is always logged through the inodes themselves rather
- * than the inode buffer and is recovered in xlog_recover_inode_pass2().
- *
- * The only time when buffers full of inodes are fully recovered is when the
- * buffer is full of newly allocated inodes. In this case the buffer will
- * not be marked as an inode buffer and so will be sent to
- * xlog_recover_do_reg_buffer() below during recovery.
- */
-STATIC int
-xlog_recover_do_inode_buffer(
- struct xfs_mount *mp,
- struct xlog_recover_item *item,
- struct xfs_buf *bp,
- xfs_buf_log_format_t *buf_f)
-{
- int i;
- int item_index = 0;
- int bit = 0;
- int nbits = 0;
- int reg_buf_offset = 0;
- int reg_buf_bytes = 0;
- int next_unlinked_offset;
- int inodes_per_buf;
- xfs_agino_t *logged_nextp;
- xfs_agino_t *buffer_nextp;
-
- trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
-
- /*
- * Post recovery validation only works properly on CRC enabled
- * filesystems.
- */
- if (xfs_sb_version_hascrc(&mp->m_sb))
- bp->b_ops = &xfs_inode_buf_ops;
-
- inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
- for (i = 0; i < inodes_per_buf; i++) {
- next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
- offsetof(xfs_dinode_t, di_next_unlinked);
-
- while (next_unlinked_offset >=
- (reg_buf_offset + reg_buf_bytes)) {
- /*
- * The next di_next_unlinked field is beyond
- * the current logged region. Find the next
- * logged region that contains or is beyond
- * the current di_next_unlinked field.
- */
- bit += nbits;
- bit = xfs_next_bit(buf_f->blf_data_map,
- buf_f->blf_map_size, bit);
-
- /*
- * If there are no more logged regions in the
- * buffer, then we're done.
- */
- if (bit == -1)
- return 0;
-
- nbits = xfs_contig_bits(buf_f->blf_data_map,
- buf_f->blf_map_size, bit);
- ASSERT(nbits > 0);
- reg_buf_offset = bit << XFS_BLF_SHIFT;
- reg_buf_bytes = nbits << XFS_BLF_SHIFT;
- item_index++;
- }
-
- /*
- * If the current logged region starts after the current
- * di_next_unlinked field, then move on to the next
- * di_next_unlinked field.
- */
- if (next_unlinked_offset < reg_buf_offset)
- continue;
-
- ASSERT(item->ri_buf[item_index].i_addr != NULL);
- ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
- ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
-
- /*
- * The current logged region contains a copy of the
- * current di_next_unlinked field. Extract its value
- * and copy it to the buffer copy.
- */
- logged_nextp = item->ri_buf[item_index].i_addr +
- next_unlinked_offset - reg_buf_offset;
- if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
- xfs_alert(mp,
- "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
- "Trying to replay bad (0) inode di_next_unlinked field.",
- item, bp);
- return -EFSCORRUPTED;
- }
-
- buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
- *buffer_nextp = *logged_nextp;
-
- /*
- * If necessary, recalculate the CRC in the on-disk inode. We
- * have to leave the inode in a consistent state for whoever
- * reads it next....
- */
- xfs_dinode_calc_crc(mp,
- xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
-
- }
-
- return 0;
-}
-
-/*
- * V5 filesystems know the age of the buffer on disk being recovered. We can
- * have newer objects on disk than we are replaying, and so for these cases we
- * don't want to replay the current change as that will make the buffer contents
- * temporarily invalid on disk.
- *
- * The magic number might not match the buffer type we are going to recover
- * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
- * extract the LSN of the existing object in the buffer based on it's current
- * magic number. If we don't recognise the magic number in the buffer, then
- * return a LSN of -1 so that the caller knows it was an unrecognised block and
- * so can recover the buffer.
- *
- * Note: we cannot rely solely on magic number matches to determine that the
- * buffer has a valid LSN - we also need to verify that it belongs to this
- * filesystem, so we need to extract the object's LSN and compare it to that
- * which we read from the superblock. If the UUIDs don't match, then we've got a
- * stale metadata block from an old filesystem instance that we need to recover
- * over the top of.
- */
-static xfs_lsn_t
-xlog_recover_get_buf_lsn(
- struct xfs_mount *mp,
- struct xfs_buf *bp)
-{
- uint32_t magic32;
- uint16_t magic16;
- uint16_t magicda;
- void *blk = bp->b_addr;
- uuid_t *uuid;
- xfs_lsn_t lsn = -1;
-
- /* v4 filesystems always recover immediately */
- if (!xfs_sb_version_hascrc(&mp->m_sb))
- goto recover_immediately;
-
- magic32 = be32_to_cpu(*(__be32 *)blk);
- switch (magic32) {
- case XFS_ABTB_CRC_MAGIC:
- case XFS_ABTC_CRC_MAGIC:
- case XFS_ABTB_MAGIC:
- case XFS_ABTC_MAGIC:
- case XFS_RMAP_CRC_MAGIC:
- case XFS_REFC_CRC_MAGIC:
- case XFS_IBT_CRC_MAGIC:
- case XFS_IBT_MAGIC: {
- struct xfs_btree_block *btb = blk;
-
- lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
- uuid = &btb->bb_u.s.bb_uuid;
- break;
- }
- case XFS_BMAP_CRC_MAGIC:
- case XFS_BMAP_MAGIC: {
- struct xfs_btree_block *btb = blk;
-
- lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
- uuid = &btb->bb_u.l.bb_uuid;
- break;
- }
- case XFS_AGF_MAGIC:
- lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
- uuid = &((struct xfs_agf *)blk)->agf_uuid;
- break;
- case XFS_AGFL_MAGIC:
- lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
- uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
- break;
- case XFS_AGI_MAGIC:
- lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
- uuid = &((struct xfs_agi *)blk)->agi_uuid;
- break;
- case XFS_SYMLINK_MAGIC:
- lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
- uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
- break;
- case XFS_DIR3_BLOCK_MAGIC:
- case XFS_DIR3_DATA_MAGIC:
- case XFS_DIR3_FREE_MAGIC:
- lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
- uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
- break;
- case XFS_ATTR3_RMT_MAGIC:
- /*
- * Remote attr blocks are written synchronously, rather than
- * being logged. That means they do not contain a valid LSN
- * (i.e. transactionally ordered) in them, and hence any time we
- * see a buffer to replay over the top of a remote attribute
- * block we should simply do so.
- */
- goto recover_immediately;
- case XFS_SB_MAGIC:
- /*
- * superblock uuids are magic. We may or may not have a
- * sb_meta_uuid on disk, but it will be set in the in-core
- * superblock. We set the uuid pointer for verification
- * according to the superblock feature mask to ensure we check
- * the relevant UUID in the superblock.
- */
- lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
- if (xfs_sb_version_hasmetauuid(&mp->m_sb))
- uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
- else
- uuid = &((struct xfs_dsb *)blk)->sb_uuid;
- break;
- default:
- break;
- }
-
- if (lsn != (xfs_lsn_t)-1) {
- if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
- goto recover_immediately;
- return lsn;
- }
-
- magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
- switch (magicda) {
- case XFS_DIR3_LEAF1_MAGIC:
- case XFS_DIR3_LEAFN_MAGIC:
- case XFS_DA3_NODE_MAGIC:
- lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
- uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
- break;
- default:
- break;
- }
-
- if (lsn != (xfs_lsn_t)-1) {
- if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
- goto recover_immediately;
- return lsn;
- }
-
- /*
- * We do individual object checks on dquot and inode buffers as they
- * have their own individual LSN records. Also, we could have a stale
- * buffer here, so we have to at least recognise these buffer types.
- *
- * A notd complexity here is inode unlinked list processing - it logs
- * the inode directly in the buffer, but we don't know which inodes have
- * been modified, and there is no global buffer LSN. Hence we need to
- * recover all inode buffer types immediately. This problem will be
- * fixed by logical logging of the unlinked list modifications.
- */
- magic16 = be16_to_cpu(*(__be16 *)blk);
- switch (magic16) {
- case XFS_DQUOT_MAGIC:
- case XFS_DINODE_MAGIC:
- goto recover_immediately;
- default:
- break;
- }
-
- /* unknown buffer contents, recover immediately */
-
-recover_immediately:
- return (xfs_lsn_t)-1;
-
-}
-
-/*
- * Validate the recovered buffer is of the correct type and attach the
- * appropriate buffer operations to them for writeback. Magic numbers are in a
- * few places:
- * the first 16 bits of the buffer (inode buffer, dquot buffer),
- * the first 32 bits of the buffer (most blocks),
- * inside a struct xfs_da_blkinfo at the start of the buffer.
- */
-static void
-xlog_recover_validate_buf_type(
- struct xfs_mount *mp,
- struct xfs_buf *bp,
- xfs_buf_log_format_t *buf_f,
- xfs_lsn_t current_lsn)
-{
- struct xfs_da_blkinfo *info = bp->b_addr;
- uint32_t magic32;
- uint16_t magic16;
- uint16_t magicda;
- char *warnmsg = NULL;
-
- /*
- * We can only do post recovery validation on items on CRC enabled
- * fielsystems as we need to know when the buffer was written to be able
- * to determine if we should have replayed the item. If we replay old
- * metadata over a newer buffer, then it will enter a temporarily
- * inconsistent state resulting in verification failures. Hence for now
- * just avoid the verification stage for non-crc filesystems
- */
- if (!xfs_sb_version_hascrc(&mp->m_sb))
- return;
-
- magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
- magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
- magicda = be16_to_cpu(info->magic);
- switch (xfs_blft_from_flags(buf_f)) {
- case XFS_BLFT_BTREE_BUF:
- switch (magic32) {
- case XFS_ABTB_CRC_MAGIC:
- case XFS_ABTB_MAGIC:
- bp->b_ops = &xfs_bnobt_buf_ops;
- break;
- case XFS_ABTC_CRC_MAGIC:
- case XFS_ABTC_MAGIC:
- bp->b_ops = &xfs_cntbt_buf_ops;
- break;
- case XFS_IBT_CRC_MAGIC:
- case XFS_IBT_MAGIC:
- bp->b_ops = &xfs_inobt_buf_ops;
- break;
- case XFS_FIBT_CRC_MAGIC:
- case XFS_FIBT_MAGIC:
- bp->b_ops = &xfs_finobt_buf_ops;
- break;
- case XFS_BMAP_CRC_MAGIC:
- case XFS_BMAP_MAGIC:
- bp->b_ops = &xfs_bmbt_buf_ops;
- break;
- case XFS_RMAP_CRC_MAGIC:
- bp->b_ops = &xfs_rmapbt_buf_ops;
- break;
- case XFS_REFC_CRC_MAGIC:
- bp->b_ops = &xfs_refcountbt_buf_ops;
- break;
- default:
- warnmsg = "Bad btree block magic!";
- break;
- }
- break;
- case XFS_BLFT_AGF_BUF:
- if (magic32 != XFS_AGF_MAGIC) {
- warnmsg = "Bad AGF block magic!";
- break;
- }
- bp->b_ops = &xfs_agf_buf_ops;
- break;
- case XFS_BLFT_AGFL_BUF:
- if (magic32 != XFS_AGFL_MAGIC) {
- warnmsg = "Bad AGFL block magic!";
- break;
- }
- bp->b_ops = &xfs_agfl_buf_ops;
- break;
- case XFS_BLFT_AGI_BUF:
- if (magic32 != XFS_AGI_MAGIC) {
- warnmsg = "Bad AGI block magic!";
- break;
- }
- bp->b_ops = &xfs_agi_buf_ops;
- break;
- case XFS_BLFT_UDQUOT_BUF:
- case XFS_BLFT_PDQUOT_BUF:
- case XFS_BLFT_GDQUOT_BUF:
-#ifdef CONFIG_XFS_QUOTA
- if (magic16 != XFS_DQUOT_MAGIC) {
- warnmsg = "Bad DQUOT block magic!";
- break;
- }
- bp->b_ops = &xfs_dquot_buf_ops;
-#else
- xfs_alert(mp,
- "Trying to recover dquots without QUOTA support built in!");
- ASSERT(0);
-#endif
- break;
- case XFS_BLFT_DINO_BUF:
- if (magic16 != XFS_DINODE_MAGIC) {
- warnmsg = "Bad INODE block magic!";
- break;
- }
- bp->b_ops = &xfs_inode_buf_ops;
- break;
- case XFS_BLFT_SYMLINK_BUF:
- if (magic32 != XFS_SYMLINK_MAGIC) {
- warnmsg = "Bad symlink block magic!";
- break;
- }
- bp->b_ops = &xfs_symlink_buf_ops;
- break;
- case XFS_BLFT_DIR_BLOCK_BUF:
- if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
- magic32 != XFS_DIR3_BLOCK_MAGIC) {
- warnmsg = "Bad dir block magic!";
- break;
- }
- bp->b_ops = &xfs_dir3_block_buf_ops;
- break;
- case XFS_BLFT_DIR_DATA_BUF:
- if (magic32 != XFS_DIR2_DATA_MAGIC &&
- magic32 != XFS_DIR3_DATA_MAGIC) {
- warnmsg = "Bad dir data magic!";
- break;
- }
- bp->b_ops = &xfs_dir3_data_buf_ops;
- break;
- case XFS_BLFT_DIR_FREE_BUF:
- if (magic32 != XFS_DIR2_FREE_MAGIC &&
- magic32 != XFS_DIR3_FREE_MAGIC) {
- warnmsg = "Bad dir3 free magic!";
- break;
- }
- bp->b_ops = &xfs_dir3_free_buf_ops;
- break;
- case XFS_BLFT_DIR_LEAF1_BUF:
- if (magicda != XFS_DIR2_LEAF1_MAGIC &&
- magicda != XFS_DIR3_LEAF1_MAGIC) {
- warnmsg = "Bad dir leaf1 magic!";
- break;
- }
- bp->b_ops = &xfs_dir3_leaf1_buf_ops;
- break;
- case XFS_BLFT_DIR_LEAFN_BUF:
- if (magicda != XFS_DIR2_LEAFN_MAGIC &&
- magicda != XFS_DIR3_LEAFN_MAGIC) {
- warnmsg = "Bad dir leafn magic!";
- break;
- }
- bp->b_ops = &xfs_dir3_leafn_buf_ops;
- break;
- case XFS_BLFT_DA_NODE_BUF:
- if (magicda != XFS_DA_NODE_MAGIC &&
- magicda != XFS_DA3_NODE_MAGIC) {
- warnmsg = "Bad da node magic!";
- break;
- }
- bp->b_ops = &xfs_da3_node_buf_ops;
- break;
- case XFS_BLFT_ATTR_LEAF_BUF:
- if (magicda != XFS_ATTR_LEAF_MAGIC &&
- magicda != XFS_ATTR3_LEAF_MAGIC) {
- warnmsg = "Bad attr leaf magic!";
- break;
- }
- bp->b_ops = &xfs_attr3_leaf_buf_ops;
- break;
- case XFS_BLFT_ATTR_RMT_BUF:
- if (magic32 != XFS_ATTR3_RMT_MAGIC) {
- warnmsg = "Bad attr remote magic!";
- break;
- }
- bp->b_ops = &xfs_attr3_rmt_buf_ops;
- break;
- case XFS_BLFT_SB_BUF:
- if (magic32 != XFS_SB_MAGIC) {
- warnmsg = "Bad SB block magic!";
- break;
- }
- bp->b_ops = &xfs_sb_buf_ops;
- break;
-#ifdef CONFIG_XFS_RT
- case XFS_BLFT_RTBITMAP_BUF:
- case XFS_BLFT_RTSUMMARY_BUF:
- /* no magic numbers for verification of RT buffers */
- bp->b_ops = &xfs_rtbuf_ops;
- break;
-#endif /* CONFIG_XFS_RT */
- default:
- xfs_warn(mp, "Unknown buffer type %d!",
- xfs_blft_from_flags(buf_f));
- break;
- }
-
- /*
- * Nothing else to do in the case of a NULL current LSN as this means
- * the buffer is more recent than the change in the log and will be
- * skipped.
- */
- if (current_lsn == NULLCOMMITLSN)
- return;
-
- if (warnmsg) {
- xfs_warn(mp, warnmsg);
- ASSERT(0);
- }
-
- /*
- * We must update the metadata LSN of the buffer as it is written out to
- * ensure that older transactions never replay over this one and corrupt
- * the buffer. This can occur if log recovery is interrupted at some
- * point after the current transaction completes, at which point a
- * subsequent mount starts recovery from the beginning.
- *
- * Write verifiers update the metadata LSN from log items attached to
- * the buffer. Therefore, initialize a bli purely to carry the LSN to
- * the verifier. We'll clean it up in our ->iodone() callback.
- */
- if (bp->b_ops) {
- struct xfs_buf_log_item *bip;
-
- ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
- bp->b_iodone = xlog_recover_iodone;
- xfs_buf_item_init(bp, mp);
- bip = bp->b_log_item;
- bip->bli_item.li_lsn = current_lsn;
- }
-}
-
-/*
- * Perform a 'normal' buffer recovery. Each logged region of the
- * buffer should be copied over the corresponding region in the
- * given buffer. The bitmap in the buf log format structure indicates
- * where to place the logged data.
- */
-STATIC void
-xlog_recover_do_reg_buffer(
- struct xfs_mount *mp,
- struct xlog_recover_item *item,
- struct xfs_buf *bp,
- xfs_buf_log_format_t *buf_f,
- xfs_lsn_t current_lsn)
-{
- int i;
- int bit;
- int nbits;
- xfs_failaddr_t fa;
- const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot);
-
- trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
-
- bit = 0;
- i = 1; /* 0 is the buf format structure */
- while (1) {
- bit = xfs_next_bit(buf_f->blf_data_map,
- buf_f->blf_map_size, bit);
- if (bit == -1)
- break;
- nbits = xfs_contig_bits(buf_f->blf_data_map,
- buf_f->blf_map_size, bit);
- ASSERT(nbits > 0);
- ASSERT(item->ri_buf[i].i_addr != NULL);
- ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
- ASSERT(BBTOB(bp->b_length) >=
- ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
-
- /*
- * The dirty regions logged in the buffer, even though
- * contiguous, may span multiple chunks. This is because the
- * dirty region may span a physical page boundary in a buffer
- * and hence be split into two separate vectors for writing into
- * the log. Hence we need to trim nbits back to the length of
- * the current region being copied out of the log.
- */
- if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
- nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
-
- /*
- * Do a sanity check if this is a dquot buffer. Just checking
- * the first dquot in the buffer should do. XXXThis is
- * probably a good thing to do for other buf types also.
- */
- fa = NULL;
- if (buf_f->blf_flags &
- (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
- if (item->ri_buf[i].i_addr == NULL) {
- xfs_alert(mp,
- "XFS: NULL dquot in %s.", __func__);
- goto next;
- }
- if (item->ri_buf[i].i_len < size_disk_dquot) {
- xfs_alert(mp,
- "XFS: dquot too small (%d) in %s.",
- item->ri_buf[i].i_len, __func__);
- goto next;
- }
- fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
- -1, 0);
- if (fa) {
- xfs_alert(mp,
- "dquot corrupt at %pS trying to replay into block 0x%llx",
- fa, bp->b_bn);
- goto next;
- }
- }
-
- memcpy(xfs_buf_offset(bp,
- (uint)bit << XFS_BLF_SHIFT), /* dest */
- item->ri_buf[i].i_addr, /* source */
- nbits<<XFS_BLF_SHIFT); /* length */
- next:
- i++;
- bit += nbits;
- }
-
- /* Shouldn't be any more regions */
- ASSERT(i == item->ri_total);
-
- xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
-}
-
-/*
- * Perform a dquot buffer recovery.
- * Simple algorithm: if we have found a QUOTAOFF log item of the same type
- * (ie. USR or GRP), then just toss this buffer away; don't recover it.
- * Else, treat it as a regular buffer and do recovery.
- *
- * Return false if the buffer was tossed and true if we recovered the buffer to
- * indicate to the caller if the buffer needs writing.
- */
-STATIC bool
-xlog_recover_do_dquot_buffer(
- struct xfs_mount *mp,
- struct xlog *log,
- struct xlog_recover_item *item,
- struct xfs_buf *bp,
- struct xfs_buf_log_format *buf_f)
-{
- uint type;
-
- trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
-
- /*
- * Filesystems are required to send in quota flags at mount time.
- */
- if (!mp->m_qflags)
- return false;
-
- type = 0;
- if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
- type |= XFS_DQ_USER;
- if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
- type |= XFS_DQ_PROJ;
- if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
- type |= XFS_DQ_GROUP;
- /*
- * This type of quotas was turned off, so ignore this buffer
- */
- if (log->l_quotaoffs_flag & type)
- return false;
-
- xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
- return true;
-}
-
-/*
- * This routine replays a modification made to a buffer at runtime.
- * There are actually two types of buffer, regular and inode, which
- * are handled differently. Inode buffers are handled differently
- * in that we only recover a specific set of data from them, namely
- * the inode di_next_unlinked fields. This is because all other inode
- * data is actually logged via inode records and any data we replay
- * here which overlaps that may be stale.
- *
- * When meta-data buffers are freed at run time we log a buffer item
- * with the XFS_BLF_CANCEL bit set to indicate that previous copies
- * of the buffer in the log should not be replayed at recovery time.
- * This is so that if the blocks covered by the buffer are reused for
- * file data before we crash we don't end up replaying old, freed
- * meta-data into a user's file.
- *
- * To handle the cancellation of buffer log items, we make two passes
- * over the log during recovery. During the first we build a table of
- * those buffers which have been cancelled, and during the second we
- * only replay those buffers which do not have corresponding cancel
- * records in the table. See xlog_recover_buffer_pass[1,2] above
- * for more details on the implementation of the table of cancel records.
- */
-STATIC int
-xlog_recover_buffer_pass2(
- struct xlog *log,
- struct list_head *buffer_list,
- struct xlog_recover_item *item,
- xfs_lsn_t current_lsn)
-{
- xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
- xfs_mount_t *mp = log->l_mp;
- xfs_buf_t *bp;
- int error;
- uint buf_flags;
- xfs_lsn_t lsn;
-
- /*
- * In this pass we only want to recover all the buffers which have
- * not been cancelled and are not cancellation buffers themselves.
- */
- if (buf_f->blf_flags & XFS_BLF_CANCEL) {
- if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
- buf_f->blf_len))
- goto cancelled;
- } else {
-
- if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
- buf_f->blf_len))
- goto cancelled;
- }
-
- trace_xfs_log_recover_buf_recover(log, buf_f);
-
- buf_flags = 0;
- if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
- buf_flags |= XBF_UNMAPPED;
-
- error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
- buf_flags, &bp, NULL);
- if (error)
- return error;
-
- /*
- * Recover the buffer only if we get an LSN from it and it's less than
- * the lsn of the transaction we are replaying.
- *
- * Note that we have to be extremely careful of readahead here.
- * Readahead does not attach verfiers to the buffers so if we don't
- * actually do any replay after readahead because of the LSN we found
- * in the buffer if more recent than that current transaction then we
- * need to attach the verifier directly. Failure to do so can lead to
- * future recovery actions (e.g. EFI and unlinked list recovery) can
- * operate on the buffers and they won't get the verifier attached. This
- * can lead to blocks on disk having the correct content but a stale
- * CRC.
- *
- * It is safe to assume these clean buffers are currently up to date.
- * If the buffer is dirtied by a later transaction being replayed, then
- * the verifier will be reset to match whatever recover turns that
- * buffer into.
- */
- lsn = xlog_recover_get_buf_lsn(mp, bp);
- if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
- trace_xfs_log_recover_buf_skip(log, buf_f);
- xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
- goto out_release;
- }
-
- if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
- error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
- if (error)
- goto out_release;
- } else if (buf_f->blf_flags &
- (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
- bool dirty;
-
- dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
- if (!dirty)
- goto out_release;
- } else {
- xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
- }
-
- /*
- * Perform delayed write on the buffer. Asynchronous writes will be
- * slower when taking into account all the buffers to be flushed.
- *
- * Also make sure that only inode buffers with good sizes stay in
- * the buffer cache. The kernel moves inodes in buffers of 1 block
- * or inode_cluster_size bytes, whichever is bigger. The inode
- * buffers in the log can be a different size if the log was generated
- * by an older kernel using unclustered inode buffers or a newer kernel
- * running with a different inode cluster size. Regardless, if the
- * the inode buffer size isn't max(blocksize, inode_cluster_size)
- * for *our* value of inode_cluster_size, then we need to keep
- * the buffer out of the buffer cache so that the buffer won't
- * overlap with future reads of those inodes.
- */
- if (XFS_DINODE_MAGIC ==
- be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
- (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
- xfs_buf_stale(bp);
- error = xfs_bwrite(bp);
- } else {
- ASSERT(bp->b_mount == mp);
- bp->b_iodone = xlog_recover_iodone;
- xfs_buf_delwri_queue(bp, buffer_list);
- }
-
-out_release:
- xfs_buf_relse(bp);
- return error;
-cancelled:
- trace_xfs_log_recover_buf_cancel(log, buf_f);
- return 0;
-}
-
-/*
* Inode fork owner changes
*
* If we have been told that we have to reparent the inode fork, it's because an
@@ -3846,10 +3061,11 @@ xlog_recover_commit_pass2(
{
trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
+ if (item->ri_ops->commit_pass2)
+ return item->ri_ops->commit_pass2(log, buffer_list, item,
+ trans->r_lsn);
+
switch (ITEM_TYPE(item)) {
- case XFS_LI_BUF:
- return xlog_recover_buffer_pass2(log, buffer_list, item,
- trans->r_lsn);
case XFS_LI_INODE:
return xlog_recover_inode_pass2(log, buffer_list, item,
trans->r_lsn);