diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2022-11-09 21:30:51 +0100 |
---|---|---|
committer | Andrew Morton <akpm@linux-foundation.org> | 2022-12-01 00:58:50 +0100 |
commit | 5df397dec7c4c08c23bd14f162f1228836faa4ce (patch) | |
tree | f1e606149d37eb10708187b27a81e6c393a8dba5 /include/asm-generic/tlb.h | |
parent | mm: mmu_gather: prepare to gather encoded page pointers with flags (diff) | |
download | linux-5df397dec7c4c08c23bd14f162f1228836faa4ce.tar.xz linux-5df397dec7c4c08c23bd14f162f1228836faa4ce.zip |
mm: delay page_remove_rmap() until after the TLB has been flushed
When we remove a page table entry, we are very careful to only free the
page after we have flushed the TLB, because other CPUs could still be
using the page through stale TLB entries until after the flush.
However, we have removed the rmap entry for that page early, which means
that functions like folio_mkclean() would end up not serializing with the
page table lock because the page had already been made invisible to rmap.
And that is a problem, because while the TLB entry exists, we could end up
with the following situation:
(a) one CPU could come in and clean it, never seeing our mapping of the
page
(b) another CPU could continue to use the stale and dirty TLB entry and
continue to write to said page
resulting in a page that has been dirtied, but then marked clean again,
all while another CPU might have dirtied it some more.
End result: possibly lost dirty data.
This extends our current TLB gather infrastructure to optionally track a
"should I do a delayed page_remove_rmap() for this page after flushing the
TLB". It uses the newly introduced 'encoded page pointer' to do that
without having to keep separate data around.
Note, this is complicated by a couple of issues:
- we want to delay the rmap removal, but not past the page table lock,
because that simplifies the memcg accounting
- only SMP configurations want to delay TLB flushing, since on UP
there are obviously no remote TLBs to worry about, and the page
table lock means there are no preemption issues either
- s390 has its own mmu_gather model that doesn't delay TLB flushing,
and as a result also does not want the delayed rmap. As such, we can
treat S390 like the UP case and use a common fallback for the "no
delays" case.
- we can track an enormous number of pages in our mmu_gather structure,
with MAX_GATHER_BATCH_COUNT batches of MAX_TABLE_BATCH pages each,
all set up to be approximately 10k pending pages.
We do not want to have a huge number of batched pages that we then
need to check for delayed rmap handling inside the page table lock.
Particularly that last point results in a noteworthy detail, where the
normal page batch gathering is limited once we have delayed rmaps pending,
in such a way that only the last batch (the so-called "active batch") in
the mmu_gather structure can have any delayed entries.
NOTE! While the "possibly lost dirty data" sounds catastrophic, for this
all to happen you need to have a user thread doing either madvise() with
MADV_DONTNEED or a full re-mmap() of the area concurrently with another
thread continuing to use said mapping.
So arguably this is about user space doing crazy things, but from a VM
consistency standpoint it's better if we track the dirty bit properly even
when user space goes off the rails.
[akpm@linux-foundation.org: fix UP build, per Linus]
Link: https://lore.kernel.org/all/B88D3073-440A-41C7-95F4-895D3F657EF2@gmail.com/
Link: https://lkml.kernel.org/r/20221109203051.1835763-4-torvalds@linux-foundation.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Tested-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'include/asm-generic/tlb.h')
-rw-r--r-- | include/asm-generic/tlb.h | 31 |
1 files changed, 29 insertions, 2 deletions
diff --git a/include/asm-generic/tlb.h b/include/asm-generic/tlb.h index 54d03d1e712e..b46617207c93 100644 --- a/include/asm-generic/tlb.h +++ b/include/asm-generic/tlb.h @@ -263,6 +263,28 @@ struct mmu_gather_batch { extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct encoded_page *page, int page_size); + +#ifdef CONFIG_SMP +/* + * This both sets 'delayed_rmap', and returns true. It would be an inline + * function, except we define it before the 'struct mmu_gather'. + */ +#define tlb_delay_rmap(tlb) (((tlb)->delayed_rmap = 1), true) +extern void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma); +#endif + +#endif + +/* + * We have a no-op version of the rmap removal that doesn't + * delay anything. That is used on S390, which flushes remote + * TLBs synchronously, and on UP, which doesn't have any + * remote TLBs to flush and is not preemptible due to this + * all happening under the page table lock. + */ +#ifndef tlb_delay_rmap +#define tlb_delay_rmap(tlb) (false) +static inline void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #endif /* @@ -296,6 +318,11 @@ struct mmu_gather { unsigned int freed_tables : 1; /* + * Do we have pending delayed rmap removals? + */ + unsigned int delayed_rmap : 1; + + /* * at which levels have we cleared entries? */ unsigned int cleared_ptes : 1; @@ -440,9 +467,9 @@ static inline void tlb_remove_page_size(struct mmu_gather *tlb, tlb_flush_mmu(tlb); } -static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) +static __always_inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page, unsigned int flags) { - return __tlb_remove_page_size(tlb, encode_page(page, 0), PAGE_SIZE); + return __tlb_remove_page_size(tlb, encode_page(page, flags), PAGE_SIZE); } /* tlb_remove_page |