diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 00:20:36 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 00:20:36 +0200 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-m32r/bitops.h | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'include/asm-m32r/bitops.h')
-rw-r--r-- | include/asm-m32r/bitops.h | 702 |
1 files changed, 702 insertions, 0 deletions
diff --git a/include/asm-m32r/bitops.h b/include/asm-m32r/bitops.h new file mode 100644 index 000000000000..e78443981349 --- /dev/null +++ b/include/asm-m32r/bitops.h @@ -0,0 +1,702 @@ +#ifndef _ASM_M32R_BITOPS_H +#define _ASM_M32R_BITOPS_H + +/* + * linux/include/asm-m32r/bitops.h + * + * Copyright 1992, Linus Torvalds. + * + * M32R version: + * Copyright (C) 2001, 2002 Hitoshi Yamamoto + * Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org> + */ + +#include <linux/config.h> +#include <linux/compiler.h> +#include <asm/assembler.h> +#include <asm/system.h> +#include <asm/byteorder.h> +#include <asm/types.h> + +/* + * These have to be done with inline assembly: that way the bit-setting + * is guaranteed to be atomic. All bit operations return 0 if the bit + * was cleared before the operation and != 0 if it was not. + * + * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). + */ + +/** + * set_bit - Atomically set a bit in memory + * @nr: the bit to set + * @addr: the address to start counting from + * + * This function is atomic and may not be reordered. See __set_bit() + * if you do not require the atomic guarantees. + * Note that @nr may be almost arbitrarily large; this function is not + * restricted to acting on a single-word quantity. + */ +static __inline__ void set_bit(int nr, volatile void * addr) +{ + __u32 mask; + volatile __u32 *a = addr; + unsigned long flags; + unsigned long tmp; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + + local_irq_save(flags); + __asm__ __volatile__ ( + DCACHE_CLEAR("%0", "r6", "%1") + M32R_LOCK" %0, @%1; \n\t" + "or %0, %2; \n\t" + M32R_UNLOCK" %0, @%1; \n\t" + : "=&r" (tmp) + : "r" (a), "r" (mask) + : "memory" +#ifdef CONFIG_CHIP_M32700_TS1 + , "r6" +#endif /* CONFIG_CHIP_M32700_TS1 */ + ); + local_irq_restore(flags); +} + +/** + * __set_bit - Set a bit in memory + * @nr: the bit to set + * @addr: the address to start counting from + * + * Unlike set_bit(), this function is non-atomic and may be reordered. + * If it's called on the same region of memory simultaneously, the effect + * may be that only one operation succeeds. + */ +static __inline__ void __set_bit(int nr, volatile void * addr) +{ + __u32 mask; + volatile __u32 *a = addr; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + *a |= mask; +} + +/** + * clear_bit - Clears a bit in memory + * @nr: Bit to clear + * @addr: Address to start counting from + * + * clear_bit() is atomic and may not be reordered. However, it does + * not contain a memory barrier, so if it is used for locking purposes, + * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() + * in order to ensure changes are visible on other processors. + */ +static __inline__ void clear_bit(int nr, volatile void * addr) +{ + __u32 mask; + volatile __u32 *a = addr; + unsigned long flags; + unsigned long tmp; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + + local_irq_save(flags); + + __asm__ __volatile__ ( + DCACHE_CLEAR("%0", "r6", "%1") + M32R_LOCK" %0, @%1; \n\t" + "and %0, %2; \n\t" + M32R_UNLOCK" %0, @%1; \n\t" + : "=&r" (tmp) + : "r" (a), "r" (~mask) + : "memory" +#ifdef CONFIG_CHIP_M32700_TS1 + , "r6" +#endif /* CONFIG_CHIP_M32700_TS1 */ + ); + local_irq_restore(flags); +} + +static __inline__ void __clear_bit(int nr, volatile unsigned long * addr) +{ + unsigned long mask; + volatile unsigned long *a = addr; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + *a &= ~mask; +} + +#define smp_mb__before_clear_bit() barrier() +#define smp_mb__after_clear_bit() barrier() + +/** + * __change_bit - Toggle a bit in memory + * @nr: the bit to set + * @addr: the address to start counting from + * + * Unlike change_bit(), this function is non-atomic and may be reordered. + * If it's called on the same region of memory simultaneously, the effect + * may be that only one operation succeeds. + */ +static __inline__ void __change_bit(int nr, volatile void * addr) +{ + __u32 mask; + volatile __u32 *a = addr; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + *a ^= mask; +} + +/** + * change_bit - Toggle a bit in memory + * @nr: Bit to clear + * @addr: Address to start counting from + * + * change_bit() is atomic and may not be reordered. + * Note that @nr may be almost arbitrarily large; this function is not + * restricted to acting on a single-word quantity. + */ +static __inline__ void change_bit(int nr, volatile void * addr) +{ + __u32 mask; + volatile __u32 *a = addr; + unsigned long flags; + unsigned long tmp; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + + local_irq_save(flags); + __asm__ __volatile__ ( + DCACHE_CLEAR("%0", "r6", "%1") + M32R_LOCK" %0, @%1; \n\t" + "xor %0, %2; \n\t" + M32R_UNLOCK" %0, @%1; \n\t" + : "=&r" (tmp) + : "r" (a), "r" (mask) + : "memory" +#ifdef CONFIG_CHIP_M32700_TS1 + , "r6" +#endif /* CONFIG_CHIP_M32700_TS1 */ + ); + local_irq_restore(flags); +} + +/** + * test_and_set_bit - Set a bit and return its old value + * @nr: Bit to set + * @addr: Address to count from + * + * This operation is atomic and cannot be reordered. + * It also implies a memory barrier. + */ +static __inline__ int test_and_set_bit(int nr, volatile void * addr) +{ + __u32 mask, oldbit; + volatile __u32 *a = addr; + unsigned long flags; + unsigned long tmp; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + + local_irq_save(flags); + __asm__ __volatile__ ( + DCACHE_CLEAR("%0", "%1", "%2") + M32R_LOCK" %0, @%2; \n\t" + "mv %1, %0; \n\t" + "and %0, %3; \n\t" + "or %1, %3; \n\t" + M32R_UNLOCK" %1, @%2; \n\t" + : "=&r" (oldbit), "=&r" (tmp) + : "r" (a), "r" (mask) + : "memory" + ); + local_irq_restore(flags); + + return (oldbit != 0); +} + +/** + * __test_and_set_bit - Set a bit and return its old value + * @nr: Bit to set + * @addr: Address to count from + * + * This operation is non-atomic and can be reordered. + * If two examples of this operation race, one can appear to succeed + * but actually fail. You must protect multiple accesses with a lock. + */ +static __inline__ int __test_and_set_bit(int nr, volatile void * addr) +{ + __u32 mask, oldbit; + volatile __u32 *a = addr; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + oldbit = (*a & mask); + *a |= mask; + + return (oldbit != 0); +} + +/** + * test_and_clear_bit - Clear a bit and return its old value + * @nr: Bit to set + * @addr: Address to count from + * + * This operation is atomic and cannot be reordered. + * It also implies a memory barrier. + */ +static __inline__ int test_and_clear_bit(int nr, volatile void * addr) +{ + __u32 mask, oldbit; + volatile __u32 *a = addr; + unsigned long flags; + unsigned long tmp; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + + local_irq_save(flags); + + __asm__ __volatile__ ( + DCACHE_CLEAR("%0", "%1", "%3") + M32R_LOCK" %0, @%3; \n\t" + "mv %1, %0; \n\t" + "and %0, %2; \n\t" + "not %2, %2; \n\t" + "and %1, %2; \n\t" + M32R_UNLOCK" %1, @%3; \n\t" + : "=&r" (oldbit), "=&r" (tmp), "+r" (mask) + : "r" (a) + : "memory" + ); + local_irq_restore(flags); + + return (oldbit != 0); +} + +/** + * __test_and_clear_bit - Clear a bit and return its old value + * @nr: Bit to set + * @addr: Address to count from + * + * This operation is non-atomic and can be reordered. + * If two examples of this operation race, one can appear to succeed + * but actually fail. You must protect multiple accesses with a lock. + */ +static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) +{ + __u32 mask, oldbit; + volatile __u32 *a = addr; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + oldbit = (*a & mask); + *a &= ~mask; + + return (oldbit != 0); +} + +/* WARNING: non atomic and it can be reordered! */ +static __inline__ int __test_and_change_bit(int nr, volatile void * addr) +{ + __u32 mask, oldbit; + volatile __u32 *a = addr; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + oldbit = (*a & mask); + *a ^= mask; + + return (oldbit != 0); +} + +/** + * test_and_change_bit - Change a bit and return its old value + * @nr: Bit to set + * @addr: Address to count from + * + * This operation is atomic and cannot be reordered. + * It also implies a memory barrier. + */ +static __inline__ int test_and_change_bit(int nr, volatile void * addr) +{ + __u32 mask, oldbit; + volatile __u32 *a = addr; + unsigned long flags; + unsigned long tmp; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + + local_irq_save(flags); + __asm__ __volatile__ ( + DCACHE_CLEAR("%0", "%1", "%2") + M32R_LOCK" %0, @%2; \n\t" + "mv %1, %0; \n\t" + "and %0, %3; \n\t" + "xor %1, %3; \n\t" + M32R_UNLOCK" %1, @%2; \n\t" + : "=&r" (oldbit), "=&r" (tmp) + : "r" (a), "r" (mask) + : "memory" + ); + local_irq_restore(flags); + + return (oldbit != 0); +} + +/** + * test_bit - Determine whether a bit is set + * @nr: bit number to test + * @addr: Address to start counting from + */ +static __inline__ int test_bit(int nr, const volatile void * addr) +{ + __u32 mask; + const volatile __u32 *a = addr; + + a += (nr >> 5); + mask = (1 << (nr & 0x1F)); + + return ((*a & mask) != 0); +} + +/** + * ffz - find first zero in word. + * @word: The word to search + * + * Undefined if no zero exists, so code should check against ~0UL first. + */ +static __inline__ unsigned long ffz(unsigned long word) +{ + int k; + + word = ~word; + k = 0; + if (!(word & 0x0000ffff)) { k += 16; word >>= 16; } + if (!(word & 0x000000ff)) { k += 8; word >>= 8; } + if (!(word & 0x0000000f)) { k += 4; word >>= 4; } + if (!(word & 0x00000003)) { k += 2; word >>= 2; } + if (!(word & 0x00000001)) { k += 1; } + + return k; +} + +/** + * find_first_zero_bit - find the first zero bit in a memory region + * @addr: The address to start the search at + * @size: The maximum size to search + * + * Returns the bit-number of the first zero bit, not the number of the byte + * containing a bit. + */ + +#define find_first_zero_bit(addr, size) \ + find_next_zero_bit((addr), (size), 0) + +/** + * find_next_zero_bit - find the first zero bit in a memory region + * @addr: The address to base the search on + * @offset: The bitnumber to start searching at + * @size: The maximum size to search + */ +static __inline__ int find_next_zero_bit(const unsigned long *addr, + int size, int offset) +{ + const unsigned long *p = addr + (offset >> 5); + unsigned long result = offset & ~31UL; + unsigned long tmp; + + if (offset >= size) + return size; + size -= result; + offset &= 31UL; + if (offset) { + tmp = *(p++); + tmp |= ~0UL >> (32-offset); + if (size < 32) + goto found_first; + if (~tmp) + goto found_middle; + size -= 32; + result += 32; + } + while (size & ~31UL) { + if (~(tmp = *(p++))) + goto found_middle; + result += 32; + size -= 32; + } + if (!size) + return result; + tmp = *p; + +found_first: + tmp |= ~0UL << size; +found_middle: + return result + ffz(tmp); +} + +/** + * __ffs - find first bit in word. + * @word: The word to search + * + * Undefined if no bit exists, so code should check against 0 first. + */ +static __inline__ unsigned long __ffs(unsigned long word) +{ + int k = 0; + + if (!(word & 0x0000ffff)) { k += 16; word >>= 16; } + if (!(word & 0x000000ff)) { k += 8; word >>= 8; } + if (!(word & 0x0000000f)) { k += 4; word >>= 4; } + if (!(word & 0x00000003)) { k += 2; word >>= 2; } + if (!(word & 0x00000001)) { k += 1;} + + return k; +} + +/* + * fls: find last bit set. + */ +#define fls(x) generic_fls(x) + +#ifdef __KERNEL__ + +/* + * Every architecture must define this function. It's the fastest + * way of searching a 140-bit bitmap where the first 100 bits are + * unlikely to be set. It's guaranteed that at least one of the 140 + * bits is cleared. + */ +static inline int sched_find_first_bit(unsigned long *b) +{ + if (unlikely(b[0])) + return __ffs(b[0]); + if (unlikely(b[1])) + return __ffs(b[1]) + 32; + if (unlikely(b[2])) + return __ffs(b[2]) + 64; + if (b[3]) + return __ffs(b[3]) + 96; + return __ffs(b[4]) + 128; +} + +/** + * find_next_bit - find the first set bit in a memory region + * @addr: The address to base the search on + * @offset: The bitnumber to start searching at + * @size: The maximum size to search + */ +static inline unsigned long find_next_bit(const unsigned long *addr, + unsigned long size, unsigned long offset) +{ + unsigned int *p = ((unsigned int *) addr) + (offset >> 5); + unsigned int result = offset & ~31UL; + unsigned int tmp; + + if (offset >= size) + return size; + size -= result; + offset &= 31UL; + if (offset) { + tmp = *p++; + tmp &= ~0UL << offset; + if (size < 32) + goto found_first; + if (tmp) + goto found_middle; + size -= 32; + result += 32; + } + while (size >= 32) { + if ((tmp = *p++) != 0) + goto found_middle; + result += 32; + size -= 32; + } + if (!size) + return result; + tmp = *p; + +found_first: + tmp &= ~0UL >> (32 - size); + if (tmp == 0UL) /* Are any bits set? */ + return result + size; /* Nope. */ +found_middle: + return result + __ffs(tmp); +} + +/** + * find_first_bit - find the first set bit in a memory region + * @addr: The address to start the search at + * @size: The maximum size to search + * + * Returns the bit-number of the first set bit, not the number of the byte + * containing a bit. + */ +#define find_first_bit(addr, size) \ + find_next_bit((addr), (size), 0) + +/** + * ffs - find first bit set + * @x: the word to search + * + * This is defined the same way as + * the libc and compiler builtin ffs routines, therefore + * differs in spirit from the above ffz (man ffs). + */ +#define ffs(x) generic_ffs(x) + +/** + * hweightN - returns the hamming weight of a N-bit word + * @x: the word to weigh + * + * The Hamming Weight of a number is the total number of bits set in it. + */ + +#define hweight32(x) generic_hweight32(x) +#define hweight16(x) generic_hweight16(x) +#define hweight8(x) generic_hweight8(x) + +#endif /* __KERNEL__ */ + +#ifdef __KERNEL__ + +/* + * ext2_XXXX function + * orig: include/asm-sh/bitops.h + */ + +#ifdef __LITTLE_ENDIAN__ +#define ext2_set_bit test_and_set_bit +#define ext2_clear_bit __test_and_clear_bit +#define ext2_test_bit test_bit +#define ext2_find_first_zero_bit find_first_zero_bit +#define ext2_find_next_zero_bit find_next_zero_bit +#else +static inline int ext2_set_bit(int nr, volatile void * addr) +{ + __u8 mask, oldbit; + volatile __u8 *a = addr; + + a += (nr >> 3); + mask = (1 << (nr & 0x07)); + oldbit = (*a & mask); + *a |= mask; + + return (oldbit != 0); +} + +static inline int ext2_clear_bit(int nr, volatile void * addr) +{ + __u8 mask, oldbit; + volatile __u8 *a = addr; + + a += (nr >> 3); + mask = (1 << (nr & 0x07)); + oldbit = (*a & mask); + *a &= ~mask; + + return (oldbit != 0); +} + +static inline int ext2_test_bit(int nr, const volatile void * addr) +{ + __u32 mask; + const volatile __u8 *a = addr; + + a += (nr >> 3); + mask = (1 << (nr & 0x07)); + + return ((mask & *a) != 0); +} + +#define ext2_find_first_zero_bit(addr, size) \ + ext2_find_next_zero_bit((addr), (size), 0) + +static inline unsigned long ext2_find_next_zero_bit(void *addr, + unsigned long size, unsigned long offset) +{ + unsigned long *p = ((unsigned long *) addr) + (offset >> 5); + unsigned long result = offset & ~31UL; + unsigned long tmp; + + if (offset >= size) + return size; + size -= result; + offset &= 31UL; + if(offset) { + /* We hold the little endian value in tmp, but then the + * shift is illegal. So we could keep a big endian value + * in tmp, like this: + * + * tmp = __swab32(*(p++)); + * tmp |= ~0UL >> (32-offset); + * + * but this would decrease preformance, so we change the + * shift: + */ + tmp = *(p++); + tmp |= __swab32(~0UL >> (32-offset)); + if(size < 32) + goto found_first; + if(~tmp) + goto found_middle; + size -= 32; + result += 32; + } + while(size & ~31UL) { + if(~(tmp = *(p++))) + goto found_middle; + result += 32; + size -= 32; + } + if(!size) + return result; + tmp = *p; + +found_first: + /* tmp is little endian, so we would have to swab the shift, + * see above. But then we have to swab tmp below for ffz, so + * we might as well do this here. + */ + return result + ffz(__swab32(tmp) | (~0UL << size)); +found_middle: + return result + ffz(__swab32(tmp)); +} +#endif + +#define ext2_set_bit_atomic(lock, nr, addr) \ + ({ \ + int ret; \ + spin_lock(lock); \ + ret = ext2_set_bit((nr), (addr)); \ + spin_unlock(lock); \ + ret; \ + }) + +#define ext2_clear_bit_atomic(lock, nr, addr) \ + ({ \ + int ret; \ + spin_lock(lock); \ + ret = ext2_clear_bit((nr), (addr)); \ + spin_unlock(lock); \ + ret; \ + }) + +/* Bitmap functions for the minix filesystem. */ +#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) +#define minix_set_bit(nr,addr) __set_bit(nr,addr) +#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) +#define minix_test_bit(nr,addr) test_bit(nr,addr) +#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) + +#endif /* __KERNEL__ */ + +#endif /* _ASM_M32R_BITOPS_H */ |