summaryrefslogtreecommitdiffstats
path: root/include/asm-powerpc
diff options
context:
space:
mode:
authorAndi Kleen <ak@suse.de>2008-07-24 06:27:41 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2008-07-24 19:47:17 +0200
commita5516438959d90b071ff0a484ce4f3f523dc3152 (patch)
treee356ba9364c76b93c176b4d4a262b7aca3ee8f91 /include/asm-powerpc
parenthugetlb: factor out prep_new_huge_page (diff)
downloadlinux-a5516438959d90b071ff0a484ce4f3f523dc3152.tar.xz
linux-a5516438959d90b071ff0a484ce4f3f523dc3152.zip
hugetlb: modular state for hugetlb page size
The goal of this patchset is to support multiple hugetlb page sizes. This is achieved by introducing a new struct hstate structure, which encapsulates the important hugetlb state and constants (eg. huge page size, number of huge pages currently allocated, etc). The hstate structure is then passed around the code which requires these fields, they will do the right thing regardless of the exact hstate they are operating on. This patch adds the hstate structure, with a single global instance of it (default_hstate), and does the basic work of converting hugetlb to use the hstate. Future patches will add more hstate structures to allow for different hugetlbfs mounts to have different page sizes. [akpm@linux-foundation.org: coding-style fixes] Acked-by: Adam Litke <agl@us.ibm.com> Acked-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/asm-powerpc')
-rw-r--r--include/asm-powerpc/hugetlb.h3
1 files changed, 2 insertions, 1 deletions
diff --git a/include/asm-powerpc/hugetlb.h b/include/asm-powerpc/hugetlb.h
index 0a37aa5ecaa5..ca37c4af27b1 100644
--- a/include/asm-powerpc/hugetlb.h
+++ b/include/asm-powerpc/hugetlb.h
@@ -21,7 +21,8 @@ pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
* If the arch doesn't supply something else, assume that hugepage
* size aligned regions are ok without further preparation.
*/
-static inline int prepare_hugepage_range(unsigned long addr, unsigned long len)
+static inline int prepare_hugepage_range(struct file *file,
+ unsigned long addr, unsigned long len)
{
if (len & ~HPAGE_MASK)
return -EINVAL;