summaryrefslogtreecommitdiffstats
path: root/include/rdma/rdmavt_cq.h
diff options
context:
space:
mode:
authorSebastian Sanchez <sebastian.sanchez@intel.com>2018-05-02 15:43:55 +0200
committerDoug Ledford <dledford@redhat.com>2018-05-09 21:53:30 +0200
commit5d18ee67d4c1735f5c1f757e89228ec68e4f4ef3 (patch)
treebee1ad21ecea953b9048b94fd05b2c86a4128c27 /include/rdma/rdmavt_cq.h
parentIB/hfi1: Create common functions for affinity CPU mask operations (diff)
downloadlinux-5d18ee67d4c1735f5c1f757e89228ec68e4f4ef3.tar.xz
linux-5d18ee67d4c1735f5c1f757e89228ec68e4f4ef3.zip
IB/{hfi1, rdmavt, qib}: Implement CQ completion vector support
Currently the driver doesn't support completion vectors. These are used to indicate which sets of CQs should be grouped together into the same vector. A vector is a CQ processing thread that runs on a specific CPU. If an application has several CQs bound to different completion vectors, and each completion vector runs on different CPUs, then the completion queue workload is balanced. This helps scale as more nodes are used. Implement CQ completion vector support using a global workqueue where a CQ entry is queued to the CPU corresponding to the CQ's completion vector. Since the workqueue is global, it's guaranteed to always be there when queueing CQ entries; Therefore, the RCU locking for cq->rdi->worker in the hot path is superfluous. Each completion vector is assigned to a different CPU. The number of completion vectors available is computed by taking the number of online, physical CPUs from the local NUMA node and subtracting the CPUs used for kernel receive queues and the general interrupt. Special use cases: * If there are no CPUs left for completion vectors, the same CPU for the general interrupt is used; Therefore, there would only be one completion vector available. * For multi-HFI systems, the number of completion vectors available for each device is the total number of completion vectors in the local NUMA node divided by the number of devices in the same NUMA node. If there's a division remainder, the first device to get initialized gets an extra completion vector. Upon a CQ creation, an invalid completion vector could be specified. Handle it as follows: * If the completion vector is less than 0, set it to 0. * Set the completion vector to the result of the passed completion vector moded with the number of device completion vectors available. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Signed-off-by: Sebastian Sanchez <sebastian.sanchez@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
Diffstat (limited to 'include/rdma/rdmavt_cq.h')
-rw-r--r--include/rdma/rdmavt_cq.h5
1 files changed, 3 insertions, 2 deletions
diff --git a/include/rdma/rdmavt_cq.h b/include/rdma/rdmavt_cq.h
index 51fd00b243d0..75dc65c0bfb8 100644
--- a/include/rdma/rdmavt_cq.h
+++ b/include/rdma/rdmavt_cq.h
@@ -8,7 +8,7 @@
*
* GPL LICENSE SUMMARY
*
- * Copyright(c) 2016 Intel Corporation.
+ * Copyright(c) 2016 - 2018 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
@@ -80,10 +80,11 @@ struct rvt_cq_wc {
*/
struct rvt_cq {
struct ib_cq ibcq;
- struct kthread_work comptask;
+ struct work_struct comptask;
spinlock_t lock; /* protect changes in this struct */
u8 notify;
u8 triggered;
+ int comp_vector_cpu;
struct rvt_dev_info *rdi;
struct rvt_cq_wc *queue;
struct rvt_mmap_info *ip;