summaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorLars-Peter Clausen <lars@metafoo.de>2014-10-25 17:42:03 +0200
committerMark Brown <broonie@kernel.org>2014-10-28 01:19:59 +0100
commit92a99ea439c4e27fc6e32eb6d51c5d091c6084bd (patch)
treeb1539da9e012f31fa47c55413535a9b4ee55708b /include
parentASoC: dapm: Add a few supply widget sanity checks (diff)
downloadlinux-92a99ea439c4e27fc6e32eb6d51c5d091c6084bd.tar.xz
linux-92a99ea439c4e27fc6e32eb6d51c5d091c6084bd.zip
ASoC: dapm: Use more aggressive caching
Currently we cache the number of input and output paths going to/from a widget only within a power update sequence. But not in between power update sequences. But we know how changes to the DAPM graph affect the number of input (form a source) and output (to a sink) paths of a widget and only need to recalculate them if a operation has been performed that might have changed them. * Adding/removing or connecting/disconnecting a path means that the for the source of the path the number of output paths can change and for the sink the number of input paths can change. * Connecting/disconnecting a widget has the same effect has connecting/ disconnecting all paths of the widget. So for the widget itself the number of inputs and outputs can change, for all sinks of the widget the number of inputs can change and for all sources of the widget the number of outputs can change. * Activating/Deactivating a stream can either change the number of outputs on the sources of the widget associated with the stream or the number of inputs on the sinks. Instead of always invalidating all cached numbers of input and output paths for each power up or down sequence this patch restructures the code to only invalidate the cached numbers when a operation that might change them has been performed. This can greatly reduce the number of DAPM power checks for some very common operations. Since per DAPM operation typically only either change the number of inputs or outputs the number of path checks is reduced by at least 50%. The number of neighbor checks is also reduced about the same percentage, but since the number of neighbors encountered when walking from sink to source is not the same as when walking from source to sink the actual numbers will slightly vary from card to card (e.g. for a mixer we see 1 neighbor when walking from source to sink, but the number of inputs neighbors when walking from source to sink). Bigger improvements can be observed for widgets with multiple connected inputs and output (e.g. mixers probably being the most widespread form of this). Previously we had to re-calculate the number of inputs and outputs on all input and output paths. With this change we only have to re-calculate the number of outputs on the input path that got changed and the number of inputs on the output paths. E.g. imagine the following example: A --> B ----. v M --> N --> Z <-- S <-- R | v X Widget Z has multiple input paths, if any change was made that cause Z to be marked as dirty the power state of Z has to be re-computed. This requires to know the number of inputs and outputs of Z, which requires to know the number of inputs and outputs of all widgets on all paths from or to Z. Previously this meant re-computing all inputs and outputs of all the path going into or out of Z. With this patch in place only paths that actually have changed need to be re-computed. If the system is idle (or the part of the system affected by the changed path) the number of path checks drops to either 0 or 1, regardless of how large or complex the DAPM context is. 0 if there is no connected sink and no connected source. 1 if there is either a connected source or sink, but not both. The number of neighbor checks again will scale accordingly and will be a constant number that is the number of inputs or outputs of the widget for which we did the path check. When loading a state file or switching between different profiles typically multiple mixer and mux settings are changed, so we see the benefit of this patch multiplied for these kinds of operations. Testing with the ADAU1761 shows the following changes in DAPM stats for changing a single Mixer switch for a Mixer with 5 inputs while the DAPM context is idle. Power Path Neighbour Before: 2 12 30 After: 2 1 2 For the same switch, but with a active playback stream the stat changed are as follows. Power Path Neighbour Before: 10 20 54 After: 10 7 21 Cumulative numbers for switching the audio profile which changes 7 controls while the system is idle: Power Path Neighbour Before: 16 80 170 After: 16 7 23 Cumulative numbers for switching the audio profile which changes 7 controls while playback is active: Power Path Neighbour Before: 51 123 273 After: 51 29 109 Starting (or stopping) the playback stream: Power Path Neighbour Before: 34 34 117 After: 34 17 69 Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Signed-off-by: Mark Brown <broonie@kernel.org>
Diffstat (limited to 'include')
-rw-r--r--include/sound/soc-dapm.h1
1 files changed, 1 insertions, 0 deletions
diff --git a/include/sound/soc-dapm.h b/include/sound/soc-dapm.h
index 43ca1656dab4..89823cfe6f04 100644
--- a/include/sound/soc-dapm.h
+++ b/include/sound/soc-dapm.h
@@ -569,6 +569,7 @@ struct snd_soc_dapm_widget {
struct list_head sinks;
/* used during DAPM updates */
+ struct list_head work_list;
struct list_head power_list;
struct list_head dirty;
int inputs;