summaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorTim Chen <tim.c.chen@linux.intel.com>2014-01-22 00:36:00 +0100
committerIngo Molnar <mingo@kernel.org>2014-01-28 13:13:27 +0100
commite72246748ff006ab928bc774e276e6ef5542f9c5 (patch)
treeb3021f1615d2088ce20fc02bd61e9f2baab72dd1 /include
parentlocking/mutexes/mcs: Correct barrier usage (diff)
downloadlinux-e72246748ff006ab928bc774e276e6ef5542f9c5.tar.xz
linux-e72246748ff006ab928bc774e276e6ef5542f9c5.zip
locking/mutexes/mcs: Restructure the MCS lock defines and locking code into its own file
We will need the MCS lock code for doing optimistic spinning for rwsem and queued rwlock. Extracting the MCS code from mutex.c and put into its own file allow us to reuse this code easily. We also inline mcs_spin_lock and mcs_spin_unlock functions for better efficiency. Note that using the smp_load_acquire/smp_store_release pair used in mcs_lock and mcs_unlock is not sufficient to form a full memory barrier across cpus for many architectures (except x86). For applications that absolutely need a full barrier across multiple cpus with mcs_unlock and mcs_lock pair, smp_mb__after_unlock_lock() should be used after mcs_lock. Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1390347360.3138.63.camel@schen9-DESK Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'include')
-rw-r--r--include/linux/mcs_spinlock.h77
-rw-r--r--include/linux/mutex.h5
2 files changed, 80 insertions, 2 deletions
diff --git a/include/linux/mcs_spinlock.h b/include/linux/mcs_spinlock.h
new file mode 100644
index 000000000000..9578ef81940b
--- /dev/null
+++ b/include/linux/mcs_spinlock.h
@@ -0,0 +1,77 @@
+/*
+ * MCS lock defines
+ *
+ * This file contains the main data structure and API definitions of MCS lock.
+ *
+ * The MCS lock (proposed by Mellor-Crummey and Scott) is a simple spin-lock
+ * with the desirable properties of being fair, and with each cpu trying
+ * to acquire the lock spinning on a local variable.
+ * It avoids expensive cache bouncings that common test-and-set spin-lock
+ * implementations incur.
+ */
+#ifndef __LINUX_MCS_SPINLOCK_H
+#define __LINUX_MCS_SPINLOCK_H
+
+struct mcs_spinlock {
+ struct mcs_spinlock *next;
+ int locked; /* 1 if lock acquired */
+};
+
+/*
+ * Note: the smp_load_acquire/smp_store_release pair is not
+ * sufficient to form a full memory barrier across
+ * cpus for many architectures (except x86) for mcs_unlock and mcs_lock.
+ * For applications that need a full barrier across multiple cpus
+ * with mcs_unlock and mcs_lock pair, smp_mb__after_unlock_lock() should be
+ * used after mcs_lock.
+ */
+static inline
+void mcs_spin_lock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
+{
+ struct mcs_spinlock *prev;
+
+ /* Init node */
+ node->locked = 0;
+ node->next = NULL;
+
+ prev = xchg(lock, node);
+ if (likely(prev == NULL)) {
+ /* Lock acquired */
+ node->locked = 1;
+ return;
+ }
+ ACCESS_ONCE(prev->next) = node;
+ /*
+ * Wait until the lock holder passes the lock down.
+ * Using smp_load_acquire() provides a memory barrier that
+ * ensures subsequent operations happen after the lock is acquired.
+ */
+ while (!(smp_load_acquire(&node->locked)))
+ arch_mutex_cpu_relax();
+}
+
+static inline
+void mcs_spin_unlock(struct mcs_spinlock **lock, struct mcs_spinlock *node)
+{
+ struct mcs_spinlock *next = ACCESS_ONCE(node->next);
+
+ if (likely(!next)) {
+ /*
+ * Release the lock by setting it to NULL
+ */
+ if (cmpxchg(lock, node, NULL) == node)
+ return;
+ /* Wait until the next pointer is set */
+ while (!(next = ACCESS_ONCE(node->next)))
+ arch_mutex_cpu_relax();
+ }
+ /*
+ * Pass lock to next waiter.
+ * smp_store_release() provides a memory barrier to ensure
+ * all operations in the critical section has been completed
+ * before unlocking.
+ */
+ smp_store_release(&next->locked, 1);
+}
+
+#endif /* __LINUX_MCS_SPINLOCK_H */
diff --git a/include/linux/mutex.h b/include/linux/mutex.h
index d3181936c138..c482e1d2cc49 100644
--- a/include/linux/mutex.h
+++ b/include/linux/mutex.h
@@ -46,6 +46,7 @@
* - detects multi-task circular deadlocks and prints out all affected
* locks and tasks (and only those tasks)
*/
+struct mcs_spinlock;
struct mutex {
/* 1: unlocked, 0: locked, negative: locked, possible waiters */
atomic_t count;
@@ -55,7 +56,7 @@ struct mutex {
struct task_struct *owner;
#endif
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
- void *spin_mlock; /* Spinner MCS lock */
+ struct mcs_spinlock *mcs_lock; /* Spinner MCS lock */
#endif
#ifdef CONFIG_DEBUG_MUTEXES
const char *name;
@@ -179,4 +180,4 @@ extern int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);
# define arch_mutex_cpu_relax() cpu_relax()
#endif
-#endif
+#endif /* __LINUX_MUTEX_H */