diff options
author | Tom Lendacky <thomas.lendacky@amd.com> | 2021-01-04 21:20:01 +0100 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2021-01-08 00:11:37 +0100 |
commit | 647daca25d24fb6eadc7b6cd680ad3e6eed0f3d5 (patch) | |
tree | 4be47ed04f17fa8924aa0c1610d146b1f55d95ac /include | |
parent | KVM: nSVM: cancel KVM_REQ_GET_NESTED_STATE_PAGES on nested vmexit (diff) | |
download | linux-647daca25d24fb6eadc7b6cd680ad3e6eed0f3d5.tar.xz linux-647daca25d24fb6eadc7b6cd680ad3e6eed0f3d5.zip |
KVM: SVM: Add support for booting APs in an SEV-ES guest
Typically under KVM, an AP is booted using the INIT-SIPI-SIPI sequence,
where the guest vCPU register state is updated and then the vCPU is VMRUN
to begin execution of the AP. For an SEV-ES guest, this won't work because
the guest register state is encrypted.
Following the GHCB specification, the hypervisor must not alter the guest
register state, so KVM must track an AP/vCPU boot. Should the guest want
to park the AP, it must use the AP Reset Hold exit event in place of, for
example, a HLT loop.
First AP boot (first INIT-SIPI-SIPI sequence):
Execute the AP (vCPU) as it was initialized and measured by the SEV-ES
support. It is up to the guest to transfer control of the AP to the
proper location.
Subsequent AP boot:
KVM will expect to receive an AP Reset Hold exit event indicating that
the vCPU is being parked and will require an INIT-SIPI-SIPI sequence to
awaken it. When the AP Reset Hold exit event is received, KVM will place
the vCPU into a simulated HLT mode. Upon receiving the INIT-SIPI-SIPI
sequence, KVM will make the vCPU runnable. It is again up to the guest
to then transfer control of the AP to the proper location.
To differentiate between an actual HLT and an AP Reset Hold, a new MP
state is introduced, KVM_MP_STATE_AP_RESET_HOLD, which the vCPU is
placed in upon receiving the AP Reset Hold exit event. Additionally, to
communicate the AP Reset Hold exit event up to userspace (if needed), a
new exit reason is introduced, KVM_EXIT_AP_RESET_HOLD.
A new x86 ops function is introduced, vcpu_deliver_sipi_vector, in order
to accomplish AP booting. For VMX, vcpu_deliver_sipi_vector is set to the
original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(). SVM adds
a new function that, for non SEV-ES guests, invokes the original SIPI
delivery function, kvm_vcpu_deliver_sipi_vector(), but for SEV-ES guests,
implements the logic above.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e8fbebe8eb161ceaabdad7c01a5859a78b424d5e.1609791600.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'include')
-rw-r--r-- | include/uapi/linux/kvm.h | 2 |
1 files changed, 2 insertions, 0 deletions
diff --git a/include/uapi/linux/kvm.h b/include/uapi/linux/kvm.h index 886802b8ffba..374c67875cdb 100644 --- a/include/uapi/linux/kvm.h +++ b/include/uapi/linux/kvm.h @@ -251,6 +251,7 @@ struct kvm_hyperv_exit { #define KVM_EXIT_X86_RDMSR 29 #define KVM_EXIT_X86_WRMSR 30 #define KVM_EXIT_DIRTY_RING_FULL 31 +#define KVM_EXIT_AP_RESET_HOLD 32 /* For KVM_EXIT_INTERNAL_ERROR */ /* Emulate instruction failed. */ @@ -573,6 +574,7 @@ struct kvm_vapic_addr { #define KVM_MP_STATE_CHECK_STOP 6 #define KVM_MP_STATE_OPERATING 7 #define KVM_MP_STATE_LOAD 8 +#define KVM_MP_STATE_AP_RESET_HOLD 9 struct kvm_mp_state { __u32 mp_state; |