diff options
author | Peter Zijlstra <peterz@infradead.org> | 2020-06-22 12:01:23 +0200 |
---|---|---|
committer | Borislav Petkov <bp@suse.de> | 2020-06-28 17:01:20 +0200 |
commit | b6e13e85829f032411b896bd2f0d6cbe4b0a3c4a (patch) | |
tree | 6f0af9ae7ffe68f8fe00fb8bfb83e8ea7ce7691d /kernel/acct.c | |
parent | sched/core: Fix PI boosting between RT and DEADLINE tasks (diff) | |
download | linux-b6e13e85829f032411b896bd2f0d6cbe4b0a3c4a.tar.xz linux-b6e13e85829f032411b896bd2f0d6cbe4b0a3c4a.zip |
sched/core: Fix ttwu() race
Paul reported rcutorture occasionally hitting a NULL deref:
sched_ttwu_pending()
ttwu_do_wakeup()
check_preempt_curr() := check_preempt_wakeup()
find_matching_se()
is_same_group()
if (se->cfs_rq == pse->cfs_rq) <-- *BOOM*
Debugging showed that this only appears to happen when we take the new
code-path from commit:
2ebb17717550 ("sched/core: Offload wakee task activation if it the wakee is descheduling")
and only when @cpu == smp_processor_id(). Something which should not
be possible, because p->on_cpu can only be true for remote tasks.
Similarly, without the new code-path from commit:
c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu")
this would've unconditionally hit:
smp_cond_load_acquire(&p->on_cpu, !VAL);
and if: 'cpu == smp_processor_id() && p->on_cpu' is possible, this
would result in an instant live-lock (with IRQs disabled), something
that hasn't been reported.
The NULL deref can be explained however if the task_cpu(p) load at the
beginning of try_to_wake_up() returns an old value, and this old value
happens to be smp_processor_id(). Further assume that the p->on_cpu
load accurately returns 1, it really is still running, just not here.
Then, when we enqueue the task locally, we can crash in exactly the
observed manner because p->se.cfs_rq != rq->cfs_rq, because p's cfs_rq
is from the wrong CPU, therefore we'll iterate into the non-existant
parents and NULL deref.
The closest semi-plausible scenario I've managed to contrive is
somewhat elaborate (then again, actual reproduction takes many CPU
hours of rcutorture, so it can't be anything obvious):
X->cpu = 1
rq(1)->curr = X
CPU0 CPU1 CPU2
// switch away from X
LOCK rq(1)->lock
smp_mb__after_spinlock
dequeue_task(X)
X->on_rq = 9
switch_to(Z)
X->on_cpu = 0
UNLOCK rq(1)->lock
// migrate X to cpu 0
LOCK rq(1)->lock
dequeue_task(X)
set_task_cpu(X, 0)
X->cpu = 0
UNLOCK rq(1)->lock
LOCK rq(0)->lock
enqueue_task(X)
X->on_rq = 1
UNLOCK rq(0)->lock
// switch to X
LOCK rq(0)->lock
smp_mb__after_spinlock
switch_to(X)
X->on_cpu = 1
UNLOCK rq(0)->lock
// X goes sleep
X->state = TASK_UNINTERRUPTIBLE
smp_mb(); // wake X
ttwu()
LOCK X->pi_lock
smp_mb__after_spinlock
if (p->state)
cpu = X->cpu; // =? 1
smp_rmb()
// X calls schedule()
LOCK rq(0)->lock
smp_mb__after_spinlock
dequeue_task(X)
X->on_rq = 0
if (p->on_rq)
smp_rmb();
if (p->on_cpu && ttwu_queue_wakelist(..)) [*]
smp_cond_load_acquire(&p->on_cpu, !VAL)
cpu = select_task_rq(X, X->wake_cpu, ...)
if (X->cpu != cpu)
switch_to(Y)
X->on_cpu = 0
UNLOCK rq(0)->lock
However I'm having trouble convincing myself that's actually possible
on x86_64 -- after all, every LOCK implies an smp_mb() there, so if ttwu
observes ->state != RUNNING, it must also observe ->cpu != 1.
(Most of the previous ttwu() races were found on very large PowerPC)
Nevertheless, this fully explains the observed failure case.
Fix it by ordering the task_cpu(p) load after the p->on_cpu load,
which is easy since nothing actually uses @cpu before this.
Fixes: c6e7bd7afaeb ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200622125649.GC576871@hirez.programming.kicks-ass.net
Diffstat (limited to 'kernel/acct.c')
0 files changed, 0 insertions, 0 deletions