diff options
author | Alexei Starovoitov <ast@plumgrid.com> | 2014-09-26 09:17:02 +0200 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2014-09-26 21:05:14 +0200 |
commit | 51580e798cb61b0fc63fa3aa6c5c975375aa0550 (patch) | |
tree | 2b608f048ba6415a28be79135af26f28ba7ebd5b /kernel/bpf/verifier.c | |
parent | bpf: handle pseudo BPF_CALL insn (diff) | |
download | linux-51580e798cb61b0fc63fa3aa6c5c975375aa0550.tar.xz linux-51580e798cb61b0fc63fa3aa6c5c975375aa0550.zip |
bpf: verifier (add docs)
this patch adds all of eBPF verfier documentation and empty bpf_check()
The end goal for the verifier is to statically check safety of the program.
Verifier will catch:
- loops
- out of range jumps
- unreachable instructions
- invalid instructions
- uninitialized register access
- uninitialized stack access
- misaligned stack access
- out of range stack access
- invalid calling convention
More details in Documentation/networking/filter.txt
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to '')
-rw-r--r-- | kernel/bpf/verifier.c | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c new file mode 100644 index 000000000000..d6f9c3d6b4d7 --- /dev/null +++ b/kernel/bpf/verifier.c @@ -0,0 +1,133 @@ +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of version 2 of the GNU General Public + * License as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + */ +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/bpf.h> +#include <linux/filter.h> +#include <net/netlink.h> +#include <linux/file.h> +#include <linux/vmalloc.h> + +/* bpf_check() is a static code analyzer that walks eBPF program + * instruction by instruction and updates register/stack state. + * All paths of conditional branches are analyzed until 'bpf_exit' insn. + * + * The first pass is depth-first-search to check that the program is a DAG. + * It rejects the following programs: + * - larger than BPF_MAXINSNS insns + * - if loop is present (detected via back-edge) + * - unreachable insns exist (shouldn't be a forest. program = one function) + * - out of bounds or malformed jumps + * The second pass is all possible path descent from the 1st insn. + * Since it's analyzing all pathes through the program, the length of the + * analysis is limited to 32k insn, which may be hit even if total number of + * insn is less then 4K, but there are too many branches that change stack/regs. + * Number of 'branches to be analyzed' is limited to 1k + * + * On entry to each instruction, each register has a type, and the instruction + * changes the types of the registers depending on instruction semantics. + * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is + * copied to R1. + * + * All registers are 64-bit. + * R0 - return register + * R1-R5 argument passing registers + * R6-R9 callee saved registers + * R10 - frame pointer read-only + * + * At the start of BPF program the register R1 contains a pointer to bpf_context + * and has type PTR_TO_CTX. + * + * Verifier tracks arithmetic operations on pointers in case: + * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), + * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), + * 1st insn copies R10 (which has FRAME_PTR) type into R1 + * and 2nd arithmetic instruction is pattern matched to recognize + * that it wants to construct a pointer to some element within stack. + * So after 2nd insn, the register R1 has type PTR_TO_STACK + * (and -20 constant is saved for further stack bounds checking). + * Meaning that this reg is a pointer to stack plus known immediate constant. + * + * Most of the time the registers have UNKNOWN_VALUE type, which + * means the register has some value, but it's not a valid pointer. + * (like pointer plus pointer becomes UNKNOWN_VALUE type) + * + * When verifier sees load or store instructions the type of base register + * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer + * types recognized by check_mem_access() function. + * + * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' + * and the range of [ptr, ptr + map's value_size) is accessible. + * + * registers used to pass values to function calls are checked against + * function argument constraints. + * + * ARG_PTR_TO_MAP_KEY is one of such argument constraints. + * It means that the register type passed to this function must be + * PTR_TO_STACK and it will be used inside the function as + * 'pointer to map element key' + * + * For example the argument constraints for bpf_map_lookup_elem(): + * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + * .arg1_type = ARG_CONST_MAP_PTR, + * .arg2_type = ARG_PTR_TO_MAP_KEY, + * + * ret_type says that this function returns 'pointer to map elem value or null' + * function expects 1st argument to be a const pointer to 'struct bpf_map' and + * 2nd argument should be a pointer to stack, which will be used inside + * the helper function as a pointer to map element key. + * + * On the kernel side the helper function looks like: + * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) + * { + * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; + * void *key = (void *) (unsigned long) r2; + * void *value; + * + * here kernel can access 'key' and 'map' pointers safely, knowing that + * [key, key + map->key_size) bytes are valid and were initialized on + * the stack of eBPF program. + * } + * + * Corresponding eBPF program may look like: + * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR + * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK + * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP + * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + * here verifier looks at prototype of map_lookup_elem() and sees: + * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, + * Now verifier knows that this map has key of R1->map_ptr->key_size bytes + * + * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, + * Now verifier checks that [R2, R2 + map's key_size) are within stack limits + * and were initialized prior to this call. + * If it's ok, then verifier allows this BPF_CALL insn and looks at + * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets + * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function + * returns ether pointer to map value or NULL. + * + * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' + * insn, the register holding that pointer in the true branch changes state to + * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false + * branch. See check_cond_jmp_op(). + * + * After the call R0 is set to return type of the function and registers R1-R5 + * are set to NOT_INIT to indicate that they are no longer readable. + */ + +int bpf_check(struct bpf_prog *prog, union bpf_attr *attr) +{ + int ret = -EINVAL; + + return ret; +} |