diff options
author | Waiman Long <longman@redhat.com> | 2020-02-06 16:24:08 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2020-02-11 13:10:52 +0100 |
commit | 810507fe6fd5ff3de429121adff49523fabb643a (patch) | |
tree | 7a810e5df889b4f963c18e01e4b6acce6dba0250 /kernel/locking/lockdep_internals.h | |
parent | locking/lockdep: Track number of zapped lock chains (diff) | |
download | linux-810507fe6fd5ff3de429121adff49523fabb643a.tar.xz linux-810507fe6fd5ff3de429121adff49523fabb643a.zip |
locking/lockdep: Reuse freed chain_hlocks entries
Once a lock class is zapped, all the lock chains that include the zapped
class are essentially useless. The lock_chain structure itself can be
reused, but not the corresponding chain_hlocks[] entries. Over time,
we will run out of chain_hlocks entries while there are still plenty
of other lockdep array entries available.
To fix this imbalance, we have to make chain_hlocks entries reusable
just like the others. As the freed chain_hlocks entries are in blocks of
various lengths. A simple bitmap like the one used in the other reusable
lockdep arrays isn't applicable. Instead the chain_hlocks entries are
put into bucketed lists (MAX_CHAIN_BUCKETS) of chain blocks. Bucket 0
is the variable size bucket which houses chain blocks of size larger than
MAX_CHAIN_BUCKETS sorted in decreasing size order. Initially, the whole
array is in one chain block (the primordial chain block) in bucket 0.
The minimum size of a chain block is 2 chain_hlocks entries. That will
be the minimum allocation size. In other word, allocation requests
for one chain_hlocks entry will cause 2-entry block to be returned and
hence 1 entry will be wasted.
Allocation requests for the chain_hlocks are fulfilled first by looking
for chain block of matching size. If not found, the first chain block
from bucket[0] (the largest one) is split. That can cause hlock entries
fragmentation and reduce allocation efficiency if a chain block of size >
MAX_CHAIN_BUCKETS is ever zapped and put back to after the primordial
chain block. So the MAX_CHAIN_BUCKETS must be large enough that this
should seldom happen.
By reusing the chain_hlocks entries, we are able to handle workloads
that add and zap a lot of lock classes without the risk of running out
of chain_hlocks entries as long as the total number of outstanding lock
classes at any time remain within a reasonable limit.
Two new tracking counters, nr_free_chain_hlocks & nr_large_chain_blocks,
are added to track the total number of chain_hlocks entries in the
free bucketed lists and the number of large chain blocks in buckets[0]
respectively. The nr_free_chain_hlocks replaces nr_chain_hlocks.
The nr_large_chain_blocks counter enables to see if we should increase
the number of buckets (MAX_CHAIN_BUCKETS) available so as to avoid to
avoid the fragmentation problem in bucket[0].
An internal nfsd test that ran for more than an hour and kept on
loading and unloading kernel modules could cause the following message
to be displayed.
[ 4318.443670] BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!
The patched kernel was able to complete the test with a lot of free
chain_hlocks entries to spare:
# cat /proc/lockdep_stats
:
dependency chains: 18867 [max: 65536]
dependency chain hlocks: 74926 [max: 327680]
dependency chain hlocks lost: 0
:
zapped classes: 1541
zapped lock chains: 56765
large chain blocks: 1
By changing MAX_CHAIN_BUCKETS to 3 and add a counter for the size of the
largest chain block. The system still worked and We got the following
lockdep_stats data:
dependency chains: 18601 [max: 65536]
dependency chain hlocks used: 73133 [max: 327680]
dependency chain hlocks lost: 0
:
zapped classes: 1541
zapped lock chains: 56702
large chain blocks: 45165
large chain block size: 20165
By running the test again, I was indeed able to cause chain_hlocks
entries to get lost:
dependency chain hlocks used: 74806 [max: 327680]
dependency chain hlocks lost: 575
:
large chain blocks: 48737
large chain block size: 7
Due to the fragmentation, it is possible that the
"MAX_LOCKDEP_CHAIN_HLOCKS too low!" error can happen even if a lot of
of chain_hlocks entries appear to be free.
Fortunately, a MAX_CHAIN_BUCKETS value of 16 should be big enough that
few variable sized chain blocks, other than the initial one, should
ever be present in bucket 0.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200206152408.24165-7-longman@redhat.com
Diffstat (limited to 'kernel/locking/lockdep_internals.h')
-rw-r--r-- | kernel/locking/lockdep_internals.h | 4 |
1 files changed, 3 insertions, 1 deletions
diff --git a/kernel/locking/lockdep_internals.h b/kernel/locking/lockdep_internals.h index af722ceeda33..baca699b94e9 100644 --- a/kernel/locking/lockdep_internals.h +++ b/kernel/locking/lockdep_internals.h @@ -140,7 +140,9 @@ extern unsigned long nr_stack_trace_entries; extern unsigned int nr_hardirq_chains; extern unsigned int nr_softirq_chains; extern unsigned int nr_process_chains; -extern unsigned int nr_chain_hlocks; +extern unsigned int nr_free_chain_hlocks; +extern unsigned int nr_lost_chain_hlocks; +extern unsigned int nr_large_chain_blocks; extern unsigned int max_lockdep_depth; extern unsigned int max_bfs_queue_depth; |