diff options
author | John Ogness <john.ogness@linutronix.de> | 2024-08-20 08:29:31 +0200 |
---|---|---|
committer | Petr Mladek <pmladek@suse.com> | 2024-08-21 14:56:22 +0200 |
commit | 8c9dab2c55ad74680728c72949971b20d70b56ca (patch) | |
tree | 77491d74e88c3f3628bebb6cc1a7da015b45f5ed /kernel/printk | |
parent | printk: Check printk_deferred_enter()/_exit() usage (diff) | |
download | linux-8c9dab2c55ad74680728c72949971b20d70b56ca.tar.xz linux-8c9dab2c55ad74680728c72949971b20d70b56ca.zip |
printk: nbcon: Clarify rules of the owner/waiter matching
The functions nbcon_owner_matches() and nbcon_waiter_matches()
use a minimal set of data to determine if a context matches.
The existing kerneldoc and comments were not clear enough and
caused the printk folks to re-prove that the functions are
indeed reliable in all cases.
Update and expand the explanations so that it is clear that the
implementations are sufficient for all cases.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240820063001.36405-6-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
Diffstat (limited to 'kernel/printk')
-rw-r--r-- | kernel/printk/nbcon.c | 56 |
1 files changed, 46 insertions, 10 deletions
diff --git a/kernel/printk/nbcon.c b/kernel/printk/nbcon.c index 776746d20fc0..931b8f086902 100644 --- a/kernel/printk/nbcon.c +++ b/kernel/printk/nbcon.c @@ -228,6 +228,13 @@ static int nbcon_context_try_acquire_direct(struct nbcon_context *ctxt, struct nbcon_state new; do { + /* + * Panic does not imply that the console is owned. However, it + * is critical that non-panic CPUs during panic are unable to + * acquire ownership in order to satisfy the assumptions of + * nbcon_waiter_matches(). In particular, the assumption that + * lower priorities are ignored during panic. + */ if (other_cpu_in_panic()) return -EPERM; @@ -259,18 +266,29 @@ static bool nbcon_waiter_matches(struct nbcon_state *cur, int expected_prio) /* * The request context is well defined by the @req_prio because: * - * - Only a context with a higher priority can take over the request. + * - Only a context with a priority higher than the owner can become + * a waiter. + * - Only a context with a priority higher than the waiter can + * directly take over the request. * - There are only three priorities. * - Only one CPU is allowed to request PANIC priority. * - Lower priorities are ignored during panic() until reboot. * * As a result, the following scenario is *not* possible: * - * 1. Another context with a higher priority directly takes ownership. - * 2. The higher priority context releases the ownership. - * 3. A lower priority context takes the ownership. - * 4. Another context with the same priority as this context + * 1. This context is currently a waiter. + * 2. Another context with a higher priority than this context + * directly takes ownership. + * 3. The higher priority context releases the ownership. + * 4. Another lower priority context takes the ownership. + * 5. Another context with the same priority as this context * creates a request and starts waiting. + * + * Event #1 implies this context is EMERGENCY. + * Event #2 implies the new context is PANIC. + * Event #3 occurs when panic() has flushed the console. + * Events #4 and #5 are not possible due to the other_cpu_in_panic() + * check in nbcon_context_try_acquire_direct(). */ return (cur->req_prio == expected_prio); @@ -578,11 +596,29 @@ static bool nbcon_owner_matches(struct nbcon_state *cur, int expected_cpu, int expected_prio) { /* - * Since consoles can only be acquired by higher priorities, - * owning contexts are uniquely identified by @prio. However, - * since contexts can unexpectedly lose ownership, it is - * possible that later another owner appears with the same - * priority. For this reason @cpu is also needed. + * A similar function, nbcon_waiter_matches(), only deals with + * EMERGENCY and PANIC priorities. However, this function must also + * deal with the NORMAL priority, which requires additional checks + * and constraints. + * + * For the case where preemption and interrupts are disabled, it is + * enough to also verify that the owning CPU has not changed. + * + * For the case where preemption or interrupts are enabled, an + * external synchronization method *must* be used. In particular, + * the driver-specific locking mechanism used in device_lock() + * (including disabling migration) should be used. It prevents + * scenarios such as: + * + * 1. [Task A] owns a context with NBCON_PRIO_NORMAL on [CPU X] and + * is scheduled out. + * 2. Another context takes over the lock with NBCON_PRIO_EMERGENCY + * and releases it. + * 3. [Task B] acquires a context with NBCON_PRIO_NORMAL on [CPU X] + * and is scheduled out. + * 4. [Task A] gets running on [CPU X] and sees that the console is + * still owned by a task on [CPU X] with NBON_PRIO_NORMAL. Thus + * [Task A] thinks it is the owner when it is not. */ if (cur->prio != expected_prio) |