diff options
author | Paul E. McKenney <paulmck@kernel.org> | 2020-03-02 20:59:20 +0100 |
---|---|---|
committer | Paul E. McKenney <paulmck@kernel.org> | 2020-04-27 20:03:50 +0200 |
commit | eacd6f04a1333187dd3e96e5635c0edce0a2e354 (patch) | |
tree | bddf733bcd9550bc1e81c9c99c862665d5f5964e /kernel/rcu | |
parent | rcu: Add per-task state to RCU CPU stall warnings (diff) | |
download | linux-eacd6f04a1333187dd3e96e5635c0edce0a2e354.tar.xz linux-eacd6f04a1333187dd3e96e5635c0edce0a2e354.zip |
rcu-tasks: Move Tasks RCU to its own file
This code-movement-only commit is in preparation for adding an additional
flavor of Tasks RCU, which relies on workqueues to detect grace periods.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Diffstat (limited to 'kernel/rcu')
-rw-r--r-- | kernel/rcu/tasks.h | 370 | ||||
-rw-r--r-- | kernel/rcu/update.c | 366 |
2 files changed, 372 insertions, 364 deletions
diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h new file mode 100644 index 000000000000..be8d179a4ca9 --- /dev/null +++ b/kernel/rcu/tasks.h @@ -0,0 +1,370 @@ +/* SPDX-License-Identifier: GPL-2.0+ */ +/* + * Task-based RCU implementations. + * + * Copyright (C) 2020 Paul E. McKenney + */ + +#ifdef CONFIG_TASKS_RCU + +/* + * Simple variant of RCU whose quiescent states are voluntary context + * switch, cond_resched_rcu_qs(), user-space execution, and idle. + * As such, grace periods can take one good long time. There are no + * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() + * because this implementation is intended to get the system into a safe + * state for some of the manipulations involved in tracing and the like. + * Finally, this implementation does not support high call_rcu_tasks() + * rates from multiple CPUs. If this is required, per-CPU callback lists + * will be needed. + */ + +/* Global list of callbacks and associated lock. */ +static struct rcu_head *rcu_tasks_cbs_head; +static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; +static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); +static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); + +/* Track exiting tasks in order to allow them to be waited for. */ +DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); + +/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ +#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) +static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; +module_param(rcu_task_stall_timeout, int, 0644); + +static struct task_struct *rcu_tasks_kthread_ptr; + +/** + * call_rcu_tasks() - Queue an RCU for invocation task-based grace period + * @rhp: structure to be used for queueing the RCU updates. + * @func: actual callback function to be invoked after the grace period + * + * The callback function will be invoked some time after a full grace + * period elapses, in other words after all currently executing RCU + * read-side critical sections have completed. call_rcu_tasks() assumes + * that the read-side critical sections end at a voluntary context + * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, + * or transition to usermode execution. As such, there are no read-side + * primitives analogous to rcu_read_lock() and rcu_read_unlock() because + * this primitive is intended to determine that all tasks have passed + * through a safe state, not so much for data-strcuture synchronization. + * + * See the description of call_rcu() for more detailed information on + * memory ordering guarantees. + */ +void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) +{ + unsigned long flags; + bool needwake; + + rhp->next = NULL; + rhp->func = func; + raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); + needwake = !rcu_tasks_cbs_head; + WRITE_ONCE(*rcu_tasks_cbs_tail, rhp); + rcu_tasks_cbs_tail = &rhp->next; + raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); + /* We can't create the thread unless interrupts are enabled. */ + if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) + wake_up(&rcu_tasks_cbs_wq); +} +EXPORT_SYMBOL_GPL(call_rcu_tasks); + +/** + * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. + * + * Control will return to the caller some time after a full rcu-tasks + * grace period has elapsed, in other words after all currently + * executing rcu-tasks read-side critical sections have elapsed. These + * read-side critical sections are delimited by calls to schedule(), + * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls + * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). + * + * This is a very specialized primitive, intended only for a few uses in + * tracing and other situations requiring manipulation of function + * preambles and profiling hooks. The synchronize_rcu_tasks() function + * is not (yet) intended for heavy use from multiple CPUs. + * + * Note that this guarantee implies further memory-ordering guarantees. + * On systems with more than one CPU, when synchronize_rcu_tasks() returns, + * each CPU is guaranteed to have executed a full memory barrier since the + * end of its last RCU-tasks read-side critical section whose beginning + * preceded the call to synchronize_rcu_tasks(). In addition, each CPU + * having an RCU-tasks read-side critical section that extends beyond + * the return from synchronize_rcu_tasks() is guaranteed to have executed + * a full memory barrier after the beginning of synchronize_rcu_tasks() + * and before the beginning of that RCU-tasks read-side critical section. + * Note that these guarantees include CPUs that are offline, idle, or + * executing in user mode, as well as CPUs that are executing in the kernel. + * + * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned + * to its caller on CPU B, then both CPU A and CPU B are guaranteed + * to have executed a full memory barrier during the execution of + * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU + * (but again only if the system has more than one CPU). + */ +void synchronize_rcu_tasks(void) +{ + /* Complain if the scheduler has not started. */ + RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, + "synchronize_rcu_tasks called too soon"); + + /* Wait for the grace period. */ + wait_rcu_gp(call_rcu_tasks); +} +EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); + +/** + * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. + * + * Although the current implementation is guaranteed to wait, it is not + * obligated to, for example, if there are no pending callbacks. + */ +void rcu_barrier_tasks(void) +{ + /* There is only one callback queue, so this is easy. ;-) */ + synchronize_rcu_tasks(); +} +EXPORT_SYMBOL_GPL(rcu_barrier_tasks); + +/* See if tasks are still holding out, complain if so. */ +static void check_holdout_task(struct task_struct *t, + bool needreport, bool *firstreport) +{ + int cpu; + + if (!READ_ONCE(t->rcu_tasks_holdout) || + t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || + !READ_ONCE(t->on_rq) || + (IS_ENABLED(CONFIG_NO_HZ_FULL) && + !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { + WRITE_ONCE(t->rcu_tasks_holdout, false); + list_del_init(&t->rcu_tasks_holdout_list); + put_task_struct(t); + return; + } + rcu_request_urgent_qs_task(t); + if (!needreport) + return; + if (*firstreport) { + pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); + *firstreport = false; + } + cpu = task_cpu(t); + pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", + t, ".I"[is_idle_task(t)], + "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], + t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, + t->rcu_tasks_idle_cpu, cpu); + sched_show_task(t); +} + +/* RCU-tasks kthread that detects grace periods and invokes callbacks. */ +static int __noreturn rcu_tasks_kthread(void *arg) +{ + unsigned long flags; + struct task_struct *g, *t; + unsigned long lastreport; + struct rcu_head *list; + struct rcu_head *next; + LIST_HEAD(rcu_tasks_holdouts); + int fract; + + /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ + housekeeping_affine(current, HK_FLAG_RCU); + + /* + * Each pass through the following loop makes one check for + * newly arrived callbacks, and, if there are some, waits for + * one RCU-tasks grace period and then invokes the callbacks. + * This loop is terminated by the system going down. ;-) + */ + for (;;) { + + /* Pick up any new callbacks. */ + raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); + list = rcu_tasks_cbs_head; + rcu_tasks_cbs_head = NULL; + rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; + raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); + + /* If there were none, wait a bit and start over. */ + if (!list) { + wait_event_interruptible(rcu_tasks_cbs_wq, + READ_ONCE(rcu_tasks_cbs_head)); + if (!rcu_tasks_cbs_head) { + WARN_ON(signal_pending(current)); + schedule_timeout_interruptible(HZ/10); + } + continue; + } + + /* + * Wait for all pre-existing t->on_rq and t->nvcsw + * transitions to complete. Invoking synchronize_rcu() + * suffices because all these transitions occur with + * interrupts disabled. Without this synchronize_rcu(), + * a read-side critical section that started before the + * grace period might be incorrectly seen as having started + * after the grace period. + * + * This synchronize_rcu() also dispenses with the + * need for a memory barrier on the first store to + * ->rcu_tasks_holdout, as it forces the store to happen + * after the beginning of the grace period. + */ + synchronize_rcu(); + + /* + * There were callbacks, so we need to wait for an + * RCU-tasks grace period. Start off by scanning + * the task list for tasks that are not already + * voluntarily blocked. Mark these tasks and make + * a list of them in rcu_tasks_holdouts. + */ + rcu_read_lock(); + for_each_process_thread(g, t) { + if (t != current && READ_ONCE(t->on_rq) && + !is_idle_task(t)) { + get_task_struct(t); + t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); + WRITE_ONCE(t->rcu_tasks_holdout, true); + list_add(&t->rcu_tasks_holdout_list, + &rcu_tasks_holdouts); + } + } + rcu_read_unlock(); + + /* + * Wait for tasks that are in the process of exiting. + * This does only part of the job, ensuring that all + * tasks that were previously exiting reach the point + * where they have disabled preemption, allowing the + * later synchronize_rcu() to finish the job. + */ + synchronize_srcu(&tasks_rcu_exit_srcu); + + /* + * Each pass through the following loop scans the list + * of holdout tasks, removing any that are no longer + * holdouts. When the list is empty, we are done. + */ + lastreport = jiffies; + + /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ + fract = 10; + + for (;;) { + bool firstreport; + bool needreport; + int rtst; + struct task_struct *t1; + + if (list_empty(&rcu_tasks_holdouts)) + break; + + /* Slowly back off waiting for holdouts */ + schedule_timeout_interruptible(HZ/fract); + + if (fract > 1) + fract--; + + rtst = READ_ONCE(rcu_task_stall_timeout); + needreport = rtst > 0 && + time_after(jiffies, lastreport + rtst); + if (needreport) + lastreport = jiffies; + firstreport = true; + WARN_ON(signal_pending(current)); + list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, + rcu_tasks_holdout_list) { + check_holdout_task(t, needreport, &firstreport); + cond_resched(); + } + } + + /* + * Because ->on_rq and ->nvcsw are not guaranteed + * to have a full memory barriers prior to them in the + * schedule() path, memory reordering on other CPUs could + * cause their RCU-tasks read-side critical sections to + * extend past the end of the grace period. However, + * because these ->nvcsw updates are carried out with + * interrupts disabled, we can use synchronize_rcu() + * to force the needed ordering on all such CPUs. + * + * This synchronize_rcu() also confines all + * ->rcu_tasks_holdout accesses to be within the grace + * period, avoiding the need for memory barriers for + * ->rcu_tasks_holdout accesses. + * + * In addition, this synchronize_rcu() waits for exiting + * tasks to complete their final preempt_disable() region + * of execution, cleaning up after the synchronize_srcu() + * above. + */ + synchronize_rcu(); + + /* Invoke the callbacks. */ + while (list) { + next = list->next; + local_bh_disable(); + list->func(list); + local_bh_enable(); + list = next; + cond_resched(); + } + /* Paranoid sleep to keep this from entering a tight loop */ + schedule_timeout_uninterruptible(HZ/10); + } +} + +/* Spawn rcu_tasks_kthread() at core_initcall() time. */ +static int __init rcu_spawn_tasks_kthread(void) +{ + struct task_struct *t; + + t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); + if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__)) + return 0; + smp_mb(); /* Ensure others see full kthread. */ + WRITE_ONCE(rcu_tasks_kthread_ptr, t); + return 0; +} +core_initcall(rcu_spawn_tasks_kthread); + +/* Do the srcu_read_lock() for the above synchronize_srcu(). */ +void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) +{ + preempt_disable(); + current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); + preempt_enable(); +} + +/* Do the srcu_read_unlock() for the above synchronize_srcu(). */ +void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) +{ + preempt_disable(); + __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); + preempt_enable(); +} + +#endif /* #ifdef CONFIG_TASKS_RCU */ + +#ifndef CONFIG_TINY_RCU + +/* + * Print any non-default Tasks RCU settings. + */ +static void __init rcu_tasks_bootup_oddness(void) +{ +#ifdef CONFIG_TASKS_RCU + if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) + pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); + else + pr_info("\tTasks RCU enabled.\n"); +#endif /* #ifdef CONFIG_TASKS_RCU */ +} + +#endif /* #ifndef CONFIG_TINY_RCU */ diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c index 74a698aa9027..c5799349ff31 100644 --- a/kernel/rcu/update.c +++ b/kernel/rcu/update.c @@ -514,370 +514,6 @@ int rcu_cpu_stall_suppress_at_boot __read_mostly; // !0 = suppress boot stalls. EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress_at_boot); module_param(rcu_cpu_stall_suppress_at_boot, int, 0444); -#ifdef CONFIG_TASKS_RCU - -/* - * Simple variant of RCU whose quiescent states are voluntary context - * switch, cond_resched_rcu_qs(), user-space execution, and idle. - * As such, grace periods can take one good long time. There are no - * read-side primitives similar to rcu_read_lock() and rcu_read_unlock() - * because this implementation is intended to get the system into a safe - * state for some of the manipulations involved in tracing and the like. - * Finally, this implementation does not support high call_rcu_tasks() - * rates from multiple CPUs. If this is required, per-CPU callback lists - * will be needed. - */ - -/* Global list of callbacks and associated lock. */ -static struct rcu_head *rcu_tasks_cbs_head; -static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; -static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); -static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); - -/* Track exiting tasks in order to allow them to be waited for. */ -DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); - -/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ -#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) -static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; -module_param(rcu_task_stall_timeout, int, 0644); - -static struct task_struct *rcu_tasks_kthread_ptr; - -/** - * call_rcu_tasks() - Queue an RCU for invocation task-based grace period - * @rhp: structure to be used for queueing the RCU updates. - * @func: actual callback function to be invoked after the grace period - * - * The callback function will be invoked some time after a full grace - * period elapses, in other words after all currently executing RCU - * read-side critical sections have completed. call_rcu_tasks() assumes - * that the read-side critical sections end at a voluntary context - * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, - * or transition to usermode execution. As such, there are no read-side - * primitives analogous to rcu_read_lock() and rcu_read_unlock() because - * this primitive is intended to determine that all tasks have passed - * through a safe state, not so much for data-strcuture synchronization. - * - * See the description of call_rcu() for more detailed information on - * memory ordering guarantees. - */ -void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) -{ - unsigned long flags; - bool needwake; - - rhp->next = NULL; - rhp->func = func; - raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); - needwake = !rcu_tasks_cbs_head; - WRITE_ONCE(*rcu_tasks_cbs_tail, rhp); - rcu_tasks_cbs_tail = &rhp->next; - raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); - /* We can't create the thread unless interrupts are enabled. */ - if (needwake && READ_ONCE(rcu_tasks_kthread_ptr)) - wake_up(&rcu_tasks_cbs_wq); -} -EXPORT_SYMBOL_GPL(call_rcu_tasks); - -/** - * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. - * - * Control will return to the caller some time after a full rcu-tasks - * grace period has elapsed, in other words after all currently - * executing rcu-tasks read-side critical sections have elapsed. These - * read-side critical sections are delimited by calls to schedule(), - * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls - * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). - * - * This is a very specialized primitive, intended only for a few uses in - * tracing and other situations requiring manipulation of function - * preambles and profiling hooks. The synchronize_rcu_tasks() function - * is not (yet) intended for heavy use from multiple CPUs. - * - * Note that this guarantee implies further memory-ordering guarantees. - * On systems with more than one CPU, when synchronize_rcu_tasks() returns, - * each CPU is guaranteed to have executed a full memory barrier since the - * end of its last RCU-tasks read-side critical section whose beginning - * preceded the call to synchronize_rcu_tasks(). In addition, each CPU - * having an RCU-tasks read-side critical section that extends beyond - * the return from synchronize_rcu_tasks() is guaranteed to have executed - * a full memory barrier after the beginning of synchronize_rcu_tasks() - * and before the beginning of that RCU-tasks read-side critical section. - * Note that these guarantees include CPUs that are offline, idle, or - * executing in user mode, as well as CPUs that are executing in the kernel. - * - * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned - * to its caller on CPU B, then both CPU A and CPU B are guaranteed - * to have executed a full memory barrier during the execution of - * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU - * (but again only if the system has more than one CPU). - */ -void synchronize_rcu_tasks(void) -{ - /* Complain if the scheduler has not started. */ - RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, - "synchronize_rcu_tasks called too soon"); - - /* Wait for the grace period. */ - wait_rcu_gp(call_rcu_tasks); -} -EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); - -/** - * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. - * - * Although the current implementation is guaranteed to wait, it is not - * obligated to, for example, if there are no pending callbacks. - */ -void rcu_barrier_tasks(void) -{ - /* There is only one callback queue, so this is easy. ;-) */ - synchronize_rcu_tasks(); -} -EXPORT_SYMBOL_GPL(rcu_barrier_tasks); - -/* See if tasks are still holding out, complain if so. */ -static void check_holdout_task(struct task_struct *t, - bool needreport, bool *firstreport) -{ - int cpu; - - if (!READ_ONCE(t->rcu_tasks_holdout) || - t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || - !READ_ONCE(t->on_rq) || - (IS_ENABLED(CONFIG_NO_HZ_FULL) && - !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { - WRITE_ONCE(t->rcu_tasks_holdout, false); - list_del_init(&t->rcu_tasks_holdout_list); - put_task_struct(t); - return; - } - rcu_request_urgent_qs_task(t); - if (!needreport) - return; - if (*firstreport) { - pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); - *firstreport = false; - } - cpu = task_cpu(t); - pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", - t, ".I"[is_idle_task(t)], - "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], - t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, - t->rcu_tasks_idle_cpu, cpu); - sched_show_task(t); -} - -/* RCU-tasks kthread that detects grace periods and invokes callbacks. */ -static int __noreturn rcu_tasks_kthread(void *arg) -{ - unsigned long flags; - struct task_struct *g, *t; - unsigned long lastreport; - struct rcu_head *list; - struct rcu_head *next; - LIST_HEAD(rcu_tasks_holdouts); - int fract; - - /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ - housekeeping_affine(current, HK_FLAG_RCU); - - /* - * Each pass through the following loop makes one check for - * newly arrived callbacks, and, if there are some, waits for - * one RCU-tasks grace period and then invokes the callbacks. - * This loop is terminated by the system going down. ;-) - */ - for (;;) { - - /* Pick up any new callbacks. */ - raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); - list = rcu_tasks_cbs_head; - rcu_tasks_cbs_head = NULL; - rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; - raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); - - /* If there were none, wait a bit and start over. */ - if (!list) { - wait_event_interruptible(rcu_tasks_cbs_wq, - READ_ONCE(rcu_tasks_cbs_head)); - if (!rcu_tasks_cbs_head) { - WARN_ON(signal_pending(current)); - schedule_timeout_interruptible(HZ/10); - } - continue; - } - - /* - * Wait for all pre-existing t->on_rq and t->nvcsw - * transitions to complete. Invoking synchronize_rcu() - * suffices because all these transitions occur with - * interrupts disabled. Without this synchronize_rcu(), - * a read-side critical section that started before the - * grace period might be incorrectly seen as having started - * after the grace period. - * - * This synchronize_rcu() also dispenses with the - * need for a memory barrier on the first store to - * ->rcu_tasks_holdout, as it forces the store to happen - * after the beginning of the grace period. - */ - synchronize_rcu(); - - /* - * There were callbacks, so we need to wait for an - * RCU-tasks grace period. Start off by scanning - * the task list for tasks that are not already - * voluntarily blocked. Mark these tasks and make - * a list of them in rcu_tasks_holdouts. - */ - rcu_read_lock(); - for_each_process_thread(g, t) { - if (t != current && READ_ONCE(t->on_rq) && - !is_idle_task(t)) { - get_task_struct(t); - t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); - WRITE_ONCE(t->rcu_tasks_holdout, true); - list_add(&t->rcu_tasks_holdout_list, - &rcu_tasks_holdouts); - } - } - rcu_read_unlock(); - - /* - * Wait for tasks that are in the process of exiting. - * This does only part of the job, ensuring that all - * tasks that were previously exiting reach the point - * where they have disabled preemption, allowing the - * later synchronize_rcu() to finish the job. - */ - synchronize_srcu(&tasks_rcu_exit_srcu); - - /* - * Each pass through the following loop scans the list - * of holdout tasks, removing any that are no longer - * holdouts. When the list is empty, we are done. - */ - lastreport = jiffies; - - /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/ - fract = 10; - - for (;;) { - bool firstreport; - bool needreport; - int rtst; - struct task_struct *t1; - - if (list_empty(&rcu_tasks_holdouts)) - break; - - /* Slowly back off waiting for holdouts */ - schedule_timeout_interruptible(HZ/fract); - - if (fract > 1) - fract--; - - rtst = READ_ONCE(rcu_task_stall_timeout); - needreport = rtst > 0 && - time_after(jiffies, lastreport + rtst); - if (needreport) - lastreport = jiffies; - firstreport = true; - WARN_ON(signal_pending(current)); - list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, - rcu_tasks_holdout_list) { - check_holdout_task(t, needreport, &firstreport); - cond_resched(); - } - } - - /* - * Because ->on_rq and ->nvcsw are not guaranteed - * to have a full memory barriers prior to them in the - * schedule() path, memory reordering on other CPUs could - * cause their RCU-tasks read-side critical sections to - * extend past the end of the grace period. However, - * because these ->nvcsw updates are carried out with - * interrupts disabled, we can use synchronize_rcu() - * to force the needed ordering on all such CPUs. - * - * This synchronize_rcu() also confines all - * ->rcu_tasks_holdout accesses to be within the grace - * period, avoiding the need for memory barriers for - * ->rcu_tasks_holdout accesses. - * - * In addition, this synchronize_rcu() waits for exiting - * tasks to complete their final preempt_disable() region - * of execution, cleaning up after the synchronize_srcu() - * above. - */ - synchronize_rcu(); - - /* Invoke the callbacks. */ - while (list) { - next = list->next; - local_bh_disable(); - list->func(list); - local_bh_enable(); - list = next; - cond_resched(); - } - /* Paranoid sleep to keep this from entering a tight loop */ - schedule_timeout_uninterruptible(HZ/10); - } -} - -/* Spawn rcu_tasks_kthread() at core_initcall() time. */ -static int __init rcu_spawn_tasks_kthread(void) -{ - struct task_struct *t; - - t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); - if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__)) - return 0; - smp_mb(); /* Ensure others see full kthread. */ - WRITE_ONCE(rcu_tasks_kthread_ptr, t); - return 0; -} -core_initcall(rcu_spawn_tasks_kthread); - -/* Do the srcu_read_lock() for the above synchronize_srcu(). */ -void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) -{ - preempt_disable(); - current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); - preempt_enable(); -} - -/* Do the srcu_read_unlock() for the above synchronize_srcu(). */ -void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) -{ - preempt_disable(); - __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx); - preempt_enable(); -} - -#endif /* #ifdef CONFIG_TASKS_RCU */ - -#ifndef CONFIG_TINY_RCU - -/* - * Print any non-default Tasks RCU settings. - */ -static void __init rcu_tasks_bootup_oddness(void) -{ -#ifdef CONFIG_TASKS_RCU - if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) - pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); - else - pr_info("\tTasks RCU enabled.\n"); -#endif /* #ifdef CONFIG_TASKS_RCU */ -} - -#endif /* #ifndef CONFIG_TINY_RCU */ - #ifdef CONFIG_PROVE_RCU /* @@ -948,6 +584,8 @@ late_initcall(rcu_verify_early_boot_tests); void rcu_early_boot_tests(void) {} #endif /* CONFIG_PROVE_RCU */ +#include "tasks.h" + #ifndef CONFIG_TINY_RCU /* |