diff options
author | Rusty Russell <rusty@rustcorp.com.au> | 2008-12-31 13:35:57 +0100 |
---|---|---|
committer | Rusty Russell <rusty@rustcorp.com.au> | 2008-12-31 13:35:57 +0100 |
commit | 2ca1a615835d9f4990f42102ab1f2ef434e7e89c (patch) | |
tree | 726cf3d5f29a6c66c44e4bd68e7ebed2fd83d059 /kernel/rcutree.c | |
parent | cpumask: Use nr_cpu_ids in seq_cpumask (diff) | |
parent | Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs (diff) | |
download | linux-2ca1a615835d9f4990f42102ab1f2ef434e7e89c.tar.xz linux-2ca1a615835d9f4990f42102ab1f2ef434e7e89c.zip |
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts:
arch/x86/kernel/io_apic.c
Diffstat (limited to 'kernel/rcutree.c')
-rw-r--r-- | kernel/rcutree.c | 1535 |
1 files changed, 1535 insertions, 0 deletions
diff --git a/kernel/rcutree.c b/kernel/rcutree.c new file mode 100644 index 000000000000..a342b032112c --- /dev/null +++ b/kernel/rcutree.c @@ -0,0 +1,1535 @@ +/* + * Read-Copy Update mechanism for mutual exclusion + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * Copyright IBM Corporation, 2008 + * + * Authors: Dipankar Sarma <dipankar@in.ibm.com> + * Manfred Spraul <manfred@colorfullife.com> + * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version + * + * Based on the original work by Paul McKenney <paulmck@us.ibm.com> + * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. + * + * For detailed explanation of Read-Copy Update mechanism see - + * Documentation/RCU + */ +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/spinlock.h> +#include <linux/smp.h> +#include <linux/rcupdate.h> +#include <linux/interrupt.h> +#include <linux/sched.h> +#include <asm/atomic.h> +#include <linux/bitops.h> +#include <linux/module.h> +#include <linux/completion.h> +#include <linux/moduleparam.h> +#include <linux/percpu.h> +#include <linux/notifier.h> +#include <linux/cpu.h> +#include <linux/mutex.h> +#include <linux/time.h> + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +static struct lock_class_key rcu_lock_key; +struct lockdep_map rcu_lock_map = + STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); +EXPORT_SYMBOL_GPL(rcu_lock_map); +#endif + +/* Data structures. */ + +#define RCU_STATE_INITIALIZER(name) { \ + .level = { &name.node[0] }, \ + .levelcnt = { \ + NUM_RCU_LVL_0, /* root of hierarchy. */ \ + NUM_RCU_LVL_1, \ + NUM_RCU_LVL_2, \ + NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \ + }, \ + .signaled = RCU_SIGNAL_INIT, \ + .gpnum = -300, \ + .completed = -300, \ + .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \ + .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \ + .n_force_qs = 0, \ + .n_force_qs_ngp = 0, \ +} + +struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state); +DEFINE_PER_CPU(struct rcu_data, rcu_data); + +struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state); +DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); + +#ifdef CONFIG_NO_HZ +DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks); +#endif /* #ifdef CONFIG_NO_HZ */ + +static int blimit = 10; /* Maximum callbacks per softirq. */ +static int qhimark = 10000; /* If this many pending, ignore blimit. */ +static int qlowmark = 100; /* Once only this many pending, use blimit. */ + +static void force_quiescent_state(struct rcu_state *rsp, int relaxed); + +/* + * Return the number of RCU batches processed thus far for debug & stats. + */ +long rcu_batches_completed(void) +{ + return rcu_state.completed; +} +EXPORT_SYMBOL_GPL(rcu_batches_completed); + +/* + * Return the number of RCU BH batches processed thus far for debug & stats. + */ +long rcu_batches_completed_bh(void) +{ + return rcu_bh_state.completed; +} +EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); + +/* + * Does the CPU have callbacks ready to be invoked? + */ +static int +cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) +{ + return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; +} + +/* + * Does the current CPU require a yet-as-unscheduled grace period? + */ +static int +cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) +{ + /* ACCESS_ONCE() because we are accessing outside of lock. */ + return *rdp->nxttail[RCU_DONE_TAIL] && + ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum); +} + +/* + * Return the root node of the specified rcu_state structure. + */ +static struct rcu_node *rcu_get_root(struct rcu_state *rsp) +{ + return &rsp->node[0]; +} + +#ifdef CONFIG_SMP + +/* + * If the specified CPU is offline, tell the caller that it is in + * a quiescent state. Otherwise, whack it with a reschedule IPI. + * Grace periods can end up waiting on an offline CPU when that + * CPU is in the process of coming online -- it will be added to the + * rcu_node bitmasks before it actually makes it online. The same thing + * can happen while a CPU is in the process of coming online. Because this + * race is quite rare, we check for it after detecting that the grace + * period has been delayed rather than checking each and every CPU + * each and every time we start a new grace period. + */ +static int rcu_implicit_offline_qs(struct rcu_data *rdp) +{ + /* + * If the CPU is offline, it is in a quiescent state. We can + * trust its state not to change because interrupts are disabled. + */ + if (cpu_is_offline(rdp->cpu)) { + rdp->offline_fqs++; + return 1; + } + + /* The CPU is online, so send it a reschedule IPI. */ + if (rdp->cpu != smp_processor_id()) + smp_send_reschedule(rdp->cpu); + else + set_need_resched(); + rdp->resched_ipi++; + return 0; +} + +#endif /* #ifdef CONFIG_SMP */ + +#ifdef CONFIG_NO_HZ +static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5); + +/** + * rcu_enter_nohz - inform RCU that current CPU is entering nohz + * + * Enter nohz mode, in other words, -leave- the mode in which RCU + * read-side critical sections can occur. (Though RCU read-side + * critical sections can occur in irq handlers in nohz mode, a possibility + * handled by rcu_irq_enter() and rcu_irq_exit()). + */ +void rcu_enter_nohz(void) +{ + unsigned long flags; + struct rcu_dynticks *rdtp; + + smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ + local_irq_save(flags); + rdtp = &__get_cpu_var(rcu_dynticks); + rdtp->dynticks++; + rdtp->dynticks_nesting--; + WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); + local_irq_restore(flags); +} + +/* + * rcu_exit_nohz - inform RCU that current CPU is leaving nohz + * + * Exit nohz mode, in other words, -enter- the mode in which RCU + * read-side critical sections normally occur. + */ +void rcu_exit_nohz(void) +{ + unsigned long flags; + struct rcu_dynticks *rdtp; + + local_irq_save(flags); + rdtp = &__get_cpu_var(rcu_dynticks); + rdtp->dynticks++; + rdtp->dynticks_nesting++; + WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); + local_irq_restore(flags); + smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ +} + +/** + * rcu_nmi_enter - inform RCU of entry to NMI context + * + * If the CPU was idle with dynamic ticks active, and there is no + * irq handler running, this updates rdtp->dynticks_nmi to let the + * RCU grace-period handling know that the CPU is active. + */ +void rcu_nmi_enter(void) +{ + struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); + + if (rdtp->dynticks & 0x1) + return; + rdtp->dynticks_nmi++; + WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs); + smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ +} + +/** + * rcu_nmi_exit - inform RCU of exit from NMI context + * + * If the CPU was idle with dynamic ticks active, and there is no + * irq handler running, this updates rdtp->dynticks_nmi to let the + * RCU grace-period handling know that the CPU is no longer active. + */ +void rcu_nmi_exit(void) +{ + struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); + + if (rdtp->dynticks & 0x1) + return; + smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ + rdtp->dynticks_nmi++; + WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs); +} + +/** + * rcu_irq_enter - inform RCU of entry to hard irq context + * + * If the CPU was idle with dynamic ticks active, this updates the + * rdtp->dynticks to let the RCU handling know that the CPU is active. + */ +void rcu_irq_enter(void) +{ + struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); + + if (rdtp->dynticks_nesting++) + return; + rdtp->dynticks++; + WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs); + smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */ +} + +/** + * rcu_irq_exit - inform RCU of exit from hard irq context + * + * If the CPU was idle with dynamic ticks active, update the rdp->dynticks + * to put let the RCU handling be aware that the CPU is going back to idle + * with no ticks. + */ +void rcu_irq_exit(void) +{ + struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); + + if (--rdtp->dynticks_nesting) + return; + smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */ + rdtp->dynticks++; + WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs); + + /* If the interrupt queued a callback, get out of dyntick mode. */ + if (__get_cpu_var(rcu_data).nxtlist || + __get_cpu_var(rcu_bh_data).nxtlist) + set_need_resched(); +} + +/* + * Record the specified "completed" value, which is later used to validate + * dynticks counter manipulations. Specify "rsp->completed - 1" to + * unconditionally invalidate any future dynticks manipulations (which is + * useful at the beginning of a grace period). + */ +static void dyntick_record_completed(struct rcu_state *rsp, long comp) +{ + rsp->dynticks_completed = comp; +} + +#ifdef CONFIG_SMP + +/* + * Recall the previously recorded value of the completion for dynticks. + */ +static long dyntick_recall_completed(struct rcu_state *rsp) +{ + return rsp->dynticks_completed; +} + +/* + * Snapshot the specified CPU's dynticks counter so that we can later + * credit them with an implicit quiescent state. Return 1 if this CPU + * is already in a quiescent state courtesy of dynticks idle mode. + */ +static int dyntick_save_progress_counter(struct rcu_data *rdp) +{ + int ret; + int snap; + int snap_nmi; + + snap = rdp->dynticks->dynticks; + snap_nmi = rdp->dynticks->dynticks_nmi; + smp_mb(); /* Order sampling of snap with end of grace period. */ + rdp->dynticks_snap = snap; + rdp->dynticks_nmi_snap = snap_nmi; + ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0); + if (ret) + rdp->dynticks_fqs++; + return ret; +} + +/* + * Return true if the specified CPU has passed through a quiescent + * state by virtue of being in or having passed through an dynticks + * idle state since the last call to dyntick_save_progress_counter() + * for this same CPU. + */ +static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) +{ + long curr; + long curr_nmi; + long snap; + long snap_nmi; + + curr = rdp->dynticks->dynticks; + snap = rdp->dynticks_snap; + curr_nmi = rdp->dynticks->dynticks_nmi; + snap_nmi = rdp->dynticks_nmi_snap; + smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ + + /* + * If the CPU passed through or entered a dynticks idle phase with + * no active irq/NMI handlers, then we can safely pretend that the CPU + * already acknowledged the request to pass through a quiescent + * state. Either way, that CPU cannot possibly be in an RCU + * read-side critical section that started before the beginning + * of the current RCU grace period. + */ + if ((curr != snap || (curr & 0x1) == 0) && + (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) { + rdp->dynticks_fqs++; + return 1; + } + + /* Go check for the CPU being offline. */ + return rcu_implicit_offline_qs(rdp); +} + +#endif /* #ifdef CONFIG_SMP */ + +#else /* #ifdef CONFIG_NO_HZ */ + +static void dyntick_record_completed(struct rcu_state *rsp, long comp) +{ +} + +#ifdef CONFIG_SMP + +/* + * If there are no dynticks, then the only way that a CPU can passively + * be in a quiescent state is to be offline. Unlike dynticks idle, which + * is a point in time during the prior (already finished) grace period, + * an offline CPU is always in a quiescent state, and thus can be + * unconditionally applied. So just return the current value of completed. + */ +static long dyntick_recall_completed(struct rcu_state *rsp) +{ + return rsp->completed; +} + +static int dyntick_save_progress_counter(struct rcu_data *rdp) +{ + return 0; +} + +static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) +{ + return rcu_implicit_offline_qs(rdp); +} + +#endif /* #ifdef CONFIG_SMP */ + +#endif /* #else #ifdef CONFIG_NO_HZ */ + +#ifdef CONFIG_RCU_CPU_STALL_DETECTOR + +static void record_gp_stall_check_time(struct rcu_state *rsp) +{ + rsp->gp_start = jiffies; + rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK; +} + +static void print_other_cpu_stall(struct rcu_state *rsp) +{ + int cpu; + long delta; + unsigned long flags; + struct rcu_node *rnp = rcu_get_root(rsp); + struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; + struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES]; + + /* Only let one CPU complain about others per time interval. */ + + spin_lock_irqsave(&rnp->lock, flags); + delta = jiffies - rsp->jiffies_stall; + if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) { + spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK; + spin_unlock_irqrestore(&rnp->lock, flags); + + /* OK, time to rat on our buddy... */ + + printk(KERN_ERR "INFO: RCU detected CPU stalls:"); + for (; rnp_cur < rnp_end; rnp_cur++) { + if (rnp_cur->qsmask == 0) + continue; + for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++) + if (rnp_cur->qsmask & (1UL << cpu)) + printk(" %d", rnp_cur->grplo + cpu); + } + printk(" (detected by %d, t=%ld jiffies)\n", + smp_processor_id(), (long)(jiffies - rsp->gp_start)); + force_quiescent_state(rsp, 0); /* Kick them all. */ +} + +static void print_cpu_stall(struct rcu_state *rsp) +{ + unsigned long flags; + struct rcu_node *rnp = rcu_get_root(rsp); + + printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n", + smp_processor_id(), jiffies - rsp->gp_start); + dump_stack(); + spin_lock_irqsave(&rnp->lock, flags); + if ((long)(jiffies - rsp->jiffies_stall) >= 0) + rsp->jiffies_stall = + jiffies + RCU_SECONDS_TILL_STALL_RECHECK; + spin_unlock_irqrestore(&rnp->lock, flags); + set_need_resched(); /* kick ourselves to get things going. */ +} + +static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) +{ + long delta; + struct rcu_node *rnp; + + delta = jiffies - rsp->jiffies_stall; + rnp = rdp->mynode; + if ((rnp->qsmask & rdp->grpmask) && delta >= 0) { + + /* We haven't checked in, so go dump stack. */ + print_cpu_stall(rsp); + + } else if (rsp->gpnum != rsp->completed && + delta >= RCU_STALL_RAT_DELAY) { + + /* They had two time units to dump stack, so complain. */ + print_other_cpu_stall(rsp); + } +} + +#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ + +static void record_gp_stall_check_time(struct rcu_state *rsp) +{ +} + +static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) +{ +} + +#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ + +/* + * Update CPU-local rcu_data state to record the newly noticed grace period. + * This is used both when we started the grace period and when we notice + * that someone else started the grace period. + */ +static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) +{ + rdp->qs_pending = 1; + rdp->passed_quiesc = 0; + rdp->gpnum = rsp->gpnum; + rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending + + RCU_JIFFIES_TILL_FORCE_QS; +} + +/* + * Did someone else start a new RCU grace period start since we last + * checked? Update local state appropriately if so. Must be called + * on the CPU corresponding to rdp. + */ +static int +check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) +{ + unsigned long flags; + int ret = 0; + + local_irq_save(flags); + if (rdp->gpnum != rsp->gpnum) { + note_new_gpnum(rsp, rdp); + ret = 1; + } + local_irq_restore(flags); + return ret; +} + +/* + * Start a new RCU grace period if warranted, re-initializing the hierarchy + * in preparation for detecting the next grace period. The caller must hold + * the root node's ->lock, which is released before return. Hard irqs must + * be disabled. + */ +static void +rcu_start_gp(struct rcu_state *rsp, unsigned long flags) + __releases(rcu_get_root(rsp)->lock) +{ + struct rcu_data *rdp = rsp->rda[smp_processor_id()]; + struct rcu_node *rnp = rcu_get_root(rsp); + struct rcu_node *rnp_cur; + struct rcu_node *rnp_end; + + if (!cpu_needs_another_gp(rsp, rdp)) { + spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + + /* Advance to a new grace period and initialize state. */ + rsp->gpnum++; + rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ + rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; + rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending + + RCU_JIFFIES_TILL_FORCE_QS; + record_gp_stall_check_time(rsp); + dyntick_record_completed(rsp, rsp->completed - 1); + note_new_gpnum(rsp, rdp); + + /* + * Because we are first, we know that all our callbacks will + * be covered by this upcoming grace period, even the ones + * that were registered arbitrarily recently. + */ + rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; + rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; + + /* Special-case the common single-level case. */ + if (NUM_RCU_NODES == 1) { + rnp->qsmask = rnp->qsmaskinit; + spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + + spin_unlock(&rnp->lock); /* leave irqs disabled. */ + + + /* Exclude any concurrent CPU-hotplug operations. */ + spin_lock(&rsp->onofflock); /* irqs already disabled. */ + + /* + * Set the quiescent-state-needed bits in all the non-leaf RCU + * nodes for all currently online CPUs. This operation relies + * on the layout of the hierarchy within the rsp->node[] array. + * Note that other CPUs will access only the leaves of the + * hierarchy, which still indicate that no grace period is in + * progress. In addition, we have excluded CPU-hotplug operations. + * + * We therefore do not need to hold any locks. Any required + * memory barriers will be supplied by the locks guarding the + * leaf rcu_nodes in the hierarchy. + */ + + rnp_end = rsp->level[NUM_RCU_LVLS - 1]; + for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) + rnp_cur->qsmask = rnp_cur->qsmaskinit; + + /* + * Now set up the leaf nodes. Here we must be careful. First, + * we need to hold the lock in order to exclude other CPUs, which + * might be contending for the leaf nodes' locks. Second, as + * soon as we initialize a given leaf node, its CPUs might run + * up the rest of the hierarchy. We must therefore acquire locks + * for each node that we touch during this stage. (But we still + * are excluding CPU-hotplug operations.) + * + * Note that the grace period cannot complete until we finish + * the initialization process, as there will be at least one + * qsmask bit set in the root node until that time, namely the + * one corresponding to this CPU. + */ + rnp_end = &rsp->node[NUM_RCU_NODES]; + rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; + for (; rnp_cur < rnp_end; rnp_cur++) { + spin_lock(&rnp_cur->lock); /* irqs already disabled. */ + rnp_cur->qsmask = rnp_cur->qsmaskinit; + spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ + } + + rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ + spin_unlock_irqrestore(&rsp->onofflock, flags); +} + +/* + * Advance this CPU's callbacks, but only if the current grace period + * has ended. This may be called only from the CPU to whom the rdp + * belongs. + */ +static void +rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) +{ + long completed_snap; + unsigned long flags; + + local_irq_save(flags); + completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */ + + /* Did another grace period end? */ + if (rdp->completed != completed_snap) { + + /* Advance callbacks. No harm if list empty. */ + rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; + rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; + rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; + + /* Remember that we saw this grace-period completion. */ + rdp->completed = completed_snap; + } + local_irq_restore(flags); +} + +/* + * Similar to cpu_quiet(), for which it is a helper function. Allows + * a group of CPUs to be quieted at one go, though all the CPUs in the + * group must be represented by the same leaf rcu_node structure. + * That structure's lock must be held upon entry, and it is released + * before return. + */ +static void +cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, + unsigned long flags) + __releases(rnp->lock) +{ + /* Walk up the rcu_node hierarchy. */ + for (;;) { + if (!(rnp->qsmask & mask)) { + + /* Our bit has already been cleared, so done. */ + spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + rnp->qsmask &= ~mask; + if (rnp->qsmask != 0) { + + /* Other bits still set at this level, so done. */ + spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + mask = rnp->grpmask; + if (rnp->parent == NULL) { + + /* No more levels. Exit loop holding root lock. */ + + break; + } + spin_unlock_irqrestore(&rnp->lock, flags); + rnp = rnp->parent; + spin_lock_irqsave(&rnp->lock, flags); + } + + /* + * Get here if we are the last CPU to pass through a quiescent + * state for this grace period. Clean up and let rcu_start_gp() + * start up the next grace period if one is needed. Note that + * we still hold rnp->lock, as required by rcu_start_gp(), which + * will release it. + */ + rsp->completed = rsp->gpnum; + rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); + rcu_start_gp(rsp, flags); /* releases rnp->lock. */ +} + +/* + * Record a quiescent state for the specified CPU, which must either be + * the current CPU or an offline CPU. The lastcomp argument is used to + * make sure we are still in the grace period of interest. We don't want + * to end the current grace period based on quiescent states detected in + * an earlier grace period! + */ +static void +cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) +{ + unsigned long flags; + unsigned long mask; + struct rcu_node *rnp; + + rnp = rdp->mynode; + spin_lock_irqsave(&rnp->lock, flags); + if (lastcomp != ACCESS_ONCE(rsp->completed)) { + + /* + * Someone beat us to it for this grace period, so leave. + * The race with GP start is resolved by the fact that we + * hold the leaf rcu_node lock, so that the per-CPU bits + * cannot yet be initialized -- so we would simply find our + * CPU's bit already cleared in cpu_quiet_msk() if this race + * occurred. + */ + rdp->passed_quiesc = 0; /* try again later! */ + spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + mask = rdp->grpmask; + if ((rnp->qsmask & mask) == 0) { + spin_unlock_irqrestore(&rnp->lock, flags); + } else { + rdp->qs_pending = 0; + + /* + * This GP can't end until cpu checks in, so all of our + * callbacks can be processed during the next GP. + */ + rdp = rsp->rda[smp_processor_id()]; + rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; + + cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ + } +} + +/* + * Check to see if there is a new grace period of which this CPU + * is not yet aware, and if so, set up local rcu_data state for it. + * Otherwise, see if this CPU has just passed through its first + * quiescent state for this grace period, and record that fact if so. + */ +static void +rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) +{ + /* If there is now a new grace period, record and return. */ + if (check_for_new_grace_period(rsp, rdp)) + return; + + /* + * Does this CPU still need to do its part for current grace period? + * If no, return and let the other CPUs do their part as well. + */ + if (!rdp->qs_pending) + return; + + /* + * Was there a quiescent state since the beginning of the grace + * period? If no, then exit and wait for the next call. + */ + if (!rdp->passed_quiesc) + return; + + /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */ + cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed); +} + +#ifdef CONFIG_HOTPLUG_CPU + +/* + * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy + * and move all callbacks from the outgoing CPU to the current one. + */ +static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) +{ + int i; + unsigned long flags; + long lastcomp; + unsigned long mask; + struct rcu_data *rdp = rsp->rda[cpu]; + struct rcu_data *rdp_me; + struct rcu_node *rnp; + + /* Exclude any attempts to start a new grace period. */ + spin_lock_irqsave(&rsp->onofflock, flags); + + /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ + rnp = rdp->mynode; + mask = rdp->grpmask; /* rnp->grplo is constant. */ + do { + spin_lock(&rnp->lock); /* irqs already disabled. */ + rnp->qsmaskinit &= ~mask; + if (rnp->qsmaskinit != 0) { + spin_unlock(&rnp->lock); /* irqs already disabled. */ + break; + } + mask = rnp->grpmask; + spin_unlock(&rnp->lock); /* irqs already disabled. */ + rnp = rnp->parent; + } while (rnp != NULL); + lastcomp = rsp->completed; + + spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ + + /* Being offline is a quiescent state, so go record it. */ + cpu_quiet(cpu, rsp, rdp, lastcomp); + + /* + * Move callbacks from the outgoing CPU to the running CPU. + * Note that the outgoing CPU is now quiscent, so it is now + * (uncharacteristically) safe to access it rcu_data structure. + * Note also that we must carefully retain the order of the + * outgoing CPU's callbacks in order for rcu_barrier() to work + * correctly. Finally, note that we start all the callbacks + * afresh, even those that have passed through a grace period + * and are therefore ready to invoke. The theory is that hotplug + * events are rare, and that if they are frequent enough to + * indefinitely delay callbacks, you have far worse things to + * be worrying about. + */ + rdp_me = rsp->rda[smp_processor_id()]; + if (rdp->nxtlist != NULL) { + *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist; + rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; + rdp->nxtlist = NULL; + for (i = 0; i < RCU_NEXT_SIZE; i++) + rdp->nxttail[i] = &rdp->nxtlist; + rdp_me->qlen += rdp->qlen; + rdp->qlen = 0; + } + local_irq_restore(flags); +} + +/* + * Remove the specified CPU from the RCU hierarchy and move any pending + * callbacks that it might have to the current CPU. This code assumes + * that at least one CPU in the system will remain running at all times. + * Any attempt to offline -all- CPUs is likely to strand RCU callbacks. + */ +static void rcu_offline_cpu(int cpu) +{ + __rcu_offline_cpu(cpu, &rcu_state); + __rcu_offline_cpu(cpu, &rcu_bh_state); +} + +#else /* #ifdef CONFIG_HOTPLUG_CPU */ + +static void rcu_offline_cpu(int cpu) +{ +} + +#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ + +/* + * Invoke any RCU callbacks that have made it to the end of their grace + * period. Thottle as specified by rdp->blimit. + */ +static void rcu_do_batch(struct rcu_data *rdp) +{ + unsigned long flags; + struct rcu_head *next, *list, **tail; + int count; + + /* If no callbacks are ready, just return.*/ + if (!cpu_has_callbacks_ready_to_invoke(rdp)) + return; + + /* + * Extract the list of ready callbacks, disabling to prevent + * races with call_rcu() from interrupt handlers. + */ + local_irq_save(flags); + list = rdp->nxtlist; + rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; + *rdp->nxttail[RCU_DONE_TAIL] = NULL; + tail = rdp->nxttail[RCU_DONE_TAIL]; + for (count = RCU_NEXT_SIZE - 1; count >= 0; count--) + if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL]) + rdp->nxttail[count] = &rdp->nxtlist; + local_irq_restore(flags); + + /* Invoke callbacks. */ + count = 0; + while (list) { + next = list->next; + prefetch(next); + list->func(list); + list = next; + if (++count >= rdp->blimit) + break; + } + + local_irq_save(flags); + + /* Update count, and requeue any remaining callbacks. */ + rdp->qlen -= count; + if (list != NULL) { + *tail = rdp->nxtlist; + rdp->nxtlist = list; + for (count = 0; count < RCU_NEXT_SIZE; count++) + if (&rdp->nxtlist == rdp->nxttail[count]) + rdp->nxttail[count] = tail; + else + break; + } + + /* Reinstate batch limit if we have worked down the excess. */ + if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) + rdp->blimit = blimit; + + local_irq_restore(flags); + + /* Re-raise the RCU softirq if there are callbacks remaining. */ + if (cpu_has_callbacks_ready_to_invoke(rdp)) + raise_softirq(RCU_SOFTIRQ); +} + +/* + * Check to see if this CPU is in a non-context-switch quiescent state + * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). + * Also schedule the RCU softirq handler. + * + * This function must be called with hardirqs disabled. It is normally + * invoked from the scheduling-clock interrupt. If rcu_pending returns + * false, there is no point in invoking rcu_check_callbacks(). + */ +void rcu_check_callbacks(int cpu, int user) +{ + if (user || + (idle_cpu(cpu) && !in_softirq() && + hardirq_count() <= (1 << HARDIRQ_SHIFT))) { + + /* + * Get here if this CPU took its interrupt from user + * mode or from the idle loop, and if this is not a + * nested interrupt. In this case, the CPU is in + * a quiescent state, so count it. + * + * No memory barrier is required here because both + * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference + * only CPU-local variables that other CPUs neither + * access nor modify, at least not while the corresponding + * CPU is online. + */ + + rcu_qsctr_inc(cpu); + rcu_bh_qsctr_inc(cpu); + + } else if (!in_softirq()) { + + /* + * Get here if this CPU did not take its interrupt from + * softirq, in other words, if it is not interrupting + * a rcu_bh read-side critical section. This is an _bh + * critical section, so count it. + */ + + rcu_bh_qsctr_inc(cpu); + } + raise_softirq(RCU_SOFTIRQ); +} + +#ifdef CONFIG_SMP + +/* + * Scan the leaf rcu_node structures, processing dyntick state for any that + * have not yet encountered a quiescent state, using the function specified. + * Returns 1 if the current grace period ends while scanning (possibly + * because we made it end). + */ +static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp, + int (*f)(struct rcu_data *)) +{ + unsigned long bit; + int cpu; + unsigned long flags; + unsigned long mask; + struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; + struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES]; + + for (; rnp_cur < rnp_end; rnp_cur++) { + mask = 0; + spin_lock_irqsave(&rnp_cur->lock, flags); + if (rsp->completed != lastcomp) { + spin_unlock_irqrestore(&rnp_cur->lock, flags); + return 1; + } + if (rnp_cur->qsmask == 0) { + spin_unlock_irqrestore(&rnp_cur->lock, flags); + continue; + } + cpu = rnp_cur->grplo; + bit = 1; + for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) { + if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu])) + mask |= bit; + } + if (mask != 0 && rsp->completed == lastcomp) { + + /* cpu_quiet_msk() releases rnp_cur->lock. */ + cpu_quiet_msk(mask, rsp, rnp_cur, flags); + continue; + } + spin_unlock_irqrestore(&rnp_cur->lock, flags); + } + return 0; +} + +/* + * Force quiescent states on reluctant CPUs, and also detect which + * CPUs are in dyntick-idle mode. + */ +static void force_quiescent_state(struct rcu_state *rsp, int relaxed) +{ + unsigned long flags; + long lastcomp; + struct rcu_data *rdp = rsp->rda[smp_processor_id()]; + struct rcu_node *rnp = rcu_get_root(rsp); + u8 signaled; + + if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) + return; /* No grace period in progress, nothing to force. */ + if (!spin_trylock_irqsave(&rsp->fqslock, flags)) { + rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */ + return; /* Someone else is already on the job. */ + } + if (relaxed && + (long)(rsp->jiffies_force_qs - jiffies) >= 0 && + (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) >= 0) + goto unlock_ret; /* no emergency and done recently. */ + rsp->n_force_qs++; + spin_lock(&rnp->lock); + lastcomp = rsp->completed; + signaled = rsp->signaled; + rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; + rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending + + RCU_JIFFIES_TILL_FORCE_QS; + if (lastcomp == rsp->gpnum) { + rsp->n_force_qs_ngp++; + spin_unlock(&rnp->lock); + goto unlock_ret; /* no GP in progress, time updated. */ + } + spin_unlock(&rnp->lock); + switch (signaled) { + case RCU_GP_INIT: + + break; /* grace period still initializing, ignore. */ + + case RCU_SAVE_DYNTICK: + + if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) + break; /* So gcc recognizes the dead code. */ + + /* Record dyntick-idle state. */ + if (rcu_process_dyntick(rsp, lastcomp, + dyntick_save_progress_counter)) + goto unlock_ret; + + /* Update state, record completion counter. */ + spin_lock(&rnp->lock); + if (lastcomp == rsp->completed) { + rsp->signaled = RCU_FORCE_QS; + dyntick_record_completed(rsp, lastcomp); + } + spin_unlock(&rnp->lock); + break; + + case RCU_FORCE_QS: + + /* Check dyntick-idle state, send IPI to laggarts. */ + if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp), + rcu_implicit_dynticks_qs)) + goto unlock_ret; + + /* Leave state in case more forcing is required. */ + + break; + } +unlock_ret: + spin_unlock_irqrestore(&rsp->fqslock, flags); +} + +#else /* #ifdef CONFIG_SMP */ + +static void force_quiescent_state(struct rcu_state *rsp, int relaxed) +{ + set_need_resched(); +} + +#endif /* #else #ifdef CONFIG_SMP */ + +/* + * This does the RCU processing work from softirq context for the + * specified rcu_state and rcu_data structures. This may be called + * only from the CPU to whom the rdp belongs. + */ +static void +__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) +{ + unsigned long flags; + + /* + * If an RCU GP has gone long enough, go check for dyntick + * idle CPUs and, if needed, send resched IPIs. + */ + if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || + (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0) + force_quiescent_state(rsp, 1); + + /* + * Advance callbacks in response to end of earlier grace + * period that some other CPU ended. + */ + rcu_process_gp_end(rsp, rdp); + + /* Update RCU state based on any recent quiescent states. */ + rcu_check_quiescent_state(rsp, rdp); + + /* Does this CPU require a not-yet-started grace period? */ + if (cpu_needs_another_gp(rsp, rdp)) { + spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); + rcu_start_gp(rsp, flags); /* releases above lock */ + } + + /* If there are callbacks ready, invoke them. */ + rcu_do_batch(rdp); +} + +/* + * Do softirq processing for the current CPU. + */ +static void rcu_process_callbacks(struct softirq_action *unused) +{ + /* + * Memory references from any prior RCU read-side critical sections + * executed by the interrupted code must be seen before any RCU + * grace-period manipulations below. + */ + smp_mb(); /* See above block comment. */ + + __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data)); + __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); + + /* + * Memory references from any later RCU read-side critical sections + * executed by the interrupted code must be seen after any RCU + * grace-period manipulations above. + */ + smp_mb(); /* See above block comment. */ +} + +static void +__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), + struct rcu_state *rsp) +{ + unsigned long flags; + struct rcu_data *rdp; + + head->func = func; + head->next = NULL; + + smp_mb(); /* Ensure RCU update seen before callback registry. */ + + /* + * Opportunistically note grace-period endings and beginnings. + * Note that we might see a beginning right after we see an + * end, but never vice versa, since this CPU has to pass through + * a quiescent state betweentimes. + */ + local_irq_save(flags); + rdp = rsp->rda[smp_processor_id()]; + rcu_process_gp_end(rsp, rdp); + check_for_new_grace_period(rsp, rdp); + + /* Add the callback to our list. */ + *rdp->nxttail[RCU_NEXT_TAIL] = head; + rdp->nxttail[RCU_NEXT_TAIL] = &head->next; + + /* Start a new grace period if one not already started. */ + if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) { + unsigned long nestflag; + struct rcu_node *rnp_root = rcu_get_root(rsp); + + spin_lock_irqsave(&rnp_root->lock, nestflag); + rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */ + } + + /* Force the grace period if too many callbacks or too long waiting. */ + if (unlikely(++rdp->qlen > qhimark)) { + rdp->blimit = LONG_MAX; + force_quiescent_state(rsp, 0); + } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || + (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0) + force_quiescent_state(rsp, 1); + local_irq_restore(flags); +} + +/* + * Queue an RCU callback for invocation after a grace period. + */ +void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) +{ + __call_rcu(head, func, &rcu_state); +} +EXPORT_SYMBOL_GPL(call_rcu); + +/* + * Queue an RCU for invocation after a quicker grace period. + */ +void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) +{ + __call_rcu(head, func, &rcu_bh_state); +} +EXPORT_SYMBOL_GPL(call_rcu_bh); + +/* + * Check to see if there is any immediate RCU-related work to be done + * by the current CPU, for the specified type of RCU, returning 1 if so. + * The checks are in order of increasing expense: checks that can be + * carried out against CPU-local state are performed first. However, + * we must check for CPU stalls first, else we might not get a chance. + */ +static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) +{ + rdp->n_rcu_pending++; + + /* Check for CPU stalls, if enabled. */ + check_cpu_stall(rsp, rdp); + + /* Is the RCU core waiting for a quiescent state from this CPU? */ + if (rdp->qs_pending) + return 1; + + /* Does this CPU have callbacks ready to invoke? */ + if (cpu_has_callbacks_ready_to_invoke(rdp)) + return 1; + + /* Has RCU gone idle with this CPU needing another grace period? */ + if (cpu_needs_another_gp(rsp, rdp)) + return 1; + + /* Has another RCU grace period completed? */ + if (ACCESS_ONCE(rsp->completed) != rdp->completed) /* outside of lock */ + return 1; + + /* Has a new RCU grace period started? */ + if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) /* outside of lock */ + return 1; + + /* Has an RCU GP gone long enough to send resched IPIs &c? */ + if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) && + ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 || + (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)) + return 1; + + /* nothing to do */ + return 0; +} + +/* + * Check to see if there is any immediate RCU-related work to be done + * by the current CPU, returning 1 if so. This function is part of the + * RCU implementation; it is -not- an exported member of the RCU API. + */ +int rcu_pending(int cpu) +{ + return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) || + __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)); +} + +/* + * Check to see if any future RCU-related work will need to be done + * by the current CPU, even if none need be done immediately, returning + * 1 if so. This function is part of the RCU implementation; it is -not- + * an exported member of the RCU API. + */ +int rcu_needs_cpu(int cpu) +{ + /* RCU callbacks either ready or pending? */ + return per_cpu(rcu_data, cpu).nxtlist || + per_cpu(rcu_bh_data, cpu).nxtlist; +} + +/* + * Initialize a CPU's per-CPU RCU data. We take this "scorched earth" + * approach so that we don't have to worry about how long the CPU has + * been gone, or whether it ever was online previously. We do trust the + * ->mynode field, as it is constant for a given struct rcu_data and + * initialized during early boot. + * + * Note that only one online or offline event can be happening at a given + * time. Note also that we can accept some slop in the rsp->completed + * access due to the fact that this CPU cannot possibly have any RCU + * callbacks in flight yet. + */ +static void +rcu_init_percpu_data(int cpu, struct rcu_state *rsp) +{ + unsigned long flags; + int i; + long lastcomp; + unsigned long mask; + struct rcu_data *rdp = rsp->rda[cpu]; + struct rcu_node *rnp = rcu_get_root(rsp); + + /* Set up local state, ensuring consistent view of global state. */ + spin_lock_irqsave(&rnp->lock, flags); + lastcomp = rsp->completed; + rdp->completed = lastcomp; + rdp->gpnum = lastcomp; + rdp->passed_quiesc = 0; /* We could be racing with new GP, */ + rdp->qs_pending = 1; /* so set up to respond to current GP. */ + rdp->beenonline = 1; /* We have now been online. */ + rdp->passed_quiesc_completed = lastcomp - 1; + rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); + rdp->nxtlist = NULL; + for (i = 0; i < RCU_NEXT_SIZE; i++) + rdp->nxttail[i] = &rdp->nxtlist; + rdp->qlen = 0; + rdp->blimit = blimit; +#ifdef CONFIG_NO_HZ + rdp->dynticks = &per_cpu(rcu_dynticks, cpu); +#endif /* #ifdef CONFIG_NO_HZ */ + rdp->cpu = cpu; + spin_unlock(&rnp->lock); /* irqs remain disabled. */ + + /* + * A new grace period might start here. If so, we won't be part + * of it, but that is OK, as we are currently in a quiescent state. + */ + + /* Exclude any attempts to start a new GP on large systems. */ + spin_lock(&rsp->onofflock); /* irqs already disabled. */ + + /* Add CPU to rcu_node bitmasks. */ + rnp = rdp->mynode; + mask = rdp->grpmask; + do { + /* Exclude any attempts to start a new GP on small systems. */ + spin_lock(&rnp->lock); /* irqs already disabled. */ + rnp->qsmaskinit |= mask; + mask = rnp->grpmask; + spin_unlock(&rnp->lock); /* irqs already disabled. */ + rnp = rnp->parent; + } while (rnp != NULL && !(rnp->qsmaskinit & mask)); + + spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ + + /* + * A new grace period might start here. If so, we will be part of + * it, and its gpnum will be greater than ours, so we will + * participate. It is also possible for the gpnum to have been + * incremented before this function was called, and the bitmasks + * to not be filled out until now, in which case we will also + * participate due to our gpnum being behind. + */ + + /* Since it is coming online, the CPU is in a quiescent state. */ + cpu_quiet(cpu, rsp, rdp, lastcomp); + local_irq_restore(flags); +} + +static void __cpuinit rcu_online_cpu(int cpu) +{ +#ifdef CONFIG_NO_HZ + struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); + + rdtp->dynticks_nesting = 1; + rdtp->dynticks |= 1; /* need consecutive #s even for hotplug. */ + rdtp->dynticks_nmi = (rdtp->dynticks_nmi + 1) & ~0x1; +#endif /* #ifdef CONFIG_NO_HZ */ + rcu_init_percpu_data(cpu, &rcu_state); + rcu_init_percpu_data(cpu, &rcu_bh_state); + open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); +} + +/* + * Handle CPU online/offline notifcation events. + */ +static int __cpuinit rcu_cpu_notify(struct notifier_block *self, + unsigned long action, void *hcpu) +{ + long cpu = (long)hcpu; + + switch (action) { + case CPU_UP_PREPARE: + case CPU_UP_PREPARE_FROZEN: + rcu_online_cpu(cpu); + break; + case CPU_DEAD: + case CPU_DEAD_FROZEN: + case CPU_UP_CANCELED: + case CPU_UP_CANCELED_FROZEN: + rcu_offline_cpu(cpu); + break; + default: + break; + } + return NOTIFY_OK; +} + +/* + * Compute the per-level fanout, either using the exact fanout specified + * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. + */ +#ifdef CONFIG_RCU_FANOUT_EXACT +static void __init rcu_init_levelspread(struct rcu_state *rsp) +{ + int i; + + for (i = NUM_RCU_LVLS - 1; i >= 0; i--) + rsp->levelspread[i] = CONFIG_RCU_FANOUT; +} +#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ +static void __init rcu_init_levelspread(struct rcu_state *rsp) +{ + int ccur; + int cprv; + int i; + + cprv = NR_CPUS; + for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { + ccur = rsp->levelcnt[i]; + rsp->levelspread[i] = (cprv + ccur - 1) / ccur; + cprv = ccur; + } +} +#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ + +/* + * Helper function for rcu_init() that initializes one rcu_state structure. + */ +static void __init rcu_init_one(struct rcu_state *rsp) +{ + int cpustride = 1; + int i; + int j; + struct rcu_node *rnp; + + /* Initialize the level-tracking arrays. */ + + for (i = 1; i < NUM_RCU_LVLS; i++) + rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; + rcu_init_levelspread(rsp); + + /* Initialize the elements themselves, starting from the leaves. */ + + for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { + cpustride *= rsp->levelspread[i]; + rnp = rsp->level[i]; + for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { + spin_lock_init(&rnp->lock); + rnp->qsmask = 0; + rnp->qsmaskinit = 0; + rnp->grplo = j * cpustride; + rnp->grphi = (j + 1) * cpustride - 1; + if (rnp->grphi >= NR_CPUS) + rnp->grphi = NR_CPUS - 1; + if (i == 0) { + rnp->grpnum = 0; + rnp->grpmask = 0; + rnp->parent = NULL; + } else { + rnp->grpnum = j % rsp->levelspread[i - 1]; + rnp->grpmask = 1UL << rnp->grpnum; + rnp->parent = rsp->level[i - 1] + + j / rsp->levelspread[i - 1]; + } + rnp->level = i; + } + } +} + +/* + * Helper macro for __rcu_init(). To be used nowhere else! + * Assigns leaf node pointers into each CPU's rcu_data structure. + */ +#define RCU_DATA_PTR_INIT(rsp, rcu_data) \ +do { \ + rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \ + j = 0; \ + for_each_possible_cpu(i) { \ + if (i > rnp[j].grphi) \ + j++; \ + per_cpu(rcu_data, i).mynode = &rnp[j]; \ + (rsp)->rda[i] = &per_cpu(rcu_data, i); \ + } \ +} while (0) + +static struct notifier_block __cpuinitdata rcu_nb = { + .notifier_call = rcu_cpu_notify, +}; + +void __init __rcu_init(void) +{ + int i; /* All used by RCU_DATA_PTR_INIT(). */ + int j; + struct rcu_node *rnp; + + printk(KERN_WARNING "Experimental hierarchical RCU implementation.\n"); +#ifdef CONFIG_RCU_CPU_STALL_DETECTOR + printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n"); +#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ + rcu_init_one(&rcu_state); + RCU_DATA_PTR_INIT(&rcu_state, rcu_data); + rcu_init_one(&rcu_bh_state); + RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data); + + for_each_online_cpu(i) + rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i); + /* Register notifier for non-boot CPUs */ + register_cpu_notifier(&rcu_nb); + printk(KERN_WARNING "Experimental hierarchical RCU init done.\n"); +} + +module_param(blimit, int, 0); +module_param(qhimark, int, 0); +module_param(qlowmark, int, 0); |