diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2010-02-28 19:31:01 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2010-02-28 19:31:01 +0100 |
commit | f66ffdedbf0fc059a92219bb08c1dbcac88f074b (patch) | |
tree | 9db4ad51764455123130e82fb7acf4f0a0be58ce /kernel/sched.c | |
parent | Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/ke... (diff) | |
parent | sched: Fix SCHED_MC regression caused by change in sched cpu_power (diff) | |
download | linux-f66ffdedbf0fc059a92219bb08c1dbcac88f074b.tar.xz linux-f66ffdedbf0fc059a92219bb08c1dbcac88f074b.zip |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (25 commits)
sched: Fix SCHED_MC regression caused by change in sched cpu_power
sched: Don't use possibly stale sched_class
kthread, sched: Remove reference to kthread_create_on_cpu
sched: cpuacct: Use bigger percpu counter batch values for stats counters
percpu_counter: Make __percpu_counter_add an inline function on UP
sched: Remove member rt_se from struct rt_rq
sched: Change usage of rt_rq->rt_se to rt_rq->tg->rt_se[cpu]
sched: Remove unused update_shares_locked()
sched: Use for_each_bit
sched: Queue a deboosted task to the head of the RT prio queue
sched: Implement head queueing for sched_rt
sched: Extend enqueue_task to allow head queueing
sched: Remove USER_SCHED
sched: Fix the place where group powers are updated
sched: Assume *balance is valid
sched: Remove load_balance_newidle()
sched: Unify load_balance{,_newidle}()
sched: Add a lock break for PREEMPT=y
sched: Remove from fwd decls
sched: Remove rq_iterator from move_one_task
...
Fix up trivial conflicts in kernel/sched.c
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 2125 |
1 files changed, 116 insertions, 2009 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index caf54e1eef6e..6a212c97f523 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -233,7 +233,7 @@ static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) */ static DEFINE_MUTEX(sched_domains_mutex); -#ifdef CONFIG_GROUP_SCHED +#ifdef CONFIG_CGROUP_SCHED #include <linux/cgroup.h> @@ -243,13 +243,7 @@ static LIST_HEAD(task_groups); /* task group related information */ struct task_group { -#ifdef CONFIG_CGROUP_SCHED struct cgroup_subsys_state css; -#endif - -#ifdef CONFIG_USER_SCHED - uid_t uid; -#endif #ifdef CONFIG_FAIR_GROUP_SCHED /* schedulable entities of this group on each cpu */ @@ -274,35 +268,7 @@ struct task_group { struct list_head children; }; -#ifdef CONFIG_USER_SCHED - -/* Helper function to pass uid information to create_sched_user() */ -void set_tg_uid(struct user_struct *user) -{ - user->tg->uid = user->uid; -} - -/* - * Root task group. - * Every UID task group (including init_task_group aka UID-0) will - * be a child to this group. - */ -struct task_group root_task_group; - -#ifdef CONFIG_FAIR_GROUP_SCHED -/* Default task group's sched entity on each cpu */ -static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); -/* Default task group's cfs_rq on each cpu */ -static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); -#endif /* CONFIG_FAIR_GROUP_SCHED */ - -#ifdef CONFIG_RT_GROUP_SCHED -static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); -static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var); -#endif /* CONFIG_RT_GROUP_SCHED */ -#else /* !CONFIG_USER_SCHED */ #define root_task_group init_task_group -#endif /* CONFIG_USER_SCHED */ /* task_group_lock serializes add/remove of task groups and also changes to * a task group's cpu shares. @@ -318,11 +284,7 @@ static int root_task_group_empty(void) } #endif -#ifdef CONFIG_USER_SCHED -# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) -#else /* !CONFIG_USER_SCHED */ # define INIT_TASK_GROUP_LOAD NICE_0_LOAD -#endif /* CONFIG_USER_SCHED */ /* * A weight of 0 or 1 can cause arithmetics problems. @@ -348,11 +310,7 @@ static inline struct task_group *task_group(struct task_struct *p) { struct task_group *tg; -#ifdef CONFIG_USER_SCHED - rcu_read_lock(); - tg = __task_cred(p)->user->tg; - rcu_read_unlock(); -#elif defined(CONFIG_CGROUP_SCHED) +#ifdef CONFIG_CGROUP_SCHED tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), struct task_group, css); #else @@ -383,7 +341,7 @@ static inline struct task_group *task_group(struct task_struct *p) return NULL; } -#endif /* CONFIG_GROUP_SCHED */ +#endif /* CONFIG_CGROUP_SCHED */ /* CFS-related fields in a runqueue */ struct cfs_rq { @@ -478,7 +436,6 @@ struct rt_rq { struct rq *rq; struct list_head leaf_rt_rq_list; struct task_group *tg; - struct sched_rt_entity *rt_se; #endif }; @@ -1414,32 +1371,6 @@ static const u32 prio_to_wmult[40] = { /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, }; -static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); - -/* - * runqueue iterator, to support SMP load-balancing between different - * scheduling classes, without having to expose their internal data - * structures to the load-balancing proper: - */ -struct rq_iterator { - void *arg; - struct task_struct *(*start)(void *); - struct task_struct *(*next)(void *); -}; - -#ifdef CONFIG_SMP -static unsigned long -balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, struct sched_domain *sd, - enum cpu_idle_type idle, int *all_pinned, - int *this_best_prio, struct rq_iterator *iterator); - -static int -iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle, - struct rq_iterator *iterator); -#endif - /* Time spent by the tasks of the cpu accounting group executing in ... */ enum cpuacct_stat_index { CPUACCT_STAT_USER, /* ... user mode */ @@ -1725,16 +1656,6 @@ static void update_shares(struct sched_domain *sd) } } -static void update_shares_locked(struct rq *rq, struct sched_domain *sd) -{ - if (root_task_group_empty()) - return; - - raw_spin_unlock(&rq->lock); - update_shares(sd); - raw_spin_lock(&rq->lock); -} - static void update_h_load(long cpu) { if (root_task_group_empty()) @@ -1749,10 +1670,6 @@ static inline void update_shares(struct sched_domain *sd) { } -static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) -{ -} - #endif #ifdef CONFIG_PREEMPT @@ -1829,6 +1746,51 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) raw_spin_unlock(&busiest->lock); lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); } + +/* + * double_rq_lock - safely lock two runqueues + * + * Note this does not disable interrupts like task_rq_lock, + * you need to do so manually before calling. + */ +static void double_rq_lock(struct rq *rq1, struct rq *rq2) + __acquires(rq1->lock) + __acquires(rq2->lock) +{ + BUG_ON(!irqs_disabled()); + if (rq1 == rq2) { + raw_spin_lock(&rq1->lock); + __acquire(rq2->lock); /* Fake it out ;) */ + } else { + if (rq1 < rq2) { + raw_spin_lock(&rq1->lock); + raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); + } else { + raw_spin_lock(&rq2->lock); + raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); + } + } + update_rq_clock(rq1); + update_rq_clock(rq2); +} + +/* + * double_rq_unlock - safely unlock two runqueues + * + * Note this does not restore interrupts like task_rq_unlock, + * you need to do so manually after calling. + */ +static void double_rq_unlock(struct rq *rq1, struct rq *rq2) + __releases(rq1->lock) + __releases(rq2->lock) +{ + raw_spin_unlock(&rq1->lock); + if (rq1 != rq2) + raw_spin_unlock(&rq2->lock); + else + __release(rq2->lock); +} + #endif #ifdef CONFIG_FAIR_GROUP_SCHED @@ -1858,18 +1820,14 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) #endif } -#include "sched_stats.h" -#include "sched_idletask.c" -#include "sched_fair.c" -#include "sched_rt.c" -#ifdef CONFIG_SCHED_DEBUG -# include "sched_debug.c" -#endif +static const struct sched_class rt_sched_class; #define sched_class_highest (&rt_sched_class) #define for_each_class(class) \ for (class = sched_class_highest; class; class = class->next) +#include "sched_stats.h" + static void inc_nr_running(struct rq *rq) { rq->nr_running++; @@ -1907,13 +1865,14 @@ static void update_avg(u64 *avg, u64 sample) *avg += diff >> 3; } -static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) +static void +enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) { if (wakeup) p->se.start_runtime = p->se.sum_exec_runtime; sched_info_queued(p); - p->sched_class->enqueue_task(rq, p, wakeup); + p->sched_class->enqueue_task(rq, p, wakeup, head); p->se.on_rq = 1; } @@ -1936,6 +1895,37 @@ static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) } /* + * activate_task - move a task to the runqueue. + */ +static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) +{ + if (task_contributes_to_load(p)) + rq->nr_uninterruptible--; + + enqueue_task(rq, p, wakeup, false); + inc_nr_running(rq); +} + +/* + * deactivate_task - remove a task from the runqueue. + */ +static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) +{ + if (task_contributes_to_load(p)) + rq->nr_uninterruptible++; + + dequeue_task(rq, p, sleep); + dec_nr_running(rq); +} + +#include "sched_idletask.c" +#include "sched_fair.c" +#include "sched_rt.c" +#ifdef CONFIG_SCHED_DEBUG +# include "sched_debug.c" +#endif + +/* * __normal_prio - return the priority that is based on the static prio */ static inline int __normal_prio(struct task_struct *p) @@ -1981,30 +1971,6 @@ static int effective_prio(struct task_struct *p) return p->prio; } -/* - * activate_task - move a task to the runqueue. - */ -static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) -{ - if (task_contributes_to_load(p)) - rq->nr_uninterruptible--; - - enqueue_task(rq, p, wakeup); - inc_nr_running(rq); -} - -/* - * deactivate_task - remove a task from the runqueue. - */ -static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) -{ - if (task_contributes_to_load(p)) - rq->nr_uninterruptible++; - - dequeue_task(rq, p, sleep); - dec_nr_running(rq); -} - /** * task_curr - is this task currently executing on a CPU? * @p: the task in question. @@ -3148,50 +3114,6 @@ static void update_cpu_load(struct rq *this_rq) #ifdef CONFIG_SMP /* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static void double_rq_lock(struct rq *rq1, struct rq *rq2) - __acquires(rq1->lock) - __acquires(rq2->lock) -{ - BUG_ON(!irqs_disabled()); - if (rq1 == rq2) { - raw_spin_lock(&rq1->lock); - __acquire(rq2->lock); /* Fake it out ;) */ - } else { - if (rq1 < rq2) { - raw_spin_lock(&rq1->lock); - raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); - } else { - raw_spin_lock(&rq2->lock); - raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); - } - } - update_rq_clock(rq1); - update_rq_clock(rq2); -} - -/* - * double_rq_unlock - safely unlock two runqueues - * - * Note this does not restore interrupts like task_rq_unlock, - * you need to do so manually after calling. - */ -static void double_rq_unlock(struct rq *rq1, struct rq *rq2) - __releases(rq1->lock) - __releases(rq2->lock) -{ - raw_spin_unlock(&rq1->lock); - if (rq1 != rq2) - raw_spin_unlock(&rq2->lock); - else - __release(rq2->lock); -} - -/* * sched_exec - execve() is a valuable balancing opportunity, because at * this point the task has the smallest effective memory and cache footprint. */ @@ -3239,1782 +3161,6 @@ again: task_rq_unlock(rq, &flags); } -/* - * pull_task - move a task from a remote runqueue to the local runqueue. - * Both runqueues must be locked. - */ -static void pull_task(struct rq *src_rq, struct task_struct *p, - struct rq *this_rq, int this_cpu) -{ - deactivate_task(src_rq, p, 0); - set_task_cpu(p, this_cpu); - activate_task(this_rq, p, 0); - check_preempt_curr(this_rq, p, 0); -} - -/* - * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? - */ -static -int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, - struct sched_domain *sd, enum cpu_idle_type idle, - int *all_pinned) -{ - int tsk_cache_hot = 0; - /* - * We do not migrate tasks that are: - * 1) running (obviously), or - * 2) cannot be migrated to this CPU due to cpus_allowed, or - * 3) are cache-hot on their current CPU. - */ - if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { - schedstat_inc(p, se.nr_failed_migrations_affine); - return 0; - } - *all_pinned = 0; - - if (task_running(rq, p)) { - schedstat_inc(p, se.nr_failed_migrations_running); - return 0; - } - - /* - * Aggressive migration if: - * 1) task is cache cold, or - * 2) too many balance attempts have failed. - */ - - tsk_cache_hot = task_hot(p, rq->clock, sd); - if (!tsk_cache_hot || - sd->nr_balance_failed > sd->cache_nice_tries) { -#ifdef CONFIG_SCHEDSTATS - if (tsk_cache_hot) { - schedstat_inc(sd, lb_hot_gained[idle]); - schedstat_inc(p, se.nr_forced_migrations); - } -#endif - return 1; - } - - if (tsk_cache_hot) { - schedstat_inc(p, se.nr_failed_migrations_hot); - return 0; - } - return 1; -} - -static unsigned long -balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, struct sched_domain *sd, - enum cpu_idle_type idle, int *all_pinned, - int *this_best_prio, struct rq_iterator *iterator) -{ - int loops = 0, pulled = 0, pinned = 0; - struct task_struct *p; - long rem_load_move = max_load_move; - - if (max_load_move == 0) - goto out; - - pinned = 1; - - /* - * Start the load-balancing iterator: - */ - p = iterator->start(iterator->arg); -next: - if (!p || loops++ > sysctl_sched_nr_migrate) - goto out; - - if ((p->se.load.weight >> 1) > rem_load_move || - !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { - p = iterator->next(iterator->arg); - goto next; - } - - pull_task(busiest, p, this_rq, this_cpu); - pulled++; - rem_load_move -= p->se.load.weight; - -#ifdef CONFIG_PREEMPT - /* - * NEWIDLE balancing is a source of latency, so preemptible kernels - * will stop after the first task is pulled to minimize the critical - * section. - */ - if (idle == CPU_NEWLY_IDLE) - goto out; -#endif - - /* - * We only want to steal up to the prescribed amount of weighted load. - */ - if (rem_load_move > 0) { - if (p->prio < *this_best_prio) - *this_best_prio = p->prio; - p = iterator->next(iterator->arg); - goto next; - } -out: - /* - * Right now, this is one of only two places pull_task() is called, - * so we can safely collect pull_task() stats here rather than - * inside pull_task(). - */ - schedstat_add(sd, lb_gained[idle], pulled); - - if (all_pinned) - *all_pinned = pinned; - - return max_load_move - rem_load_move; -} - -/* - * move_tasks tries to move up to max_load_move weighted load from busiest to - * this_rq, as part of a balancing operation within domain "sd". - * Returns 1 if successful and 0 otherwise. - * - * Called with both runqueues locked. - */ -static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, - unsigned long max_load_move, - struct sched_domain *sd, enum cpu_idle_type idle, - int *all_pinned) -{ - const struct sched_class *class = sched_class_highest; - unsigned long total_load_moved = 0; - int this_best_prio = this_rq->curr->prio; - - do { - total_load_moved += - class->load_balance(this_rq, this_cpu, busiest, - max_load_move - total_load_moved, - sd, idle, all_pinned, &this_best_prio); - class = class->next; - -#ifdef CONFIG_PREEMPT - /* - * NEWIDLE balancing is a source of latency, so preemptible - * kernels will stop after the first task is pulled to minimize - * the critical section. - */ - if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) - break; -#endif - } while (class && max_load_move > total_load_moved); - - return total_load_moved > 0; -} - -static int -iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle, - struct rq_iterator *iterator) -{ - struct task_struct *p = iterator->start(iterator->arg); - int pinned = 0; - - while (p) { - if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { - pull_task(busiest, p, this_rq, this_cpu); - /* - * Right now, this is only the second place pull_task() - * is called, so we can safely collect pull_task() - * stats here rather than inside pull_task(). - */ - schedstat_inc(sd, lb_gained[idle]); - - return 1; - } - p = iterator->next(iterator->arg); - } - - return 0; -} - -/* - * move_one_task tries to move exactly one task from busiest to this_rq, as - * part of active balancing operations within "domain". - * Returns 1 if successful and 0 otherwise. - * - * Called with both runqueues locked. - */ -static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, - struct sched_domain *sd, enum cpu_idle_type idle) -{ - const struct sched_class *class; - - for_each_class(class) { - if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) - return 1; - } - - return 0; -} -/********** Helpers for find_busiest_group ************************/ -/* - * sd_lb_stats - Structure to store the statistics of a sched_domain - * during load balancing. - */ -struct sd_lb_stats { - struct sched_group *busiest; /* Busiest group in this sd */ - struct sched_group *this; /* Local group in this sd */ - unsigned long total_load; /* Total load of all groups in sd */ - unsigned long total_pwr; /* Total power of all groups in sd */ - unsigned long avg_load; /* Average load across all groups in sd */ - - /** Statistics of this group */ - unsigned long this_load; - unsigned long this_load_per_task; - unsigned long this_nr_running; - - /* Statistics of the busiest group */ - unsigned long max_load; - unsigned long busiest_load_per_task; - unsigned long busiest_nr_running; - - int group_imb; /* Is there imbalance in this sd */ -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - int power_savings_balance; /* Is powersave balance needed for this sd */ - struct sched_group *group_min; /* Least loaded group in sd */ - struct sched_group *group_leader; /* Group which relieves group_min */ - unsigned long min_load_per_task; /* load_per_task in group_min */ - unsigned long leader_nr_running; /* Nr running of group_leader */ - unsigned long min_nr_running; /* Nr running of group_min */ -#endif -}; - -/* - * sg_lb_stats - stats of a sched_group required for load_balancing - */ -struct sg_lb_stats { - unsigned long avg_load; /*Avg load across the CPUs of the group */ - unsigned long group_load; /* Total load over the CPUs of the group */ - unsigned long sum_nr_running; /* Nr tasks running in the group */ - unsigned long sum_weighted_load; /* Weighted load of group's tasks */ - unsigned long group_capacity; - int group_imb; /* Is there an imbalance in the group ? */ -}; - -/** - * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. - * @group: The group whose first cpu is to be returned. - */ -static inline unsigned int group_first_cpu(struct sched_group *group) -{ - return cpumask_first(sched_group_cpus(group)); -} - -/** - * get_sd_load_idx - Obtain the load index for a given sched domain. - * @sd: The sched_domain whose load_idx is to be obtained. - * @idle: The Idle status of the CPU for whose sd load_icx is obtained. - */ -static inline int get_sd_load_idx(struct sched_domain *sd, - enum cpu_idle_type idle) -{ - int load_idx; - - switch (idle) { - case CPU_NOT_IDLE: - load_idx = sd->busy_idx; - break; - - case CPU_NEWLY_IDLE: - load_idx = sd->newidle_idx; - break; - default: - load_idx = sd->idle_idx; - break; - } - - return load_idx; -} - - -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -/** - * init_sd_power_savings_stats - Initialize power savings statistics for - * the given sched_domain, during load balancing. - * - * @sd: Sched domain whose power-savings statistics are to be initialized. - * @sds: Variable containing the statistics for sd. - * @idle: Idle status of the CPU at which we're performing load-balancing. - */ -static inline void init_sd_power_savings_stats(struct sched_domain *sd, - struct sd_lb_stats *sds, enum cpu_idle_type idle) -{ - /* - * Busy processors will not participate in power savings - * balance. - */ - if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) - sds->power_savings_balance = 0; - else { - sds->power_savings_balance = 1; - sds->min_nr_running = ULONG_MAX; - sds->leader_nr_running = 0; - } -} - -/** - * update_sd_power_savings_stats - Update the power saving stats for a - * sched_domain while performing load balancing. - * - * @group: sched_group belonging to the sched_domain under consideration. - * @sds: Variable containing the statistics of the sched_domain - * @local_group: Does group contain the CPU for which we're performing - * load balancing ? - * @sgs: Variable containing the statistics of the group. - */ -static inline void update_sd_power_savings_stats(struct sched_group *group, - struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) -{ - - if (!sds->power_savings_balance) - return; - - /* - * If the local group is idle or completely loaded - * no need to do power savings balance at this domain - */ - if (local_group && (sds->this_nr_running >= sgs->group_capacity || - !sds->this_nr_running)) - sds->power_savings_balance = 0; - - /* - * If a group is already running at full capacity or idle, - * don't include that group in power savings calculations - */ - if (!sds->power_savings_balance || - sgs->sum_nr_running >= sgs->group_capacity || - !sgs->sum_nr_running) - return; - - /* - * Calculate the group which has the least non-idle load. - * This is the group from where we need to pick up the load - * for saving power - */ - if ((sgs->sum_nr_running < sds->min_nr_running) || - (sgs->sum_nr_running == sds->min_nr_running && - group_first_cpu(group) > group_first_cpu(sds->group_min))) { - sds->group_min = group; - sds->min_nr_running = sgs->sum_nr_running; - sds->min_load_per_task = sgs->sum_weighted_load / - sgs->sum_nr_running; - } - - /* - * Calculate the group which is almost near its - * capacity but still has some space to pick up some load - * from other group and save more power - */ - if (sgs->sum_nr_running + 1 > sgs->group_capacity) - return; - - if (sgs->sum_nr_running > sds->leader_nr_running || - (sgs->sum_nr_running == sds->leader_nr_running && - group_first_cpu(group) < group_first_cpu(sds->group_leader))) { - sds->group_leader = group; - sds->leader_nr_running = sgs->sum_nr_running; - } -} - -/** - * check_power_save_busiest_group - see if there is potential for some power-savings balance - * @sds: Variable containing the statistics of the sched_domain - * under consideration. - * @this_cpu: Cpu at which we're currently performing load-balancing. - * @imbalance: Variable to store the imbalance. - * - * Description: - * Check if we have potential to perform some power-savings balance. - * If yes, set the busiest group to be the least loaded group in the - * sched_domain, so that it's CPUs can be put to idle. - * - * Returns 1 if there is potential to perform power-savings balance. - * Else returns 0. - */ -static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, - int this_cpu, unsigned long *imbalance) -{ - if (!sds->power_savings_balance) - return 0; - - if (sds->this != sds->group_leader || - sds->group_leader == sds->group_min) - return 0; - - *imbalance = sds->min_load_per_task; - sds->busiest = sds->group_min; - - return 1; - -} -#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ -static inline void init_sd_power_savings_stats(struct sched_domain *sd, - struct sd_lb_stats *sds, enum cpu_idle_type idle) -{ - return; -} - -static inline void update_sd_power_savings_stats(struct sched_group *group, - struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) -{ - return; -} - -static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, - int this_cpu, unsigned long *imbalance) -{ - return 0; -} -#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ - - -unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) -{ - return SCHED_LOAD_SCALE; -} - -unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) -{ - return default_scale_freq_power(sd, cpu); -} - -unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) -{ - unsigned long weight = cpumask_weight(sched_domain_span(sd)); - unsigned long smt_gain = sd->smt_gain; - - smt_gain /= weight; - - return smt_gain; -} - -unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) -{ - return default_scale_smt_power(sd, cpu); -} - -unsigned long scale_rt_power(int cpu) -{ - struct rq *rq = cpu_rq(cpu); - u64 total, available; - - sched_avg_update(rq); - - total = sched_avg_period() + (rq->clock - rq->age_stamp); - available = total - rq->rt_avg; - - if (unlikely((s64)total < SCHED_LOAD_SCALE)) - total = SCHED_LOAD_SCALE; - - total >>= SCHED_LOAD_SHIFT; - - return div_u64(available, total); -} - -static void update_cpu_power(struct sched_domain *sd, int cpu) -{ - unsigned long weight = cpumask_weight(sched_domain_span(sd)); - unsigned long power = SCHED_LOAD_SCALE; - struct sched_group *sdg = sd->groups; - - if (sched_feat(ARCH_POWER)) - power *= arch_scale_freq_power(sd, cpu); - else - power *= default_scale_freq_power(sd, cpu); - - power >>= SCHED_LOAD_SHIFT; - - if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { - if (sched_feat(ARCH_POWER)) - power *= arch_scale_smt_power(sd, cpu); - else - power *= default_scale_smt_power(sd, cpu); - - power >>= SCHED_LOAD_SHIFT; - } - - power *= scale_rt_power(cpu); - power >>= SCHED_LOAD_SHIFT; - - if (!power) - power = 1; - - sdg->cpu_power = power; -} - -static void update_group_power(struct sched_domain *sd, int cpu) -{ - struct sched_domain *child = sd->child; - struct sched_group *group, *sdg = sd->groups; - unsigned long power; - - if (!child) { - update_cpu_power(sd, cpu); - return; - } - - power = 0; - - group = child->groups; - do { - power += group->cpu_power; - group = group->next; - } while (group != child->groups); - - sdg->cpu_power = power; -} - -/** - * update_sg_lb_stats - Update sched_group's statistics for load balancing. - * @sd: The sched_domain whose statistics are to be updated. - * @group: sched_group whose statistics are to be updated. - * @this_cpu: Cpu for which load balance is currently performed. - * @idle: Idle status of this_cpu - * @load_idx: Load index of sched_domain of this_cpu for load calc. - * @sd_idle: Idle status of the sched_domain containing group. - * @local_group: Does group contain this_cpu. - * @cpus: Set of cpus considered for load balancing. - * @balance: Should we balance. - * @sgs: variable to hold the statistics for this group. - */ -static inline void update_sg_lb_stats(struct sched_domain *sd, - struct sched_group *group, int this_cpu, - enum cpu_idle_type idle, int load_idx, int *sd_idle, - int local_group, const struct cpumask *cpus, - int *balance, struct sg_lb_stats *sgs) -{ - unsigned long load, max_cpu_load, min_cpu_load; - int i; - unsigned int balance_cpu = -1, first_idle_cpu = 0; - unsigned long sum_avg_load_per_task; - unsigned long avg_load_per_task; - - if (local_group) { - balance_cpu = group_first_cpu(group); - if (balance_cpu == this_cpu) - update_group_power(sd, this_cpu); - } - - /* Tally up the load of all CPUs in the group */ - sum_avg_load_per_task = avg_load_per_task = 0; - max_cpu_load = 0; - min_cpu_load = ~0UL; - - for_each_cpu_and(i, sched_group_cpus(group), cpus) { - struct rq *rq = cpu_rq(i); - - if (*sd_idle && rq->nr_running) - *sd_idle = 0; - - /* Bias balancing toward cpus of our domain */ - if (local_group) { - if (idle_cpu(i) && !first_idle_cpu) { - first_idle_cpu = 1; - balance_cpu = i; - } - - load = target_load(i, load_idx); - } else { - load = source_load(i, load_idx); - if (load > max_cpu_load) - max_cpu_load = load; - if (min_cpu_load > load) - min_cpu_load = load; - } - - sgs->group_load += load; - sgs->sum_nr_running += rq->nr_running; - sgs->sum_weighted_load += weighted_cpuload(i); - - sum_avg_load_per_task += cpu_avg_load_per_task(i); - } - - /* - * First idle cpu or the first cpu(busiest) in this sched group - * is eligible for doing load balancing at this and above - * domains. In the newly idle case, we will allow all the cpu's - * to do the newly idle load balance. - */ - if (idle != CPU_NEWLY_IDLE && local_group && - balance_cpu != this_cpu && balance) { - *balance = 0; - return; - } - - /* Adjust by relative CPU power of the group */ - sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; - - - /* - * Consider the group unbalanced when the imbalance is larger - * than the average weight of two tasks. - * - * APZ: with cgroup the avg task weight can vary wildly and - * might not be a suitable number - should we keep a - * normalized nr_running number somewhere that negates - * the hierarchy? - */ - avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / - group->cpu_power; - - if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) - sgs->group_imb = 1; - - sgs->group_capacity = - DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); -} - -/** - * update_sd_lb_stats - Update sched_group's statistics for load balancing. - * @sd: sched_domain whose statistics are to be updated. - * @this_cpu: Cpu for which load balance is currently performed. - * @idle: Idle status of this_cpu - * @sd_idle: Idle status of the sched_domain containing group. - * @cpus: Set of cpus considered for load balancing. - * @balance: Should we balance. - * @sds: variable to hold the statistics for this sched_domain. - */ -static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, - enum cpu_idle_type idle, int *sd_idle, - const struct cpumask *cpus, int *balance, - struct sd_lb_stats *sds) -{ - struct sched_domain *child = sd->child; - struct sched_group *group = sd->groups; - struct sg_lb_stats sgs; - int load_idx, prefer_sibling = 0; - - if (child && child->flags & SD_PREFER_SIBLING) - prefer_sibling = 1; - - init_sd_power_savings_stats(sd, sds, idle); - load_idx = get_sd_load_idx(sd, idle); - - do { - int local_group; - - local_group = cpumask_test_cpu(this_cpu, - sched_group_cpus(group)); - memset(&sgs, 0, sizeof(sgs)); - update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, - local_group, cpus, balance, &sgs); - - if (local_group && balance && !(*balance)) - return; - - sds->total_load += sgs.group_load; - sds->total_pwr += group->cpu_power; - - /* - * In case the child domain prefers tasks go to siblings - * first, lower the group capacity to one so that we'll try - * and move all the excess tasks away. - */ - if (prefer_sibling) - sgs.group_capacity = min(sgs.group_capacity, 1UL); - - if (local_group) { - sds->this_load = sgs.avg_load; - sds->this = group; - sds->this_nr_running = sgs.sum_nr_running; - sds->this_load_per_task = sgs.sum_weighted_load; - } else if (sgs.avg_load > sds->max_load && - (sgs.sum_nr_running > sgs.group_capacity || - sgs.group_imb)) { - sds->max_load = sgs.avg_load; - sds->busiest = group; - sds->busiest_nr_running = sgs.sum_nr_running; - sds->busiest_load_per_task = sgs.sum_weighted_load; - sds->group_imb = sgs.group_imb; - } - - update_sd_power_savings_stats(group, sds, local_group, &sgs); - group = group->next; - } while (group != sd->groups); -} - -/** - * fix_small_imbalance - Calculate the minor imbalance that exists - * amongst the groups of a sched_domain, during - * load balancing. - * @sds: Statistics of the sched_domain whose imbalance is to be calculated. - * @this_cpu: The cpu at whose sched_domain we're performing load-balance. - * @imbalance: Variable to store the imbalance. - */ -static inline void fix_small_imbalance(struct sd_lb_stats *sds, - int this_cpu, unsigned long *imbalance) -{ - unsigned long tmp, pwr_now = 0, pwr_move = 0; - unsigned int imbn = 2; - - if (sds->this_nr_running) { - sds->this_load_per_task /= sds->this_nr_running; - if (sds->busiest_load_per_task > - sds->this_load_per_task) - imbn = 1; - } else - sds->this_load_per_task = - cpu_avg_load_per_task(this_cpu); - - if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= - sds->busiest_load_per_task * imbn) { - *imbalance = sds->busiest_load_per_task; - return; - } - - /* - * OK, we don't have enough imbalance to justify moving tasks, - * however we may be able to increase total CPU power used by - * moving them. - */ - - pwr_now += sds->busiest->cpu_power * - min(sds->busiest_load_per_task, sds->max_load); - pwr_now += sds->this->cpu_power * - min(sds->this_load_per_task, sds->this_load); - pwr_now /= SCHED_LOAD_SCALE; - - /* Amount of load we'd subtract */ - tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / - sds->busiest->cpu_power; - if (sds->max_load > tmp) - pwr_move += sds->busiest->cpu_power * - min(sds->busiest_load_per_task, sds->max_load - tmp); - - /* Amount of load we'd add */ - if (sds->max_load * sds->busiest->cpu_power < - sds->busiest_load_per_task * SCHED_LOAD_SCALE) - tmp = (sds->max_load * sds->busiest->cpu_power) / - sds->this->cpu_power; - else - tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / - sds->this->cpu_power; - pwr_move += sds->this->cpu_power * - min(sds->this_load_per_task, sds->this_load + tmp); - pwr_move /= SCHED_LOAD_SCALE; - - /* Move if we gain throughput */ - if (pwr_move > pwr_now) - *imbalance = sds->busiest_load_per_task; -} - -/** - * calculate_imbalance - Calculate the amount of imbalance present within the - * groups of a given sched_domain during load balance. - * @sds: statistics of the sched_domain whose imbalance is to be calculated. - * @this_cpu: Cpu for which currently load balance is being performed. - * @imbalance: The variable to store the imbalance. - */ -static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, - unsigned long *imbalance) -{ - unsigned long max_pull; - /* - * In the presence of smp nice balancing, certain scenarios can have - * max load less than avg load(as we skip the groups at or below - * its cpu_power, while calculating max_load..) - */ - if (sds->max_load < sds->avg_load) { - *imbalance = 0; - return fix_small_imbalance(sds, this_cpu, imbalance); - } - - /* Don't want to pull so many tasks that a group would go idle */ - max_pull = min(sds->max_load - sds->avg_load, - sds->max_load - sds->busiest_load_per_task); - - /* How much load to actually move to equalise the imbalance */ - *imbalance = min(max_pull * sds->busiest->cpu_power, - (sds->avg_load - sds->this_load) * sds->this->cpu_power) - / SCHED_LOAD_SCALE; - - /* - * if *imbalance is less than the average load per runnable task - * there is no gaurantee that any tasks will be moved so we'll have - * a think about bumping its value to force at least one task to be - * moved - */ - if (*imbalance < sds->busiest_load_per_task) - return fix_small_imbalance(sds, this_cpu, imbalance); - -} -/******* find_busiest_group() helpers end here *********************/ - -/** - * find_busiest_group - Returns the busiest group within the sched_domain - * if there is an imbalance. If there isn't an imbalance, and - * the user has opted for power-savings, it returns a group whose - * CPUs can be put to idle by rebalancing those tasks elsewhere, if - * such a group exists. - * - * Also calculates the amount of weighted load which should be moved - * to restore balance. - * - * @sd: The sched_domain whose busiest group is to be returned. - * @this_cpu: The cpu for which load balancing is currently being performed. - * @imbalance: Variable which stores amount of weighted load which should - * be moved to restore balance/put a group to idle. - * @idle: The idle status of this_cpu. - * @sd_idle: The idleness of sd - * @cpus: The set of CPUs under consideration for load-balancing. - * @balance: Pointer to a variable indicating if this_cpu - * is the appropriate cpu to perform load balancing at this_level. - * - * Returns: - the busiest group if imbalance exists. - * - If no imbalance and user has opted for power-savings balance, - * return the least loaded group whose CPUs can be - * put to idle by rebalancing its tasks onto our group. - */ -static struct sched_group * -find_busiest_group(struct sched_domain *sd, int this_cpu, - unsigned long *imbalance, enum cpu_idle_type idle, - int *sd_idle, const struct cpumask *cpus, int *balance) -{ - struct sd_lb_stats sds; - - memset(&sds, 0, sizeof(sds)); - - /* - * Compute the various statistics relavent for load balancing at - * this level. - */ - update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, - balance, &sds); - - /* Cases where imbalance does not exist from POV of this_cpu */ - /* 1) this_cpu is not the appropriate cpu to perform load balancing - * at this level. - * 2) There is no busy sibling group to pull from. - * 3) This group is the busiest group. - * 4) This group is more busy than the avg busieness at this - * sched_domain. - * 5) The imbalance is within the specified limit. - * 6) Any rebalance would lead to ping-pong - */ - if (balance && !(*balance)) - goto ret; - - if (!sds.busiest || sds.busiest_nr_running == 0) - goto out_balanced; - - if (sds.this_load >= sds.max_load) - goto out_balanced; - - sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; - - if (sds.this_load >= sds.avg_load) - goto out_balanced; - - if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) - goto out_balanced; - - sds.busiest_load_per_task /= sds.busiest_nr_running; - if (sds.group_imb) - sds.busiest_load_per_task = - min(sds.busiest_load_per_task, sds.avg_load); - - /* - * We're trying to get all the cpus to the average_load, so we don't - * want to push ourselves above the average load, nor do we wish to - * reduce the max loaded cpu below the average load, as either of these - * actions would just result in more rebalancing later, and ping-pong - * tasks around. Thus we look for the minimum possible imbalance. - * Negative imbalances (*we* are more loaded than anyone else) will - * be counted as no imbalance for these purposes -- we can't fix that - * by pulling tasks to us. Be careful of negative numbers as they'll - * appear as very large values with unsigned longs. - */ - if (sds.max_load <= sds.busiest_load_per_task) - goto out_balanced; - - /* Looks like there is an imbalance. Compute it */ - calculate_imbalance(&sds, this_cpu, imbalance); - return sds.busiest; - -out_balanced: - /* - * There is no obvious imbalance. But check if we can do some balancing - * to save power. - */ - if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) - return sds.busiest; -ret: - *imbalance = 0; - return NULL; -} - -/* - * find_busiest_queue - find the busiest runqueue among the cpus in group. - */ -static struct rq * -find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, - unsigned long imbalance, const struct cpumask *cpus) -{ - struct rq *busiest = NULL, *rq; - unsigned long max_load = 0; - int i; - - for_each_cpu(i, sched_group_cpus(group)) { - unsigned long power = power_of(i); - unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); - unsigned long wl; - - if (!cpumask_test_cpu(i, cpus)) - continue; - - rq = cpu_rq(i); - wl = weighted_cpuload(i); - - /* - * When comparing with imbalance, use weighted_cpuload() - * which is not scaled with the cpu power. - */ - if (capacity && rq->nr_running == 1 && wl > imbalance) - continue; - - /* - * For the load comparisons with the other cpu's, consider - * the weighted_cpuload() scaled with the cpu power, so that - * the load can be moved away from the cpu that is potentially - * running at a lower capacity. - */ - wl = (wl * SCHED_LOAD_SCALE) / power; - - if (wl > max_load) { - max_load = wl; - busiest = rq; - } - } - - return busiest; -} - -/* - * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but - * so long as it is large enough. - */ -#define MAX_PINNED_INTERVAL 512 - -/* Working cpumask for load_balance and load_balance_newidle. */ -static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); - -/* - * Check this_cpu to ensure it is balanced within domain. Attempt to move - * tasks if there is an imbalance. - */ -static int load_balance(int this_cpu, struct rq *this_rq, - struct sched_domain *sd, enum cpu_idle_type idle, - int *balance) -{ - int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; - struct sched_group *group; - unsigned long imbalance; - struct rq *busiest; - unsigned long flags; - struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); - - cpumask_copy(cpus, cpu_active_mask); - - /* - * When power savings policy is enabled for the parent domain, idle - * sibling can pick up load irrespective of busy siblings. In this case, - * let the state of idle sibling percolate up as CPU_IDLE, instead of - * portraying it as CPU_NOT_IDLE. - */ - if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - sd_idle = 1; - - schedstat_inc(sd, lb_count[idle]); - -redo: - update_shares(sd); - group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, - cpus, balance); - - if (*balance == 0) - goto out_balanced; - - if (!group) { - schedstat_inc(sd, lb_nobusyg[idle]); - goto out_balanced; - } - - busiest = find_busiest_queue(group, idle, imbalance, cpus); - if (!busiest) { - schedstat_inc(sd, lb_nobusyq[idle]); - goto out_balanced; - } - - BUG_ON(busiest == this_rq); - - schedstat_add(sd, lb_imbalance[idle], imbalance); - - ld_moved = 0; - if (busiest->nr_running > 1) { - /* - * Attempt to move tasks. If find_busiest_group has found - * an imbalance but busiest->nr_running <= 1, the group is - * still unbalanced. ld_moved simply stays zero, so it is - * correctly treated as an imbalance. - */ - local_irq_save(flags); - double_rq_lock(this_rq, busiest); - ld_moved = move_tasks(this_rq, this_cpu, busiest, - imbalance, sd, idle, &all_pinned); - double_rq_unlock(this_rq, busiest); - local_irq_restore(flags); - - /* - * some other cpu did the load balance for us. - */ - if (ld_moved && this_cpu != smp_processor_id()) - resched_cpu(this_cpu); - - /* All tasks on this runqueue were pinned by CPU affinity */ - if (unlikely(all_pinned)) { - cpumask_clear_cpu(cpu_of(busiest), cpus); - if (!cpumask_empty(cpus)) - goto redo; - goto out_balanced; - } - } - - if (!ld_moved) { - schedstat_inc(sd, lb_failed[idle]); - sd->nr_balance_failed++; - - if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { - - raw_spin_lock_irqsave(&busiest->lock, flags); - - /* don't kick the migration_thread, if the curr - * task on busiest cpu can't be moved to this_cpu - */ - if (!cpumask_test_cpu(this_cpu, - &busiest->curr->cpus_allowed)) { - raw_spin_unlock_irqrestore(&busiest->lock, - flags); - all_pinned = 1; - goto out_one_pinned; - } - - if (!busiest->active_balance) { - busiest->active_balance = 1; - busiest->push_cpu = this_cpu; - active_balance = 1; - } - raw_spin_unlock_irqrestore(&busiest->lock, flags); - if (active_balance) - wake_up_process(busiest->migration_thread); - - /* - * We've kicked active balancing, reset the failure - * counter. - */ - sd->nr_balance_failed = sd->cache_nice_tries+1; - } - } else - sd->nr_balance_failed = 0; - - if (likely(!active_balance)) { - /* We were unbalanced, so reset the balancing interval */ - sd->balance_interval = sd->min_interval; - } else { - /* - * If we've begun active balancing, start to back off. This - * case may not be covered by the all_pinned logic if there - * is only 1 task on the busy runqueue (because we don't call - * move_tasks). - */ - if (sd->balance_interval < sd->max_interval) - sd->balance_interval *= 2; - } - - if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - ld_moved = -1; - - goto out; - -out_balanced: - schedstat_inc(sd, lb_balanced[idle]); - - sd->nr_balance_failed = 0; - -out_one_pinned: - /* tune up the balancing interval */ - if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || - (sd->balance_interval < sd->max_interval)) - sd->balance_interval *= 2; - - if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - ld_moved = -1; - else - ld_moved = 0; -out: - if (ld_moved) - update_shares(sd); - return ld_moved; -} - -/* - * Check this_cpu to ensure it is balanced within domain. Attempt to move - * tasks if there is an imbalance. - * - * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). - * this_rq is locked. - */ -static int -load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) -{ - struct sched_group *group; - struct rq *busiest = NULL; - unsigned long imbalance; - int ld_moved = 0; - int sd_idle = 0; - int all_pinned = 0; - struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); - - cpumask_copy(cpus, cpu_active_mask); - - /* - * When power savings policy is enabled for the parent domain, idle - * sibling can pick up load irrespective of busy siblings. In this case, - * let the state of idle sibling percolate up as IDLE, instead of - * portraying it as CPU_NOT_IDLE. - */ - if (sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - sd_idle = 1; - - schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); -redo: - update_shares_locked(this_rq, sd); - group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, - &sd_idle, cpus, NULL); - if (!group) { - schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); - goto out_balanced; - } - - busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); - if (!busiest) { - schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); - goto out_balanced; - } - - BUG_ON(busiest == this_rq); - - schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); - - ld_moved = 0; - if (busiest->nr_running > 1) { - /* Attempt to move tasks */ - double_lock_balance(this_rq, busiest); - /* this_rq->clock is already updated */ - update_rq_clock(busiest); - ld_moved = move_tasks(this_rq, this_cpu, busiest, - imbalance, sd, CPU_NEWLY_IDLE, - &all_pinned); - double_unlock_balance(this_rq, busiest); - - if (unlikely(all_pinned)) { - cpumask_clear_cpu(cpu_of(busiest), cpus); - if (!cpumask_empty(cpus)) - goto redo; - } - } - - if (!ld_moved) { - int active_balance = 0; - - schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); - if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - return -1; - - if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) - return -1; - - if (sd->nr_balance_failed++ < 2) - return -1; - - /* - * The only task running in a non-idle cpu can be moved to this - * cpu in an attempt to completely freeup the other CPU - * package. The same method used to move task in load_balance() - * have been extended for load_balance_newidle() to speedup - * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) - * - * The package power saving logic comes from - * find_busiest_group(). If there are no imbalance, then - * f_b_g() will return NULL. However when sched_mc={1,2} then - * f_b_g() will select a group from which a running task may be - * pulled to this cpu in order to make the other package idle. - * If there is no opportunity to make a package idle and if - * there are no imbalance, then f_b_g() will return NULL and no - * action will be taken in load_balance_newidle(). - * - * Under normal task pull operation due to imbalance, there - * will be more than one task in the source run queue and - * move_tasks() will succeed. ld_moved will be true and this - * active balance code will not be triggered. - */ - - /* Lock busiest in correct order while this_rq is held */ - double_lock_balance(this_rq, busiest); - - /* - * don't kick the migration_thread, if the curr - * task on busiest cpu can't be moved to this_cpu - */ - if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { - double_unlock_balance(this_rq, busiest); - all_pinned = 1; - return ld_moved; - } - - if (!busiest->active_balance) { - busiest->active_balance = 1; - busiest->push_cpu = this_cpu; - active_balance = 1; - } - - double_unlock_balance(this_rq, busiest); - /* - * Should not call ttwu while holding a rq->lock - */ - raw_spin_unlock(&this_rq->lock); - if (active_balance) - wake_up_process(busiest->migration_thread); - raw_spin_lock(&this_rq->lock); - - } else - sd->nr_balance_failed = 0; - - update_shares_locked(this_rq, sd); - return ld_moved; - -out_balanced: - schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); - if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && - !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) - return -1; - sd->nr_balance_failed = 0; - - return 0; -} - -/* - * idle_balance is called by schedule() if this_cpu is about to become - * idle. Attempts to pull tasks from other CPUs. - */ -static void idle_balance(int this_cpu, struct rq *this_rq) -{ - struct sched_domain *sd; - int pulled_task = 0; - unsigned long next_balance = jiffies + HZ; - - this_rq->idle_stamp = this_rq->clock; - - if (this_rq->avg_idle < sysctl_sched_migration_cost) - return; - - for_each_domain(this_cpu, sd) { - unsigned long interval; - - if (!(sd->flags & SD_LOAD_BALANCE)) - continue; - - if (sd->flags & SD_BALANCE_NEWIDLE) - /* If we've pulled tasks over stop searching: */ - pulled_task = load_balance_newidle(this_cpu, this_rq, - sd); - - interval = msecs_to_jiffies(sd->balance_interval); - if (time_after(next_balance, sd->last_balance + interval)) - next_balance = sd->last_balance + interval; - if (pulled_task) { - this_rq->idle_stamp = 0; - break; - } - } - if (pulled_task || time_after(jiffies, this_rq->next_balance)) { - /* - * We are going idle. next_balance may be set based on - * a busy processor. So reset next_balance. - */ - this_rq->next_balance = next_balance; - } -} - -/* - * active_load_balance is run by migration threads. It pushes running tasks - * off the busiest CPU onto idle CPUs. It requires at least 1 task to be - * running on each physical CPU where possible, and avoids physical / - * logical imbalances. - * - * Called with busiest_rq locked. - */ -static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) -{ - int target_cpu = busiest_rq->push_cpu; - struct sched_domain *sd; - struct rq *target_rq; - - /* Is there any task to move? */ - if (busiest_rq->nr_running <= 1) - return; - - target_rq = cpu_rq(target_cpu); - - /* - * This condition is "impossible", if it occurs - * we need to fix it. Originally reported by - * Bjorn Helgaas on a 128-cpu setup. - */ - BUG_ON(busiest_rq == target_rq); - - /* move a task from busiest_rq to target_rq */ - double_lock_balance(busiest_rq, target_rq); - update_rq_clock(busiest_rq); - update_rq_clock(target_rq); - - /* Search for an sd spanning us and the target CPU. */ - for_each_domain(target_cpu, sd) { - if ((sd->flags & SD_LOAD_BALANCE) && - cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) - break; - } - - if (likely(sd)) { - schedstat_inc(sd, alb_count); - - if (move_one_task(target_rq, target_cpu, busiest_rq, - sd, CPU_IDLE)) - schedstat_inc(sd, alb_pushed); - else - schedstat_inc(sd, alb_failed); - } - double_unlock_balance(busiest_rq, target_rq); -} - -#ifdef CONFIG_NO_HZ -static struct { - atomic_t load_balancer; - cpumask_var_t cpu_mask; - cpumask_var_t ilb_grp_nohz_mask; -} nohz ____cacheline_aligned = { - .load_balancer = ATOMIC_INIT(-1), -}; - -int get_nohz_load_balancer(void) -{ - return atomic_read(&nohz.load_balancer); -} - -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) -/** - * lowest_flag_domain - Return lowest sched_domain containing flag. - * @cpu: The cpu whose lowest level of sched domain is to - * be returned. - * @flag: The flag to check for the lowest sched_domain - * for the given cpu. - * - * Returns the lowest sched_domain of a cpu which contains the given flag. - */ -static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) -{ - struct sched_domain *sd; - - for_each_domain(cpu, sd) - if (sd && (sd->flags & flag)) - break; - - return sd; -} - -/** - * for_each_flag_domain - Iterates over sched_domains containing the flag. - * @cpu: The cpu whose domains we're iterating over. - * @sd: variable holding the value of the power_savings_sd - * for cpu. - * @flag: The flag to filter the sched_domains to be iterated. - * - * Iterates over all the scheduler domains for a given cpu that has the 'flag' - * set, starting from the lowest sched_domain to the highest. - */ -#define for_each_flag_domain(cpu, sd, flag) \ - for (sd = lowest_flag_domain(cpu, flag); \ - (sd && (sd->flags & flag)); sd = sd->parent) - -/** - * is_semi_idle_group - Checks if the given sched_group is semi-idle. - * @ilb_group: group to be checked for semi-idleness - * - * Returns: 1 if the group is semi-idle. 0 otherwise. - * - * We define a sched_group to be semi idle if it has atleast one idle-CPU - * and atleast one non-idle CPU. This helper function checks if the given - * sched_group is semi-idle or not. - */ -static inline int is_semi_idle_group(struct sched_group *ilb_group) -{ - cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, - sched_group_cpus(ilb_group)); - - /* - * A sched_group is semi-idle when it has atleast one busy cpu - * and atleast one idle cpu. - */ - if (cpumask_empty(nohz.ilb_grp_nohz_mask)) - return 0; - - if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) - return 0; - - return 1; -} -/** - * find_new_ilb - Finds the optimum idle load balancer for nomination. - * @cpu: The cpu which is nominating a new idle_load_balancer. - * - * Returns: Returns the id of the idle load balancer if it exists, - * Else, returns >= nr_cpu_ids. - * - * This algorithm picks the idle load balancer such that it belongs to a - * semi-idle powersavings sched_domain. The idea is to try and avoid - * completely idle packages/cores just for the purpose of idle load balancing - * when there are other idle cpu's which are better suited for that job. - */ -static int find_new_ilb(int cpu) -{ - struct sched_domain *sd; - struct sched_group *ilb_group; - - /* - * Have idle load balancer selection from semi-idle packages only - * when power-aware load balancing is enabled - */ - if (!(sched_smt_power_savings || sched_mc_power_savings)) - goto out_done; - - /* - * Optimize for the case when we have no idle CPUs or only one - * idle CPU. Don't walk the sched_domain hierarchy in such cases - */ - if (cpumask_weight(nohz.cpu_mask) < 2) - goto out_done; - - for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { - ilb_group = sd->groups; - - do { - if (is_semi_idle_group(ilb_group)) - return cpumask_first(nohz.ilb_grp_nohz_mask); - - ilb_group = ilb_group->next; - - } while (ilb_group != sd->groups); - } - -out_done: - return cpumask_first(nohz.cpu_mask); -} -#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ -static inline int find_new_ilb(int call_cpu) -{ - return cpumask_first(nohz.cpu_mask); -} -#endif - -/* - * This routine will try to nominate the ilb (idle load balancing) - * owner among the cpus whose ticks are stopped. ilb owner will do the idle - * load balancing on behalf of all those cpus. If all the cpus in the system - * go into this tickless mode, then there will be no ilb owner (as there is - * no need for one) and all the cpus will sleep till the next wakeup event - * arrives... - * - * For the ilb owner, tick is not stopped. And this tick will be used - * for idle load balancing. ilb owner will still be part of - * nohz.cpu_mask.. - * - * While stopping the tick, this cpu will become the ilb owner if there - * is no other owner. And will be the owner till that cpu becomes busy - * or if all cpus in the system stop their ticks at which point - * there is no need for ilb owner. - * - * When the ilb owner becomes busy, it nominates another owner, during the - * next busy scheduler_tick() - */ -int select_nohz_load_balancer(int stop_tick) -{ - int cpu = smp_processor_id(); - - if (stop_tick) { - cpu_rq(cpu)->in_nohz_recently = 1; - - if (!cpu_active(cpu)) { - if (atomic_read(&nohz.load_balancer) != cpu) - return 0; - - /* - * If we are going offline and still the leader, - * give up! - */ - if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) - BUG(); - - return 0; - } - - cpumask_set_cpu(cpu, nohz.cpu_mask); - - /* time for ilb owner also to sleep */ - if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) { - if (atomic_read(&nohz.load_balancer) == cpu) - atomic_set(&nohz.load_balancer, -1); - return 0; - } - - if (atomic_read(&nohz.load_balancer) == -1) { - /* make me the ilb owner */ - if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) - return 1; - } else if (atomic_read(&nohz.load_balancer) == cpu) { - int new_ilb; - - if (!(sched_smt_power_savings || - sched_mc_power_savings)) - return 1; - /* - * Check to see if there is a more power-efficient - * ilb. - */ - new_ilb = find_new_ilb(cpu); - if (new_ilb < nr_cpu_ids && new_ilb != cpu) { - atomic_set(&nohz.load_balancer, -1); - resched_cpu(new_ilb); - return 0; - } - return 1; - } - } else { - if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) - return 0; - - cpumask_clear_cpu(cpu, nohz.cpu_mask); - - if (atomic_read(&nohz.load_balancer) == cpu) - if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) - BUG(); - } - return 0; -} -#endif - -static DEFINE_SPINLOCK(balancing); - -/* - * It checks each scheduling domain to see if it is due to be balanced, - * and initiates a balancing operation if so. - * - * Balancing parameters are set up in arch_init_sched_domains. - */ -static void rebalance_domains(int cpu, enum cpu_idle_type idle) -{ - int balance = 1; - struct rq *rq = cpu_rq(cpu); - unsigned long interval; - struct sched_domain *sd; - /* Earliest time when we have to do rebalance again */ - unsigned long next_balance = jiffies + 60*HZ; - int update_next_balance = 0; - int need_serialize; - - for_each_domain(cpu, sd) { - if (!(sd->flags & SD_LOAD_BALANCE)) - continue; - - interval = sd->balance_interval; - if (idle != CPU_IDLE) - interval *= sd->busy_factor; - - /* scale ms to jiffies */ - interval = msecs_to_jiffies(interval); - if (unlikely(!interval)) - interval = 1; - if (interval > HZ*NR_CPUS/10) - interval = HZ*NR_CPUS/10; - - need_serialize = sd->flags & SD_SERIALIZE; - - if (need_serialize) { - if (!spin_trylock(&balancing)) - goto out; - } - - if (time_after_eq(jiffies, sd->last_balance + interval)) { - if (load_balance(cpu, rq, sd, idle, &balance)) { - /* - * We've pulled tasks over so either we're no - * longer idle, or one of our SMT siblings is - * not idle. - */ - idle = CPU_NOT_IDLE; - } - sd->last_balance = jiffies; - } - if (need_serialize) - spin_unlock(&balancing); -out: - if (time_after(next_balance, sd->last_balance + interval)) { - next_balance = sd->last_balance + interval; - update_next_balance = 1; - } - - /* - * Stop the load balance at this level. There is another - * CPU in our sched group which is doing load balancing more - * actively. - */ - if (!balance) - break; - } - - /* - * next_balance will be updated only when there is a need. - * When the cpu is attached to null domain for ex, it will not be - * updated. - */ - if (likely(update_next_balance)) - rq->next_balance = next_balance; -} - -/* - * run_rebalance_domains is triggered when needed from the scheduler tick. - * In CONFIG_NO_HZ case, the idle load balance owner will do the - * rebalancing for all the cpus for whom scheduler ticks are stopped. - */ -static void run_rebalance_domains(struct softirq_action *h) -{ - int this_cpu = smp_processor_id(); - struct rq *this_rq = cpu_rq(this_cpu); - enum cpu_idle_type idle = this_rq->idle_at_tick ? - CPU_IDLE : CPU_NOT_IDLE; - - rebalance_domains(this_cpu, idle); - -#ifdef CONFIG_NO_HZ - /* - * If this cpu is the owner for idle load balancing, then do the - * balancing on behalf of the other idle cpus whose ticks are - * stopped. - */ - if (this_rq->idle_at_tick && - atomic_read(&nohz.load_balancer) == this_cpu) { - struct rq *rq; - int balance_cpu; - - for_each_cpu(balance_cpu, nohz.cpu_mask) { - if (balance_cpu == this_cpu) - continue; - - /* - * If this cpu gets work to do, stop the load balancing - * work being done for other cpus. Next load - * balancing owner will pick it up. - */ - if (need_resched()) - break; - - rebalance_domains(balance_cpu, CPU_IDLE); - - rq = cpu_rq(balance_cpu); - if (time_after(this_rq->next_balance, rq->next_balance)) - this_rq->next_balance = rq->next_balance; - } - } -#endif -} - -static inline int on_null_domain(int cpu) -{ - return !rcu_dereference_sched(cpu_rq(cpu)->sd); -} - -/* - * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. - * - * In case of CONFIG_NO_HZ, this is the place where we nominate a new - * idle load balancing owner or decide to stop the periodic load balancing, - * if the whole system is idle. - */ -static inline void trigger_load_balance(struct rq *rq, int cpu) -{ -#ifdef CONFIG_NO_HZ - /* - * If we were in the nohz mode recently and busy at the current - * scheduler tick, then check if we need to nominate new idle - * load balancer. - */ - if (rq->in_nohz_recently && !rq->idle_at_tick) { - rq->in_nohz_recently = 0; - - if (atomic_read(&nohz.load_balancer) == cpu) { - cpumask_clear_cpu(cpu, nohz.cpu_mask); - atomic_set(&nohz.load_balancer, -1); - } - - if (atomic_read(&nohz.load_balancer) == -1) { - int ilb = find_new_ilb(cpu); - - if (ilb < nr_cpu_ids) - resched_cpu(ilb); - } - } - - /* - * If this cpu is idle and doing idle load balancing for all the - * cpus with ticks stopped, is it time for that to stop? - */ - if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && - cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { - resched_cpu(cpu); - return; - } - - /* - * If this cpu is idle and the idle load balancing is done by - * someone else, then no need raise the SCHED_SOFTIRQ - */ - if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && - cpumask_test_cpu(cpu, nohz.cpu_mask)) - return; -#endif - /* Don't need to rebalance while attached to NULL domain */ - if (time_after_eq(jiffies, rq->next_balance) && - likely(!on_null_domain(cpu))) - raise_softirq(SCHED_SOFTIRQ); -} - -#else /* CONFIG_SMP */ - -/* - * on UP we do not need to balance between CPUs: - */ -static inline void idle_balance(int cpu, struct rq *rq) -{ -} - #endif DEFINE_PER_CPU(struct kernel_stat, kstat); @@ -6114,7 +4260,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) unsigned long flags; int oldprio, on_rq, running; struct rq *rq; - const struct sched_class *prev_class = p->sched_class; + const struct sched_class *prev_class; BUG_ON(prio < 0 || prio > MAX_PRIO); @@ -6122,6 +4268,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) update_rq_clock(rq); oldprio = p->prio; + prev_class = p->sched_class; on_rq = p->se.on_rq; running = task_current(rq, p); if (on_rq) @@ -6139,7 +4286,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) if (running) p->sched_class->set_curr_task(rq); if (on_rq) { - enqueue_task(rq, p, 0); + enqueue_task(rq, p, 0, oldprio < prio); check_class_changed(rq, p, prev_class, oldprio, running); } @@ -6183,7 +4330,7 @@ void set_user_nice(struct task_struct *p, long nice) delta = p->prio - old_prio; if (on_rq) { - enqueue_task(rq, p, 0); + enqueue_task(rq, p, 0, false); /* * If the task increased its priority or is running and * lowered its priority, then reschedule its CPU: @@ -6341,7 +4488,7 @@ static int __sched_setscheduler(struct task_struct *p, int policy, { int retval, oldprio, oldpolicy = -1, on_rq, running; unsigned long flags; - const struct sched_class *prev_class = p->sched_class; + const struct sched_class *prev_class; struct rq *rq; int reset_on_fork; @@ -6455,6 +4602,7 @@ recheck: p->sched_reset_on_fork = reset_on_fork; oldprio = p->prio; + prev_class = p->sched_class; __setscheduler(rq, p, policy, param->sched_priority); if (running) @@ -9493,7 +7641,6 @@ static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, tg->rt_rq[cpu] = rt_rq; init_rt_rq(rt_rq, rq); rt_rq->tg = tg; - rt_rq->rt_se = rt_se; rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; if (add) list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); @@ -9524,9 +7671,6 @@ void __init sched_init(void) #ifdef CONFIG_RT_GROUP_SCHED alloc_size += 2 * nr_cpu_ids * sizeof(void **); #endif -#ifdef CONFIG_USER_SCHED - alloc_size *= 2; -#endif #ifdef CONFIG_CPUMASK_OFFSTACK alloc_size += num_possible_cpus() * cpumask_size(); #endif @@ -9540,13 +7684,6 @@ void __init sched_init(void) init_task_group.cfs_rq = (struct cfs_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); -#ifdef CONFIG_USER_SCHED - root_task_group.se = (struct sched_entity **)ptr; - ptr += nr_cpu_ids * sizeof(void **); - - root_task_group.cfs_rq = (struct cfs_rq **)ptr; - ptr += nr_cpu_ids * sizeof(void **); -#endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED init_task_group.rt_se = (struct sched_rt_entity **)ptr; @@ -9555,13 +7692,6 @@ void __init sched_init(void) init_task_group.rt_rq = (struct rt_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); -#ifdef CONFIG_USER_SCHED - root_task_group.rt_se = (struct sched_rt_entity **)ptr; - ptr += nr_cpu_ids * sizeof(void **); - - root_task_group.rt_rq = (struct rt_rq **)ptr; - ptr += nr_cpu_ids * sizeof(void **); -#endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_RT_GROUP_SCHED */ #ifdef CONFIG_CPUMASK_OFFSTACK for_each_possible_cpu(i) { @@ -9581,22 +7711,13 @@ void __init sched_init(void) #ifdef CONFIG_RT_GROUP_SCHED init_rt_bandwidth(&init_task_group.rt_bandwidth, global_rt_period(), global_rt_runtime()); -#ifdef CONFIG_USER_SCHED - init_rt_bandwidth(&root_task_group.rt_bandwidth, - global_rt_period(), RUNTIME_INF); -#endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_RT_GROUP_SCHED */ -#ifdef CONFIG_GROUP_SCHED +#ifdef CONFIG_CGROUP_SCHED list_add(&init_task_group.list, &task_groups); INIT_LIST_HEAD(&init_task_group.children); -#ifdef CONFIG_USER_SCHED - INIT_LIST_HEAD(&root_task_group.children); - init_task_group.parent = &root_task_group; - list_add(&init_task_group.siblings, &root_task_group.children); -#endif /* CONFIG_USER_SCHED */ -#endif /* CONFIG_GROUP_SCHED */ +#endif /* CONFIG_CGROUP_SCHED */ #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), @@ -9636,25 +7757,6 @@ void __init sched_init(void) * directly in rq->cfs (i.e init_task_group->se[] = NULL). */ init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); -#elif defined CONFIG_USER_SCHED - root_task_group.shares = NICE_0_LOAD; - init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); - /* - * In case of task-groups formed thr' the user id of tasks, - * init_task_group represents tasks belonging to root user. - * Hence it forms a sibling of all subsequent groups formed. - * In this case, init_task_group gets only a fraction of overall - * system cpu resource, based on the weight assigned to root - * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished - * by letting tasks of init_task_group sit in a separate cfs_rq - * (init_tg_cfs_rq) and having one entity represent this group of - * tasks in rq->cfs (i.e init_task_group->se[] != NULL). - */ - init_tg_cfs_entry(&init_task_group, - &per_cpu(init_tg_cfs_rq, i), - &per_cpu(init_sched_entity, i), i, 1, - root_task_group.se[i]); - #endif #endif /* CONFIG_FAIR_GROUP_SCHED */ @@ -9663,12 +7765,6 @@ void __init sched_init(void) INIT_LIST_HEAD(&rq->leaf_rt_rq_list); #ifdef CONFIG_CGROUP_SCHED init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); -#elif defined CONFIG_USER_SCHED - init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); - init_tg_rt_entry(&init_task_group, - &per_cpu(init_rt_rq_var, i), - &per_cpu(init_sched_rt_entity, i), i, 1, - root_task_group.rt_se[i]); #endif #endif @@ -9753,7 +7849,7 @@ static inline int preempt_count_equals(int preempt_offset) return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); } -void __might_sleep(char *file, int line, int preempt_offset) +void __might_sleep(const char *file, int line, int preempt_offset) { #ifdef in_atomic static unsigned long prev_jiffy; /* ratelimiting */ @@ -10064,7 +8160,7 @@ static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) } #endif /* CONFIG_RT_GROUP_SCHED */ -#ifdef CONFIG_GROUP_SCHED +#ifdef CONFIG_CGROUP_SCHED static void free_sched_group(struct task_group *tg) { free_fair_sched_group(tg); @@ -10169,11 +8265,11 @@ void sched_move_task(struct task_struct *tsk) if (unlikely(running)) tsk->sched_class->set_curr_task(rq); if (on_rq) - enqueue_task(rq, tsk, 0); + enqueue_task(rq, tsk, 0, false); task_rq_unlock(rq, &flags); } -#endif /* CONFIG_GROUP_SCHED */ +#endif /* CONFIG_CGROUP_SCHED */ #ifdef CONFIG_FAIR_GROUP_SCHED static void __set_se_shares(struct sched_entity *se, unsigned long shares) @@ -10315,13 +8411,6 @@ static int tg_schedulable(struct task_group *tg, void *data) runtime = d->rt_runtime; } -#ifdef CONFIG_USER_SCHED - if (tg == &root_task_group) { - period = global_rt_period(); - runtime = global_rt_runtime(); - } -#endif - /* * Cannot have more runtime than the period. */ @@ -10941,12 +9030,30 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) } /* + * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large + * in cputime_t units. As a result, cpuacct_update_stats calls + * percpu_counter_add with values large enough to always overflow the + * per cpu batch limit causing bad SMP scalability. + * + * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we + * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled + * and enabled. We cap it at INT_MAX which is the largest allowed batch value. + */ +#ifdef CONFIG_SMP +#define CPUACCT_BATCH \ + min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX) +#else +#define CPUACCT_BATCH 0 +#endif + +/* * Charge the system/user time to the task's accounting group. */ static void cpuacct_update_stats(struct task_struct *tsk, enum cpuacct_stat_index idx, cputime_t val) { struct cpuacct *ca; + int batch = CPUACCT_BATCH; if (unlikely(!cpuacct_subsys.active)) return; @@ -10955,7 +9062,7 @@ static void cpuacct_update_stats(struct task_struct *tsk, ca = task_ca(tsk); do { - percpu_counter_add(&ca->cpustat[idx], val); + __percpu_counter_add(&ca->cpustat[idx], val, batch); ca = ca->parent; } while (ca); rcu_read_unlock(); |