summaryrefslogtreecommitdiffstats
path: root/kernel/sched/fair.c
diff options
context:
space:
mode:
authorQuentin Perret <quentin.perret@arm.com>2018-06-12 13:22:15 +0200
committerIngo Molnar <mingo@kernel.org>2018-07-15 23:51:20 +0200
commit8fe5c5a937d0f4e84221631833a2718afde52285 (patch)
tree7818437ed9da8d96da706697214b3e8177b75b72 /kernel/sched/fair.c
parentwatchdog/softlockup: Fix cpu_stop_queue_work() double-queue bug (diff)
downloadlinux-8fe5c5a937d0f4e84221631833a2718afde52285.tar.xz
linux-8fe5c5a937d0f4e84221631833a2718afde52285.zip
sched/fair: Fix util_avg of new tasks for asymmetric systems
When a new task wakes-up for the first time, its initial utilization is set to half of the spare capacity of its CPU. The current implementation of post_init_entity_util_avg() uses SCHED_CAPACITY_SCALE directly as a capacity reference. As a result, on a big.LITTLE system, a new task waking up on an idle little CPU will be given ~512 of util_avg, even if the CPU's capacity is significantly less than that. Fix this by computing the spare capacity with arch_scale_cpu_capacity(). Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Link: http://lkml.kernel.org/r/20180612112215.25448-1-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to '')
-rw-r--r--kernel/sched/fair.c10
1 files changed, 6 insertions, 4 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 321cd5dcf2e8..08b89ae34233 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -735,11 +735,12 @@ static void attach_entity_cfs_rq(struct sched_entity *se);
* To solve this problem, we also cap the util_avg of successive tasks to
* only 1/2 of the left utilization budget:
*
- * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
+ * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
*
- * where n denotes the nth task.
+ * where n denotes the nth task and cpu_scale the CPU capacity.
*
- * For example, a simplest series from the beginning would be like:
+ * For example, for a CPU with 1024 of capacity, a simplest series from
+ * the beginning would be like:
*
* task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
* cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
@@ -751,7 +752,8 @@ void post_init_entity_util_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
struct sched_avg *sa = &se->avg;
- long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
+ long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
+ long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
if (cap > 0) {
if (cfs_rq->avg.util_avg != 0) {