diff options
author | Johannes Weiner <hannes@cmpxchg.org> | 2018-10-27 00:06:16 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-10-27 01:26:32 +0200 |
commit | 5c54f5b9edb1aa2eabbb1091c458f1b6776a1896 (patch) | |
tree | 6111e4956d1aad00ae8cb8ba966aa87f41c79d55 /kernel/sched/loadavg.c | |
parent | sched: loadavg: consolidate LOAD_INT, LOAD_FRAC, CALC_LOAD (diff) | |
download | linux-5c54f5b9edb1aa2eabbb1091c458f1b6776a1896.tar.xz linux-5c54f5b9edb1aa2eabbb1091c458f1b6776a1896.zip |
sched: loadavg: make calc_load_n() public
It's going to be used in a later patch. Keep the churn separate.
Link: http://lkml.kernel.org/r/20180828172258.3185-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'kernel/sched/loadavg.c')
-rw-r--r-- | kernel/sched/loadavg.c | 138 |
1 files changed, 69 insertions, 69 deletions
diff --git a/kernel/sched/loadavg.c b/kernel/sched/loadavg.c index 54fbdfb2d86c..28a516575c18 100644 --- a/kernel/sched/loadavg.c +++ b/kernel/sched/loadavg.c @@ -91,6 +91,75 @@ long calc_load_fold_active(struct rq *this_rq, long adjust) return delta; } +/** + * fixed_power_int - compute: x^n, in O(log n) time + * + * @x: base of the power + * @frac_bits: fractional bits of @x + * @n: power to raise @x to. + * + * By exploiting the relation between the definition of the natural power + * function: x^n := x*x*...*x (x multiplied by itself for n times), and + * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, + * (where: n_i \elem {0, 1}, the binary vector representing n), + * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is + * of course trivially computable in O(log_2 n), the length of our binary + * vector. + */ +static unsigned long +fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) +{ + unsigned long result = 1UL << frac_bits; + + if (n) { + for (;;) { + if (n & 1) { + result *= x; + result += 1UL << (frac_bits - 1); + result >>= frac_bits; + } + n >>= 1; + if (!n) + break; + x *= x; + x += 1UL << (frac_bits - 1); + x >>= frac_bits; + } + } + + return result; +} + +/* + * a1 = a0 * e + a * (1 - e) + * + * a2 = a1 * e + a * (1 - e) + * = (a0 * e + a * (1 - e)) * e + a * (1 - e) + * = a0 * e^2 + a * (1 - e) * (1 + e) + * + * a3 = a2 * e + a * (1 - e) + * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) + * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) + * + * ... + * + * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] + * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) + * = a0 * e^n + a * (1 - e^n) + * + * [1] application of the geometric series: + * + * n 1 - x^(n+1) + * S_n := \Sum x^i = ------------- + * i=0 1 - x + */ +unsigned long +calc_load_n(unsigned long load, unsigned long exp, + unsigned long active, unsigned int n) +{ + return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); +} + #ifdef CONFIG_NO_HZ_COMMON /* * Handle NO_HZ for the global load-average. @@ -210,75 +279,6 @@ static long calc_load_nohz_fold(void) return delta; } -/** - * fixed_power_int - compute: x^n, in O(log n) time - * - * @x: base of the power - * @frac_bits: fractional bits of @x - * @n: power to raise @x to. - * - * By exploiting the relation between the definition of the natural power - * function: x^n := x*x*...*x (x multiplied by itself for n times), and - * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, - * (where: n_i \elem {0, 1}, the binary vector representing n), - * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is - * of course trivially computable in O(log_2 n), the length of our binary - * vector. - */ -static unsigned long -fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) -{ - unsigned long result = 1UL << frac_bits; - - if (n) { - for (;;) { - if (n & 1) { - result *= x; - result += 1UL << (frac_bits - 1); - result >>= frac_bits; - } - n >>= 1; - if (!n) - break; - x *= x; - x += 1UL << (frac_bits - 1); - x >>= frac_bits; - } - } - - return result; -} - -/* - * a1 = a0 * e + a * (1 - e) - * - * a2 = a1 * e + a * (1 - e) - * = (a0 * e + a * (1 - e)) * e + a * (1 - e) - * = a0 * e^2 + a * (1 - e) * (1 + e) - * - * a3 = a2 * e + a * (1 - e) - * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) - * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) - * - * ... - * - * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] - * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) - * = a0 * e^n + a * (1 - e^n) - * - * [1] application of the geometric series: - * - * n 1 - x^(n+1) - * S_n := \Sum x^i = ------------- - * i=0 1 - x - */ -static unsigned long -calc_load_n(unsigned long load, unsigned long exp, - unsigned long active, unsigned int n) -{ - return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); -} - /* * NO_HZ can leave us missing all per-CPU ticks calling * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into |