diff options
author | Patrick Bellasi <patrick.bellasi@arm.com> | 2019-06-21 10:42:02 +0200 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2019-06-24 19:23:44 +0200 |
commit | 69842cba9ace84849bb9b8edcdf2cefccd97901c (patch) | |
tree | 7d56d19500dc261558b8f4550119fc8950fac904 /kernel/sched/sched.h | |
parent | sched/fair: Rename weighted_cpuload() to cpu_runnable_load() (diff) | |
download | linux-69842cba9ace84849bb9b8edcdf2cefccd97901c.tar.xz linux-69842cba9ace84849bb9b8edcdf2cefccd97901c.zip |
sched/uclamp: Add CPU's clamp buckets refcounting
Utilization clamping allows to clamp the CPU's utilization within a
[util_min, util_max] range, depending on the set of RUNNABLE tasks on
that CPU. Each task references two "clamp buckets" defining its minimum
and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp
bucket is active if there is at least one RUNNABLE tasks enqueued on
that CPU and refcounting that bucket.
When a task is {en,de}queued {on,from} a rq, the set of active clamp
buckets on that CPU can change. If the set of active clamp buckets
changes for a CPU a new "aggregated" clamp value is computed for that
CPU. This is because each clamp bucket enforces a different utilization
clamp value.
Clamp values are always MAX aggregated for both util_min and util_max.
This ensures that no task can affect the performance of other
co-scheduled tasks which are more boosted (i.e. with higher util_min
clamp) or less capped (i.e. with higher util_max clamp).
A task has:
task_struct::uclamp[clamp_id]::bucket_id
to track the "bucket index" of the CPU's clamp bucket it refcounts while
enqueued, for each clamp index (clamp_id).
A runqueue has:
rq::uclamp[clamp_id]::bucket[bucket_id].tasks
to track how many RUNNABLE tasks on that CPU refcount each
clamp bucket (bucket_id) of a clamp index (clamp_id).
It also has a:
rq::uclamp[clamp_id]::bucket[bucket_id].value
to track the clamp value of each clamp bucket (bucket_id) of a clamp
index (clamp_id).
The rq::uclamp::bucket[clamp_id][] array is scanned every time it's
needed to find a new MAX aggregated clamp value for a clamp_id. This
operation is required only when it's dequeued the last task of a clamp
bucket tracking the current MAX aggregated clamp value. In this case,
the CPU is either entering IDLE or going to schedule a less boosted or
more clamped task.
The expected number of different clamp values configured at build time
is small enough to fit the full unordered array into a single cache
line, for configurations of up to 7 buckets.
Add to struct rq the basic data structures required to refcount the
number of RUNNABLE tasks for each clamp bucket. Add also the max
aggregation required to update the rq's clamp value at each
enqueue/dequeue event.
Use a simple linear mapping of clamp values into clamp buckets.
Pre-compute and cache bucket_id to avoid integer divisions at
enqueue/dequeue time.
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alessio Balsini <balsini@android.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Perret <quentin.perret@arm.com>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Steve Muckle <smuckle@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Todd Kjos <tkjos@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/sched/sched.h')
-rw-r--r-- | kernel/sched/sched.h | 51 |
1 files changed, 51 insertions, 0 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index e58ab597ec88..cecc6baaba93 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -791,6 +791,48 @@ extern void rto_push_irq_work_func(struct irq_work *work); #endif #endif /* CONFIG_SMP */ +#ifdef CONFIG_UCLAMP_TASK +/* + * struct uclamp_bucket - Utilization clamp bucket + * @value: utilization clamp value for tasks on this clamp bucket + * @tasks: number of RUNNABLE tasks on this clamp bucket + * + * Keep track of how many tasks are RUNNABLE for a given utilization + * clamp value. + */ +struct uclamp_bucket { + unsigned long value : bits_per(SCHED_CAPACITY_SCALE); + unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); +}; + +/* + * struct uclamp_rq - rq's utilization clamp + * @value: currently active clamp values for a rq + * @bucket: utilization clamp buckets affecting a rq + * + * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. + * A clamp value is affecting a rq when there is at least one task RUNNABLE + * (or actually running) with that value. + * + * There are up to UCLAMP_CNT possible different clamp values, currently there + * are only two: minimum utilization and maximum utilization. + * + * All utilization clamping values are MAX aggregated, since: + * - for util_min: we want to run the CPU at least at the max of the minimum + * utilization required by its currently RUNNABLE tasks. + * - for util_max: we want to allow the CPU to run up to the max of the + * maximum utilization allowed by its currently RUNNABLE tasks. + * + * Since on each system we expect only a limited number of different + * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track + * the metrics required to compute all the per-rq utilization clamp values. + */ +struct uclamp_rq { + unsigned int value; + struct uclamp_bucket bucket[UCLAMP_BUCKETS]; +}; +#endif /* CONFIG_UCLAMP_TASK */ + /* * This is the main, per-CPU runqueue data structure. * @@ -825,6 +867,11 @@ struct rq { unsigned long nr_load_updates; u64 nr_switches; +#ifdef CONFIG_UCLAMP_TASK + /* Utilization clamp values based on CPU's RUNNABLE tasks */ + struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; +#endif + struct cfs_rq cfs; struct rt_rq rt; struct dl_rq dl; @@ -1639,6 +1686,10 @@ extern const u32 sched_prio_to_wmult[40]; struct sched_class { const struct sched_class *next; +#ifdef CONFIG_UCLAMP_TASK + int uclamp_enabled; +#endif + void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); void (*yield_task) (struct rq *rq); |