diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-06-23 03:57:44 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-06-23 03:57:44 +0200 |
commit | 43224b96af3154cedd7220f7b90094905f07ac78 (patch) | |
tree | 44279acc4613b314ff031620fd62641db3c85b71 /kernel/time/tick-broadcast.c | |
parent | Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kerne... (diff) | |
parent | clocksource: Increase dependencies of timer-stm32 to limit build wreckage (diff) | |
download | linux-43224b96af3154cedd7220f7b90094905f07ac78.tar.xz linux-43224b96af3154cedd7220f7b90094905f07ac78.zip |
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"A rather largish update for everything time and timer related:
- Cache footprint optimizations for both hrtimers and timer wheel
- Lower the NOHZ impact on systems which have NOHZ or timer migration
disabled at runtime.
- Optimize run time overhead of hrtimer interrupt by making the clock
offset updates smarter
- hrtimer cleanups and removal of restrictions to tackle some
problems in sched/perf
- Some more leap second tweaks
- Another round of changes addressing the 2038 problem
- First step to change the internals of clock event devices by
introducing the necessary infrastructure
- Allow constant folding for usecs/msecs_to_jiffies()
- The usual pile of clockevent/clocksource driver updates
The hrtimer changes contain updates to sched, perf and x86 as they
depend on them plus changes all over the tree to cleanup API changes
and redundant code, which got copied all over the place. The y2038
changes touch s390 to remove the last non 2038 safe code related to
boot/persistant clock"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
clocksource: Increase dependencies of timer-stm32 to limit build wreckage
timer: Minimize nohz off overhead
timer: Reduce timer migration overhead if disabled
timer: Stats: Simplify the flags handling
timer: Replace timer base by a cpu index
timer: Use hlist for the timer wheel hash buckets
timer: Remove FIFO "guarantee"
timers: Sanitize catchup_timer_jiffies() usage
hrtimer: Allow hrtimer::function() to free the timer
seqcount: Introduce raw_write_seqcount_barrier()
seqcount: Rename write_seqcount_barrier()
hrtimer: Fix hrtimer_is_queued() hole
hrtimer: Remove HRTIMER_STATE_MIGRATE
selftest: Timers: Avoid signal deadlock in leap-a-day
timekeeping: Copy the shadow-timekeeper over the real timekeeper last
clockevents: Check state instead of mode in suspend/resume path
selftests: timers: Add leap-second timer edge testing to leap-a-day.c
ntp: Do leapsecond adjustment in adjtimex read path
time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
ntp: Introduce and use SECS_PER_DAY macro instead of 86400
...
Diffstat (limited to 'kernel/time/tick-broadcast.c')
-rw-r--r-- | kernel/time/tick-broadcast.c | 97 |
1 files changed, 43 insertions, 54 deletions
diff --git a/kernel/time/tick-broadcast.c b/kernel/time/tick-broadcast.c index 7e8ca4f448a8..d39f32cdd1b5 100644 --- a/kernel/time/tick-broadcast.c +++ b/kernel/time/tick-broadcast.c @@ -255,18 +255,18 @@ int tick_receive_broadcast(void) /* * Broadcast the event to the cpus, which are set in the mask (mangled). */ -static void tick_do_broadcast(struct cpumask *mask) +static bool tick_do_broadcast(struct cpumask *mask) { int cpu = smp_processor_id(); struct tick_device *td; + bool local = false; /* * Check, if the current cpu is in the mask */ if (cpumask_test_cpu(cpu, mask)) { cpumask_clear_cpu(cpu, mask); - td = &per_cpu(tick_cpu_device, cpu); - td->evtdev->event_handler(td->evtdev); + local = true; } if (!cpumask_empty(mask)) { @@ -279,16 +279,17 @@ static void tick_do_broadcast(struct cpumask *mask) td = &per_cpu(tick_cpu_device, cpumask_first(mask)); td->evtdev->broadcast(mask); } + return local; } /* * Periodic broadcast: * - invoke the broadcast handlers */ -static void tick_do_periodic_broadcast(void) +static bool tick_do_periodic_broadcast(void) { cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); - tick_do_broadcast(tmpmask); + return tick_do_broadcast(tmpmask); } /* @@ -296,34 +297,26 @@ static void tick_do_periodic_broadcast(void) */ static void tick_handle_periodic_broadcast(struct clock_event_device *dev) { - ktime_t next; + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); + bool bc_local; raw_spin_lock(&tick_broadcast_lock); + bc_local = tick_do_periodic_broadcast(); - tick_do_periodic_broadcast(); + if (clockevent_state_oneshot(dev)) { + ktime_t next = ktime_add(dev->next_event, tick_period); - /* - * The device is in periodic mode. No reprogramming necessary: - */ - if (dev->state == CLOCK_EVT_STATE_PERIODIC) - goto unlock; + clockevents_program_event(dev, next, true); + } + raw_spin_unlock(&tick_broadcast_lock); /* - * Setup the next period for devices, which do not have - * periodic mode. We read dev->next_event first and add to it - * when the event already expired. clockevents_program_event() - * sets dev->next_event only when the event is really - * programmed to the device. + * We run the handler of the local cpu after dropping + * tick_broadcast_lock because the handler might deadlock when + * trying to switch to oneshot mode. */ - for (next = dev->next_event; ;) { - next = ktime_add(next, tick_period); - - if (!clockevents_program_event(dev, next, false)) - goto unlock; - tick_do_periodic_broadcast(); - } -unlock: - raw_spin_unlock(&tick_broadcast_lock); + if (bc_local) + td->evtdev->event_handler(td->evtdev); } /** @@ -532,23 +525,19 @@ static void tick_broadcast_set_affinity(struct clock_event_device *bc, irq_set_affinity(bc->irq, bc->cpumask); } -static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu, - ktime_t expires, int force) +static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, + ktime_t expires) { - int ret; - - if (bc->state != CLOCK_EVT_STATE_ONESHOT) - clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT); + if (!clockevent_state_oneshot(bc)) + clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); - ret = clockevents_program_event(bc, expires, force); - if (!ret) - tick_broadcast_set_affinity(bc, cpumask_of(cpu)); - return ret; + clockevents_program_event(bc, expires, 1); + tick_broadcast_set_affinity(bc, cpumask_of(cpu)); } static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { - clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT); + clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); } /* @@ -566,7 +555,7 @@ void tick_check_oneshot_broadcast_this_cpu(void) * switched over, leave the device alone. */ if (td->mode == TICKDEV_MODE_ONESHOT) { - clockevents_set_state(td->evtdev, + clockevents_switch_state(td->evtdev, CLOCK_EVT_STATE_ONESHOT); } } @@ -580,9 +569,9 @@ static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) struct tick_device *td; ktime_t now, next_event; int cpu, next_cpu = 0; + bool bc_local; raw_spin_lock(&tick_broadcast_lock); -again: dev->next_event.tv64 = KTIME_MAX; next_event.tv64 = KTIME_MAX; cpumask_clear(tmpmask); @@ -624,7 +613,7 @@ again: /* * Wakeup the cpus which have an expired event. */ - tick_do_broadcast(tmpmask); + bc_local = tick_do_broadcast(tmpmask); /* * Two reasons for reprogram: @@ -636,15 +625,15 @@ again: * - There are pending events on sleeping CPUs which were not * in the event mask */ - if (next_event.tv64 != KTIME_MAX) { - /* - * Rearm the broadcast device. If event expired, - * repeat the above - */ - if (tick_broadcast_set_event(dev, next_cpu, next_event, 0)) - goto again; - } + if (next_event.tv64 != KTIME_MAX) + tick_broadcast_set_event(dev, next_cpu, next_event); + raw_spin_unlock(&tick_broadcast_lock); + + if (bc_local) { + td = this_cpu_ptr(&tick_cpu_device); + td->evtdev->event_handler(td->evtdev); + } } static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) @@ -670,7 +659,7 @@ static void broadcast_shutdown_local(struct clock_event_device *bc, if (dev->next_event.tv64 < bc->next_event.tv64) return; } - clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN); + clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); } /** @@ -726,7 +715,7 @@ int tick_broadcast_oneshot_control(enum tick_broadcast_state state) */ if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) && dev->next_event.tv64 < bc->next_event.tv64) - tick_broadcast_set_event(bc, cpu, dev->next_event, 1); + tick_broadcast_set_event(bc, cpu, dev->next_event); } /* * If the current CPU owns the hrtimer broadcast @@ -740,7 +729,7 @@ int tick_broadcast_oneshot_control(enum tick_broadcast_state state) cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); } else { if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { - clockevents_set_state(dev, CLOCK_EVT_STATE_ONESHOT); + clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); /* * The cpu which was handling the broadcast * timer marked this cpu in the broadcast @@ -842,7 +831,7 @@ void tick_broadcast_setup_oneshot(struct clock_event_device *bc) /* Set it up only once ! */ if (bc->event_handler != tick_handle_oneshot_broadcast) { - int was_periodic = bc->state == CLOCK_EVT_STATE_PERIODIC; + int was_periodic = clockevent_state_periodic(bc); bc->event_handler = tick_handle_oneshot_broadcast; @@ -858,10 +847,10 @@ void tick_broadcast_setup_oneshot(struct clock_event_device *bc) tick_broadcast_oneshot_mask, tmpmask); if (was_periodic && !cpumask_empty(tmpmask)) { - clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT); + clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); tick_broadcast_init_next_event(tmpmask, tick_next_period); - tick_broadcast_set_event(bc, cpu, tick_next_period, 1); + tick_broadcast_set_event(bc, cpu, tick_next_period); } else bc->next_event.tv64 = KTIME_MAX; } else { |