summaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorDavid Woodhouse <dwmw2@infradead.org>2007-07-11 15:55:48 +0200
committerDavid Woodhouse <dwmw2@infradead.org>2007-07-11 15:55:48 +0200
commitdb1b39d8b860e3716620c225bc86e0ec41764e34 (patch)
tree8739074db733ef767400ea92cfbfed9352ddb92d /kernel
parent[JFFS2] Add support for write-buffer verification. (diff)
parentlots-of-architectures: enable arbitary speed tty support (diff)
downloadlinux-db1b39d8b860e3716620c225bc86e0ec41764e34.tar.xz
linux-db1b39d8b860e3716620c225bc86e0ec41764e34.zip
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Diffstat (limited to 'kernel')
-rw-r--r--kernel/delayacct.c10
-rw-r--r--kernel/exit.c5
-rw-r--r--kernel/fork.c4
-rw-r--r--kernel/posix-cpu-timers.c34
-rw-r--r--kernel/relay.c205
-rw-r--r--kernel/sched.c3021
-rw-r--r--kernel/sched_debug.c275
-rw-r--r--kernel/sched_fair.c1131
-rw-r--r--kernel/sched_idletask.c71
-rw-r--r--kernel/sched_rt.c255
-rw-r--r--kernel/sched_stats.h235
-rw-r--r--kernel/softirq.c1
-rw-r--r--kernel/sysctl.c80
13 files changed, 3374 insertions, 1953 deletions
diff --git a/kernel/delayacct.c b/kernel/delayacct.c
index c0148ae992c4..81e697829633 100644
--- a/kernel/delayacct.c
+++ b/kernel/delayacct.c
@@ -99,9 +99,10 @@ void __delayacct_blkio_end(void)
int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
{
s64 tmp;
- struct timespec ts;
- unsigned long t1,t2,t3;
+ unsigned long t1;
+ unsigned long long t2, t3;
unsigned long flags;
+ struct timespec ts;
/* Though tsk->delays accessed later, early exit avoids
* unnecessary returning of other data
@@ -124,11 +125,10 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
d->cpu_count += t1;
- jiffies_to_timespec(t2, &ts);
- tmp = (s64)d->cpu_delay_total + timespec_to_ns(&ts);
+ tmp = (s64)d->cpu_delay_total + t2;
d->cpu_delay_total = (tmp < (s64)d->cpu_delay_total) ? 0 : tmp;
- tmp = (s64)d->cpu_run_virtual_total + (s64)jiffies_to_usecs(t3) * 1000;
+ tmp = (s64)d->cpu_run_virtual_total + t3;
d->cpu_run_virtual_total =
(tmp < (s64)d->cpu_run_virtual_total) ? 0 : tmp;
diff --git a/kernel/exit.c b/kernel/exit.c
index 5c8ecbaa19a5..ca6a11b73023 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -122,9 +122,9 @@ static void __exit_signal(struct task_struct *tsk)
sig->maj_flt += tsk->maj_flt;
sig->nvcsw += tsk->nvcsw;
sig->nivcsw += tsk->nivcsw;
- sig->sched_time += tsk->sched_time;
sig->inblock += task_io_get_inblock(tsk);
sig->oublock += task_io_get_oublock(tsk);
+ sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
sig = NULL; /* Marker for below. */
}
@@ -182,7 +182,6 @@ repeat:
zap_leader = (leader->exit_signal == -1);
}
- sched_exit(p);
write_unlock_irq(&tasklist_lock);
proc_flush_task(p);
release_thread(p);
@@ -291,7 +290,7 @@ static void reparent_to_kthreadd(void)
/* Set the exit signal to SIGCHLD so we signal init on exit */
current->exit_signal = SIGCHLD;
- if (!has_rt_policy(current) && (task_nice(current) < 0))
+ if (task_nice(current) < 0)
set_user_nice(current, 0);
/* cpus_allowed? */
/* rt_priority? */
diff --git a/kernel/fork.c b/kernel/fork.c
index 73ad5cda1bcd..da3a155bba0d 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -877,7 +877,7 @@ static inline int copy_signal(unsigned long clone_flags, struct task_struct * ts
sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
- sig->sched_time = 0;
+ sig->sum_sched_runtime = 0;
INIT_LIST_HEAD(&sig->cpu_timers[0]);
INIT_LIST_HEAD(&sig->cpu_timers[1]);
INIT_LIST_HEAD(&sig->cpu_timers[2]);
@@ -1040,7 +1040,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
p->utime = cputime_zero;
p->stime = cputime_zero;
- p->sched_time = 0;
+
#ifdef CONFIG_TASK_XACCT
p->rchar = 0; /* I/O counter: bytes read */
p->wchar = 0; /* I/O counter: bytes written */
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
index 1de710e18373..b53c8fcd9d82 100644
--- a/kernel/posix-cpu-timers.c
+++ b/kernel/posix-cpu-timers.c
@@ -161,7 +161,7 @@ static inline cputime_t virt_ticks(struct task_struct *p)
}
static inline unsigned long long sched_ns(struct task_struct *p)
{
- return (p == current) ? current_sched_time(p) : p->sched_time;
+ return task_sched_runtime(p);
}
int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
@@ -246,10 +246,10 @@ static int cpu_clock_sample_group_locked(unsigned int clock_idx,
} while (t != p);
break;
case CPUCLOCK_SCHED:
- cpu->sched = p->signal->sched_time;
+ cpu->sched = p->signal->sum_sched_runtime;
/* Add in each other live thread. */
while ((t = next_thread(t)) != p) {
- cpu->sched += t->sched_time;
+ cpu->sched += t->se.sum_exec_runtime;
}
cpu->sched += sched_ns(p);
break;
@@ -422,7 +422,7 @@ int posix_cpu_timer_del(struct k_itimer *timer)
*/
static void cleanup_timers(struct list_head *head,
cputime_t utime, cputime_t stime,
- unsigned long long sched_time)
+ unsigned long long sum_exec_runtime)
{
struct cpu_timer_list *timer, *next;
cputime_t ptime = cputime_add(utime, stime);
@@ -451,10 +451,10 @@ static void cleanup_timers(struct list_head *head,
++head;
list_for_each_entry_safe(timer, next, head, entry) {
list_del_init(&timer->entry);
- if (timer->expires.sched < sched_time) {
+ if (timer->expires.sched < sum_exec_runtime) {
timer->expires.sched = 0;
} else {
- timer->expires.sched -= sched_time;
+ timer->expires.sched -= sum_exec_runtime;
}
}
}
@@ -467,7 +467,7 @@ static void cleanup_timers(struct list_head *head,
void posix_cpu_timers_exit(struct task_struct *tsk)
{
cleanup_timers(tsk->cpu_timers,
- tsk->utime, tsk->stime, tsk->sched_time);
+ tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
}
void posix_cpu_timers_exit_group(struct task_struct *tsk)
@@ -475,7 +475,7 @@ void posix_cpu_timers_exit_group(struct task_struct *tsk)
cleanup_timers(tsk->signal->cpu_timers,
cputime_add(tsk->utime, tsk->signal->utime),
cputime_add(tsk->stime, tsk->signal->stime),
- tsk->sched_time + tsk->signal->sched_time);
+ tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
}
@@ -536,7 +536,7 @@ static void process_timer_rebalance(struct task_struct *p,
nsleft = max_t(unsigned long long, nsleft, 1);
do {
if (likely(!(t->flags & PF_EXITING))) {
- ns = t->sched_time + nsleft;
+ ns = t->se.sum_exec_runtime + nsleft;
if (t->it_sched_expires == 0 ||
t->it_sched_expires > ns) {
t->it_sched_expires = ns;
@@ -1004,7 +1004,7 @@ static void check_thread_timers(struct task_struct *tsk,
struct cpu_timer_list *t = list_first_entry(timers,
struct cpu_timer_list,
entry);
- if (!--maxfire || tsk->sched_time < t->expires.sched) {
+ if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
tsk->it_sched_expires = t->expires.sched;
break;
}
@@ -1024,7 +1024,7 @@ static void check_process_timers(struct task_struct *tsk,
int maxfire;
struct signal_struct *const sig = tsk->signal;
cputime_t utime, stime, ptime, virt_expires, prof_expires;
- unsigned long long sched_time, sched_expires;
+ unsigned long long sum_sched_runtime, sched_expires;
struct task_struct *t;
struct list_head *timers = sig->cpu_timers;
@@ -1044,12 +1044,12 @@ static void check_process_timers(struct task_struct *tsk,
*/
utime = sig->utime;
stime = sig->stime;
- sched_time = sig->sched_time;
+ sum_sched_runtime = sig->sum_sched_runtime;
t = tsk;
do {
utime = cputime_add(utime, t->utime);
stime = cputime_add(stime, t->stime);
- sched_time += t->sched_time;
+ sum_sched_runtime += t->se.sum_exec_runtime;
t = next_thread(t);
} while (t != tsk);
ptime = cputime_add(utime, stime);
@@ -1090,7 +1090,7 @@ static void check_process_timers(struct task_struct *tsk,
struct cpu_timer_list *t = list_first_entry(timers,
struct cpu_timer_list,
entry);
- if (!--maxfire || sched_time < t->expires.sched) {
+ if (!--maxfire || sum_sched_runtime < t->expires.sched) {
sched_expires = t->expires.sched;
break;
}
@@ -1182,7 +1182,7 @@ static void check_process_timers(struct task_struct *tsk,
virt_left = cputime_sub(virt_expires, utime);
virt_left = cputime_div_non_zero(virt_left, nthreads);
if (sched_expires) {
- sched_left = sched_expires - sched_time;
+ sched_left = sched_expires - sum_sched_runtime;
do_div(sched_left, nthreads);
sched_left = max_t(unsigned long long, sched_left, 1);
} else {
@@ -1208,7 +1208,7 @@ static void check_process_timers(struct task_struct *tsk,
t->it_virt_expires = ticks;
}
- sched = t->sched_time + sched_left;
+ sched = t->se.sum_exec_runtime + sched_left;
if (sched_expires && (t->it_sched_expires == 0 ||
t->it_sched_expires > sched)) {
t->it_sched_expires = sched;
@@ -1300,7 +1300,7 @@ void run_posix_cpu_timers(struct task_struct *tsk)
if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
(tsk->it_sched_expires == 0 ||
- tsk->sched_time < tsk->it_sched_expires))
+ tsk->se.sum_exec_runtime < tsk->it_sched_expires))
return;
#undef UNEXPIRED
diff --git a/kernel/relay.c b/kernel/relay.c
index 95db8c79fe8f..3b299fb3855c 100644
--- a/kernel/relay.c
+++ b/kernel/relay.c
@@ -21,6 +21,7 @@
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/cpu.h>
+#include <linux/splice.h>
/* list of open channels, for cpu hotplug */
static DEFINE_MUTEX(relay_channels_mutex);
@@ -121,6 +122,7 @@ static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
buf->page_array[i] = alloc_page(GFP_KERNEL);
if (unlikely(!buf->page_array[i]))
goto depopulate;
+ set_page_private(buf->page_array[i], (unsigned long)buf);
}
mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
if (!mem)
@@ -970,43 +972,6 @@ static int subbuf_read_actor(size_t read_start,
return ret;
}
-/*
- * subbuf_send_actor - send up to one subbuf's worth of data
- */
-static int subbuf_send_actor(size_t read_start,
- struct rchan_buf *buf,
- size_t avail,
- read_descriptor_t *desc,
- read_actor_t actor)
-{
- unsigned long pidx, poff;
- unsigned int subbuf_pages;
- int ret = 0;
-
- subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT;
- pidx = (read_start / PAGE_SIZE) % subbuf_pages;
- poff = read_start & ~PAGE_MASK;
- while (avail) {
- struct page *p = buf->page_array[pidx];
- unsigned int len;
-
- len = PAGE_SIZE - poff;
- if (len > avail)
- len = avail;
-
- len = actor(desc, p, poff, len);
- if (desc->error)
- break;
-
- avail -= len;
- ret += len;
- poff = 0;
- pidx = (pidx + 1) % subbuf_pages;
- }
-
- return ret;
-}
-
typedef int (*subbuf_actor_t) (size_t read_start,
struct rchan_buf *buf,
size_t avail,
@@ -1067,19 +1032,159 @@ static ssize_t relay_file_read(struct file *filp,
NULL, &desc);
}
-static ssize_t relay_file_sendfile(struct file *filp,
- loff_t *ppos,
- size_t count,
- read_actor_t actor,
- void *target)
+static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
{
- read_descriptor_t desc;
- desc.written = 0;
- desc.count = count;
- desc.arg.data = target;
- desc.error = 0;
- return relay_file_read_subbufs(filp, ppos, subbuf_send_actor,
- actor, &desc);
+ rbuf->bytes_consumed += bytes_consumed;
+
+ if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
+ relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
+ rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
+ }
+}
+
+static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
+ struct pipe_buffer *buf)
+{
+ struct rchan_buf *rbuf;
+
+ rbuf = (struct rchan_buf *)page_private(buf->page);
+ relay_consume_bytes(rbuf, buf->private);
+}
+
+static struct pipe_buf_operations relay_pipe_buf_ops = {
+ .can_merge = 0,
+ .map = generic_pipe_buf_map,
+ .unmap = generic_pipe_buf_unmap,
+ .confirm = generic_pipe_buf_confirm,
+ .release = relay_pipe_buf_release,
+ .steal = generic_pipe_buf_steal,
+ .get = generic_pipe_buf_get,
+};
+
+/**
+ * subbuf_splice_actor - splice up to one subbuf's worth of data
+ */
+static int subbuf_splice_actor(struct file *in,
+ loff_t *ppos,
+ struct pipe_inode_info *pipe,
+ size_t len,
+ unsigned int flags,
+ int *nonpad_ret)
+{
+ unsigned int pidx, poff, total_len, subbuf_pages, ret;
+ struct rchan_buf *rbuf = in->private_data;
+ unsigned int subbuf_size = rbuf->chan->subbuf_size;
+ size_t read_start = ((size_t)*ppos) % rbuf->chan->alloc_size;
+ size_t read_subbuf = read_start / subbuf_size;
+ size_t padding = rbuf->padding[read_subbuf];
+ size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
+ struct page *pages[PIPE_BUFFERS];
+ struct partial_page partial[PIPE_BUFFERS];
+ struct splice_pipe_desc spd = {
+ .pages = pages,
+ .nr_pages = 0,
+ .partial = partial,
+ .flags = flags,
+ .ops = &relay_pipe_buf_ops,
+ };
+
+ if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
+ return 0;
+
+ /*
+ * Adjust read len, if longer than what is available
+ */
+ if (len > (subbuf_size - read_start % subbuf_size))
+ len = subbuf_size - read_start % subbuf_size;
+
+ subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
+ pidx = (read_start / PAGE_SIZE) % subbuf_pages;
+ poff = read_start & ~PAGE_MASK;
+
+ for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) {
+ unsigned int this_len, this_end, private;
+ unsigned int cur_pos = read_start + total_len;
+
+ if (!len)
+ break;
+
+ this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
+ private = this_len;
+
+ spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
+ spd.partial[spd.nr_pages].offset = poff;
+
+ this_end = cur_pos + this_len;
+ if (this_end >= nonpad_end) {
+ this_len = nonpad_end - cur_pos;
+ private = this_len + padding;
+ }
+ spd.partial[spd.nr_pages].len = this_len;
+ spd.partial[spd.nr_pages].private = private;
+
+ len -= this_len;
+ total_len += this_len;
+ poff = 0;
+ pidx = (pidx + 1) % subbuf_pages;
+
+ if (this_end >= nonpad_end) {
+ spd.nr_pages++;
+ break;
+ }
+ }
+
+ if (!spd.nr_pages)
+ return 0;
+
+ ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
+ if (ret < 0 || ret < total_len)
+ return ret;
+
+ if (read_start + ret == nonpad_end)
+ ret += padding;
+
+ return ret;
+}
+
+static ssize_t relay_file_splice_read(struct file *in,
+ loff_t *ppos,
+ struct pipe_inode_info *pipe,
+ size_t len,
+ unsigned int flags)
+{
+ ssize_t spliced;
+ int ret;
+ int nonpad_ret = 0;
+
+ ret = 0;
+ spliced = 0;
+
+ while (len) {
+ ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
+ if (ret < 0)
+ break;
+ else if (!ret) {
+ if (spliced)
+ break;
+ if (flags & SPLICE_F_NONBLOCK) {
+ ret = -EAGAIN;
+ break;
+ }
+ }
+
+ *ppos += ret;
+ if (ret > len)
+ len = 0;
+ else
+ len -= ret;
+ spliced += nonpad_ret;
+ nonpad_ret = 0;
+ }
+
+ if (spliced)
+ return spliced;
+
+ return ret;
}
const struct file_operations relay_file_operations = {
@@ -1089,7 +1194,7 @@ const struct file_operations relay_file_operations = {
.read = relay_file_read,
.llseek = no_llseek,
.release = relay_file_release,
- .sendfile = relay_file_sendfile,
+ .splice_read = relay_file_splice_read,
};
EXPORT_SYMBOL_GPL(relay_file_operations);
diff --git a/kernel/sched.c b/kernel/sched.c
index 50e1a3122699..9fbced64bfee 100644
--- a/kernel/sched.c
+++ b/kernel/sched.c
@@ -16,13 +16,19 @@
* by Davide Libenzi, preemptible kernel bits by Robert Love.
* 2003-09-03 Interactivity tuning by Con Kolivas.
* 2004-04-02 Scheduler domains code by Nick Piggin
+ * 2007-04-15 Work begun on replacing all interactivity tuning with a
+ * fair scheduling design by Con Kolivas.
+ * 2007-05-05 Load balancing (smp-nice) and other improvements
+ * by Peter Williams
+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
-#include <asm/uaccess.h>
+#include <linux/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
@@ -53,9 +59,9 @@
#include <linux/kprobes.h>
#include <linux/delayacct.h>
#include <linux/reciprocal_div.h>
+#include <linux/unistd.h>
#include <asm/tlb.h>
-#include <asm/unistd.h>
/*
* Scheduler clock - returns current time in nanosec units.
@@ -91,6 +97,9 @@ unsigned long long __attribute__((weak)) sched_clock(void)
#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
+#define NICE_0_LOAD SCHED_LOAD_SCALE
+#define NICE_0_SHIFT SCHED_LOAD_SHIFT
+
/*
* These are the 'tuning knobs' of the scheduler:
*
@@ -100,87 +109,6 @@ unsigned long long __attribute__((weak)) sched_clock(void)
*/
#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE (100 * HZ / 1000)
-#define ON_RUNQUEUE_WEIGHT 30
-#define CHILD_PENALTY 95
-#define PARENT_PENALTY 100
-#define EXIT_WEIGHT 3
-#define PRIO_BONUS_RATIO 25
-#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
-#define INTERACTIVE_DELTA 2
-#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
-#define STARVATION_LIMIT (MAX_SLEEP_AVG)
-#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
-
-/*
- * If a task is 'interactive' then we reinsert it in the active
- * array after it has expired its current timeslice. (it will not
- * continue to run immediately, it will still roundrobin with
- * other interactive tasks.)
- *
- * This part scales the interactivity limit depending on niceness.
- *
- * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
- * Here are a few examples of different nice levels:
- *
- * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
- * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
- * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
- * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
- * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
- *
- * (the X axis represents the possible -5 ... 0 ... +5 dynamic
- * priority range a task can explore, a value of '1' means the
- * task is rated interactive.)
- *
- * Ie. nice +19 tasks can never get 'interactive' enough to be
- * reinserted into the active array. And only heavily CPU-hog nice -20
- * tasks will be expired. Default nice 0 tasks are somewhere between,
- * it takes some effort for them to get interactive, but it's not
- * too hard.
- */
-
-#define CURRENT_BONUS(p) \
- (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
- MAX_SLEEP_AVG)
-
-#define GRANULARITY (10 * HZ / 1000 ? : 1)
-
-#ifdef CONFIG_SMP
-#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
- (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
- num_online_cpus())
-#else
-#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
- (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
-#endif
-
-#define SCALE(v1,v1_max,v2_max) \
- (v1) * (v2_max) / (v1_max)
-
-#define DELTA(p) \
- (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
- INTERACTIVE_DELTA)
-
-#define TASK_INTERACTIVE(p) \
- ((p)->prio <= (p)->static_prio - DELTA(p))
-
-#define INTERACTIVE_SLEEP(p) \
- (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
- (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
-
-#define TASK_PREEMPTS_CURR(p, rq) \
- ((p)->prio < (rq)->curr->prio)
-
-#define SCALE_PRIO(x, prio) \
- max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
-
-static unsigned int static_prio_timeslice(int static_prio)
-{
- if (static_prio < NICE_TO_PRIO(0))
- return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
- else
- return SCALE_PRIO(DEF_TIMESLICE, static_prio);
-}
#ifdef CONFIG_SMP
/*
@@ -203,28 +131,87 @@ static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
}
#endif
+#define SCALE_PRIO(x, prio) \
+ max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
+
/*
- * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
+ * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
* to time slice values: [800ms ... 100ms ... 5ms]
- *
- * The higher a thread's priority, the bigger timeslices
- * it gets during one round of execution. But even the lowest
- * priority thread gets MIN_TIMESLICE worth of execution time.
*/
+static unsigned int static_prio_timeslice(int static_prio)
+{
+ if (static_prio == NICE_TO_PRIO(19))
+ return 1;
+
+ if (static_prio < NICE_TO_PRIO(0))
+ return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
+ else
+ return SCALE_PRIO(DEF_TIMESLICE, static_prio);
+}
+
+static inline int rt_policy(int policy)
+{
+ if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
+ return 1;
+ return 0;
+}
-static inline unsigned int task_timeslice(struct task_struct *p)
+static inline int task_has_rt_policy(struct task_struct *p)
{
- return static_prio_timeslice(p->static_prio);
+ return rt_policy(p->policy);
}
/*
- * These are the runqueue data structures:
+ * This is the priority-queue data structure of the RT scheduling class:
*/
+struct rt_prio_array {
+ DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
+ struct list_head queue[MAX_RT_PRIO];
+};
+
+struct load_stat {
+ struct load_weight load;
+ u64 load_update_start, load_update_last;
+ unsigned long delta_fair, delta_exec, delta_stat;
+};
+
+/* CFS-related fields in a runqueue */
+struct cfs_rq {
+ struct load_weight load;
+ unsigned long nr_running;
+
+ s64 fair_clock;
+ u64 exec_clock;
+ s64 wait_runtime;
+ u64 sleeper_bonus;
+ unsigned long wait_runtime_overruns, wait_runtime_underruns;
+
+ struct rb_root tasks_timeline;
+ struct rb_node *rb_leftmost;
+ struct rb_node *rb_load_balance_curr;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ /* 'curr' points to currently running entity on this cfs_rq.
+ * It is set to NULL otherwise (i.e when none are currently running).
+ */
+ struct sched_entity *curr;
+ struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
-struct prio_array {
- unsigned int nr_active;
- DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
- struct list_head queue[MAX_PRIO];
+ /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
+ * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
+ * (like users, containers etc.)
+ *
+ * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
+ * list is used during load balance.
+ */
+ struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
+#endif
+};
+
+/* Real-Time classes' related field in a runqueue: */
+struct rt_rq {
+ struct rt_prio_array active;
+ int rt_load_balance_idx;
+ struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};
/*
@@ -235,22 +222,28 @@ struct prio_array {
* acquire operations must be ordered by ascending &runqueue.
*/
struct rq {
- spinlock_t lock;
+ spinlock_t lock; /* runqueue lock */
/*
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
unsigned long nr_running;
- unsigned long raw_weighted_load;
-#ifdef CONFIG_SMP
- unsigned long cpu_load[3];
+ #define CPU_LOAD_IDX_MAX 5
+ unsigned long cpu_load[CPU_LOAD_IDX_MAX];
unsigned char idle_at_tick;
#ifdef CONFIG_NO_HZ
unsigned char in_nohz_recently;
#endif
+ struct load_stat ls; /* capture load from *all* tasks on this cpu */
+ unsigned long nr_load_updates;
+ u64 nr_switches;
+
+ struct cfs_rq cfs;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
#endif
- unsigned long long nr_switches;
+ struct rt_rq rt;
/*
* This is part of a global counter where only the total sum
@@ -260,14 +253,18 @@ struct rq {
*/
unsigned long nr_uninterruptible;
- unsigned long expired_timestamp;
- /* Cached timestamp set by update_cpu_clock() */
- unsigned long long most_recent_timestamp;
struct task_struct *curr, *idle;
unsigned long next_balance;
struct mm_struct *prev_mm;
- struct prio_array *active, *expired, arrays[2];
- int best_expired_prio;
+
+ u64 clock, prev_clock_raw;
+ s64 clock_max_delta;
+
+ unsigned int clock_warps, clock_overflows;
+ unsigned int clock_unstable_events;
+
+ struct sched_class *load_balance_class;
+
atomic_t nr_iowait;
#ifdef CONFIG_SMP
@@ -307,6 +304,11 @@ struct rq {
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
static DEFINE_MUTEX(sched_hotcpu_mutex);
+static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
+{
+ rq->curr->sched_class->check_preempt_curr(rq, p);
+}
+
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
@@ -317,6 +319,52 @@ static inline int cpu_of(struct rq *rq)
}
/*
+ * Per-runqueue clock, as finegrained as the platform can give us:
+ */
+static unsigned long long __rq_clock(struct rq *rq)
+{
+ u64 prev_raw = rq->prev_clock_raw;
+ u64 now = sched_clock();
+ s64 delta = now - prev_raw;
+ u64 clock = rq->clock;
+
+ /*
+ * Protect against sched_clock() occasionally going backwards:
+ */
+ if (unlikely(delta < 0)) {
+ clock++;
+ rq->clock_warps++;
+ } else {
+ /*
+ * Catch too large forward jumps too:
+ */
+ if (unlikely(delta > 2*TICK_NSEC)) {
+ clock++;
+ rq->clock_overflows++;
+ } else {
+ if (unlikely(delta > rq->clock_max_delta))
+ rq->clock_max_delta = delta;
+ clock += delta;
+ }
+ }
+
+ rq->prev_clock_raw = now;
+ rq->clock = clock;
+
+ return clock;
+}
+
+static inline unsigned long long rq_clock(struct rq *rq)
+{
+ int this_cpu = smp_processor_id();
+
+ if (this_cpu == cpu_of(rq))
+ return __rq_clock(rq);
+
+ return rq->clock;
+}
+
+/*
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
* See detach_destroy_domains: synchronize_sched for details.
*
@@ -331,6 +379,18 @@ static inline int cpu_of(struct rq *rq)
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/* Change a task's ->cfs_rq if it moves across CPUs */
+static inline void set_task_cfs_rq(struct task_struct *p)
+{
+ p->se.cfs_rq = &task_rq(p)->cfs;
+}
+#else
+static inline void set_task_cfs_rq(struct task_struct *p)
+{
+}
+#endif
+
#ifndef prepare_arch_switch
# define prepare_arch_switch(next) do { } while (0)
#endif
@@ -460,134 +520,6 @@ static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
spin_unlock_irqrestore(&rq->lock, *flags);
}
-#ifdef CONFIG_SCHEDSTATS
-/*
- * bump this up when changing the output format or the meaning of an existing
- * format, so that tools can adapt (or abort)
- */
-#define SCHEDSTAT_VERSION 14
-
-static int show_schedstat(struct seq_file *seq, void *v)
-{
- int cpu;
-
- seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
- seq_printf(seq, "timestamp %lu\n", jiffies);
- for_each_online_cpu(cpu) {
- struct rq *rq = cpu_rq(cpu);
-#ifdef CONFIG_SMP
- struct sched_domain *sd;
- int dcnt = 0;
-#endif
-
- /* runqueue-specific stats */
- seq_printf(seq,
- "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
- cpu, rq->yld_both_empty,
- rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
- rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
- rq->ttwu_cnt, rq->ttwu_local,
- rq->rq_sched_info.cpu_time,
- rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
-
- seq_printf(seq, "\n");
-
-#ifdef CONFIG_SMP
- /* domain-specific stats */
- preempt_disable();
- for_each_domain(cpu, sd) {
- enum idle_type itype;
- char mask_str[NR_CPUS];
-
- cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
- seq_printf(seq, "domain%d %s", dcnt++, mask_str);
- for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
- itype++) {
- seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
- "%lu",
- sd->lb_cnt[itype],
- sd->lb_balanced[itype],
- sd->lb_failed[itype],
- sd->lb_imbalance[itype],
- sd->lb_gained[itype],
- sd->lb_hot_gained[itype],
- sd->lb_nobusyq[itype],
- sd->lb_nobusyg[itype]);
- }
- seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
- " %lu %lu %lu\n",
- sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
- sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
- sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
- sd->ttwu_wake_remote, sd->ttwu_move_affine,
- sd->ttwu_move_balance);
- }
- preempt_enable();
-#endif
- }
- return 0;
-}
-
-static int schedstat_open(struct inode *inode, struct file *file)
-{
- unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
- char *buf = kmalloc(size, GFP_KERNEL);
- struct seq_file *m;
- int res;
-
- if (!buf)
- return -ENOMEM;
- res = single_open(file, show_schedstat, NULL);
- if (!res) {
- m = file->private_data;
- m->buf = buf;
- m->size = size;
- } else
- kfree(buf);
- return res;
-}
-
-const struct file_operations proc_schedstat_operations = {
- .open = schedstat_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
-};
-
-/*
- * Expects runqueue lock to be held for atomicity of update
- */
-static inline void
-rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
-{
- if (rq) {
- rq->rq_sched_info.run_delay += delta_jiffies;
- rq->rq_sched_info.pcnt++;
- }
-}
-
-/*
- * Expects runqueue lock to be held for atomicity of update
- */
-static inline void
-rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
-{
- if (rq)
- rq->rq_sched_info.cpu_time += delta_jiffies;
-}
-# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
-# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
-#else /* !CONFIG_SCHEDSTATS */
-static inline void
-rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
-{}
-static inline void
-rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
-{}
-# define schedstat_inc(rq, field) do { } while (0)
-# define schedstat_add(rq, field, amt) do { } while (0)
-#endif
-
/*
* this_rq_lock - lock this runqueue and disable interrupts.
*/
@@ -603,177 +535,172 @@ static inline struct rq *this_rq_lock(void)
return rq;
}
-#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
/*
- * Called when a process is dequeued from the active array and given
- * the cpu. We should note that with the exception of interactive
- * tasks, the expired queue will become the active queue after the active
- * queue is empty, without explicitly dequeuing and requeuing tasks in the
- * expired queue. (Interactive tasks may be requeued directly to the
- * active queue, thus delaying tasks in the expired queue from running;
- * see scheduler_tick()).
- *
- * This function is only called from sched_info_arrive(), rather than
- * dequeue_task(). Even though a task may be queued and dequeued multiple
- * times as it is shuffled about, we're really interested in knowing how
- * long it was from the *first* time it was queued to the time that it
- * finally hit a cpu.
+ * CPU frequency is/was unstable - start new by setting prev_clock_raw:
*/
-static inline void sched_info_dequeued(struct task_struct *t)
+void sched_clock_unstable_event(void)
{
- t->sched_info.last_queued = 0;
+ unsigned long flags;
+ struct rq *rq;
+
+ rq = task_rq_lock(current, &flags);
+ rq->prev_clock_raw = sched_clock();
+ rq->clock_unstable_events++;
+ task_rq_unlock(rq, &flags);
}
/*
- * Called when a task finally hits the cpu. We can now calculate how
- * long it was waiting to run. We also note when it began so that we
- * can keep stats on how long its timeslice is.
+ * resched_task - mark a task 'to be rescheduled now'.
+ *
+ * On UP this means the setting of the need_resched flag, on SMP it
+ * might also involve a cross-CPU call to trigger the scheduler on
+ * the target CPU.
*/
-static void sched_info_arrive(struct task_struct *t)
+#ifdef CONFIG_SMP
+
+#ifndef tsk_is_polling
+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
+#endif
+
+static void resched_task(struct task_struct *p)
{
- unsigned long now = jiffies, delta_jiffies = 0;
+ int cpu;
+
+ assert_spin_locked(&task_rq(p)->lock);
+
+ if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
+ return;
- if (t->sched_info.last_queued)
- delta_jiffies = now - t->sched_info.last_queued;
- sched_info_dequeued(t);
- t->sched_info.run_delay += delta_jiffies;
- t->sched_info.last_arrival = now;
- t->sched_info.pcnt++;
+ set_tsk_thread_flag(p, TIF_NEED_RESCHED);
+
+ cpu = task_cpu(p);
+ if (cpu == smp_processor_id())
+ return;
- rq_sched_info_arrive(task_rq(t), delta_jiffies);
+ /* NEED_RESCHED must be visible before we test polling */
+ smp_mb();
+ if (!tsk_is_polling(p))
+ smp_send_reschedule(cpu);
}
-/*
- * Called when a process is queued into either the active or expired
- * array. The time is noted and later used to determine how long we
- * had to wait for us to reach the cpu. Since the expired queue will
- * become the active queue after active queue is empty, without dequeuing
- * and requeuing any tasks, we are interested in queuing to either. It
- * is unusual but not impossible for tasks to be dequeued and immediately
- * requeued in the same or another array: this can happen in sched_yield(),
- * set_user_nice(), and even load_balance() as it moves tasks from runqueue
- * to runqueue.
- *
- * This function is only called from enqueue_task(), but also only updates
- * the timestamp if it is already not set. It's assumed that
- * sched_info_dequeued() will clear that stamp when appropriate.
- */
-static inline void sched_info_queued(struct task_struct *t)
+static void resched_cpu(int cpu)
{
- if (unlikely(sched_info_on()))
- if (!t->sched_info.last_queued)
- t->sched_info.last_queued = jiffies;
+ struct rq *rq = cpu_rq(cpu);
+ unsigned long flags;
+
+ if (!spin_trylock_irqsave(&rq->lock, flags))
+ return;
+ resched_task(cpu_curr(cpu));
+ spin_unlock_irqrestore(&rq->lock, flags);
}
+#else
+static inline void resched_task(struct task_struct *p)
+{
+ assert_spin_locked(&task_rq(p)->lock);
+ set_tsk_need_resched(p);
+}
+#endif
-/*
- * Called when a process ceases being the active-running process, either
- * voluntarily or involuntarily. Now we can calculate how long we ran.
- */
-static inline void sched_info_depart(struct task_struct *t)
+static u64 div64_likely32(u64 divident, unsigned long divisor)
{
- unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
+#if BITS_PER_LONG == 32
+ if (likely(divident <= 0xffffffffULL))
+ return (u32)divident / divisor;
+ do_div(divident, divisor);
- t->sched_info.cpu_time += delta_jiffies;
- rq_sched_info_depart(task_rq(t), delta_jiffies);
+ return divident;
+#else
+ return divident / divisor;
+#endif
}
-/*
- * Called when tasks are switched involuntarily due, typically, to expiring
- * their time slice. (This may also be called when switching to or from
- * the idle task.) We are only called when prev != next.
- */
-static inline void
-__sched_info_switch(struct task_struct *prev, struct task_struct *next)
+#if BITS_PER_LONG == 32
+# define WMULT_CONST (~0UL)
+#else
+# define WMULT_CONST (1UL << 32)
+#endif
+
+#define WMULT_SHIFT 32
+
+static inline unsigned long
+calc_delta_mine(unsigned long delta_exec, unsigned long weight,
+ struct load_weight *lw)
{
- struct rq *rq = task_rq(prev);
+ u64 tmp;
+ if (unlikely(!lw->inv_weight))
+ lw->inv_weight = WMULT_CONST / lw->weight;
+
+ tmp = (u64)delta_exec * weight;
/*
- * prev now departs the cpu. It's not interesting to record
- * stats about how efficient we were at scheduling the idle
- * process, however.
+ * Check whether we'd overflow the 64-bit multiplication:
*/
- if (prev != rq->idle)
- sched_info_depart(prev);
+ if (unlikely(tmp > WMULT_CONST)) {
+ tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
+ >> (WMULT_SHIFT/2);
+ } else {
+ tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
+ }
- if (next != rq->idle)
- sched_info_arrive(next);
-}
-static inline void
-sched_info_switch(struct task_struct *prev, struct task_struct *next)
-{
- if (unlikely(sched_info_on()))
- __sched_info_switch(prev, next);
+ return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
}
-#else
-#define sched_info_queued(t) do { } while (0)
-#define sched_info_switch(t, next) do { } while (0)
-#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
-/*
- * Adding/removing a task to/from a priority array:
- */
-static void dequeue_task(struct task_struct *p, struct prio_array *array)
+static inline unsigned long
+calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
- array->nr_active--;
- list_del(&p->run_list);
- if (list_empty(array->queue + p->prio))
- __clear_bit(p->prio, array->bitmap);
+ return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}
-static void enqueue_task(struct task_struct *p, struct prio_array *array)
+static void update_load_add(struct load_weight *lw, unsigned long inc)
{
- sched_info_queued(p);
- list_add_tail(&p->run_list, array->queue + p->prio);
- __set_bit(p->prio, array->bitmap);
- array->nr_active++;
- p->array = array;
+ lw->weight += inc;
+ lw->inv_weight = 0;
}
-/*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
-static void requeue_task(struct task_struct *p, struct prio_array *array)
+static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
- list_move_tail(&p->run_list, array->queue + p->prio);
+ lw->weight -= dec;
+ lw->inv_weight = 0;
}
-static inline void
-enqueue_task_head(struct task_struct *p, struct prio_array *array)
+static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
- list_add(&p->run_list, array->queue + p->prio);
- __set_bit(p->prio, array->bitmap);
- array->nr_active++;
- p->array = array;
+ if (rq->curr != rq->idle && ls->load.weight) {
+ ls->delta_exec += ls->delta_stat;
+ ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
+ ls->delta_stat = 0;
+ }
}
/*
- * __normal_prio - return the priority that is based on the static
- * priority but is modified by bonuses/penalties.
+ * Update delta_exec, delta_fair fields for rq.
*
- * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
- * into the -5 ... 0 ... +5 bonus/penalty range.
+ * delta_fair clock advances at a rate inversely proportional to
+ * total load (rq->ls.load.weight) on the runqueue, while
+ * delta_exec advances at the same rate as wall-clock (provided
+ * cpu is not idle).
*
- * We use 25% of the full 0...39 priority range so that:
+ * delta_exec / delta_fair is a measure of the (smoothened) load on this
+ * runqueue over any given interval. This (smoothened) load is used
+ * during load balance.
*
- * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
- * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
- *
- * Both properties are important to certain workloads.
+ * This function is called /before/ updating rq->ls.load
+ * and when switching tasks.
*/
-
-static inline int __normal_prio(struct task_struct *p)
+static void update_curr_load(struct rq *rq, u64 now)
{
- int bonus, prio;
-
- bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
+ struct load_stat *ls = &rq->ls;
+ u64 start;
- prio = p->static_prio - bonus;
- if (prio < MAX_RT_PRIO)
- prio = MAX_RT_PRIO;
- if (prio > MAX_PRIO-1)
- prio = MAX_PRIO-1;
- return prio;
+ start = ls->load_update_start;
+ ls->load_update_start = now;
+ ls->delta_stat += now - start;
+ /*
+ * Stagger updates to ls->delta_fair. Very frequent updates
+ * can be expensive.
+ */
+ if (ls->delta_stat >= sysctl_sched_stat_granularity)
+ __update_curr_load(rq, ls);
}
/*
@@ -791,53 +718,146 @@ static inline int __normal_prio(struct task_struct *p)
* this code will need modification
*/
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
-#define LOAD_WEIGHT(lp) \
+#define load_weight(lp) \
(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
#define PRIO_TO_LOAD_WEIGHT(prio) \
- LOAD_WEIGHT(static_prio_timeslice(prio))
+ load_weight(static_prio_timeslice(prio))
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
- (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
+ (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
-static void set_load_weight(struct task_struct *p)
-{
- if (has_rt_policy(p)) {
-#ifdef CONFIG_SMP
- if (p == task_rq(p)->migration_thread)
- /*
- * The migration thread does the actual balancing.
- * Giving its load any weight will skew balancing
- * adversely.
- */
- p->load_weight = 0;
- else
-#endif
- p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
- } else
- p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
-}
+#define WEIGHT_IDLEPRIO 2
+#define WMULT_IDLEPRIO (1 << 31)
+
+/*
+ * Nice levels are multiplicative, with a gentle 10% change for every
+ * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
+ * nice 1, it will get ~10% less CPU time than another CPU-bound task
+ * that remained on nice 0.
+ *
+ * The "10% effect" is relative and cumulative: from _any_ nice level,
+ * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
+ * it's +10% CPU usage.
+ */
+static const int prio_to_weight[40] = {
+/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
+/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
+/* 0 */ NICE_0_LOAD /* 1024 */,
+/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
+/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
+};
+
+static const u32 prio_to_wmult[40] = {
+ 48356, 60446, 75558, 94446, 118058, 147573,
+ 184467, 230589, 288233, 360285, 450347,
+ 562979, 703746, 879575, 1099582, 1374389,
+ 717986, 2147483, 2684354, 3355443, 4194304,
+ 244160, 6557201, 8196502, 10250518, 12782640,
+ 16025997, 19976592, 24970740, 31350126, 39045157,
+ 49367440, 61356675, 76695844, 95443717, 119304647,
+ 148102320, 186737708, 238609294, 286331153,
+};
static inline void
-inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
+inc_load(struct rq *rq, const struct task_struct *p, u64 now)
{
- rq->raw_weighted_load += p->load_weight;
+ update_curr_load(rq, now);
+ update_load_add(&rq->ls.load, p->se.load.weight);
}
static inline void
-dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
+dec_load(struct rq *rq, const struct task_struct *p, u64 now)
{
- rq->raw_weighted_load -= p->load_weight;
+ update_curr_load(rq, now);
+ update_load_sub(&rq->ls.load, p->se.load.weight);
}
-static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
+static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
rq->nr_running++;
- inc_raw_weighted_load(rq, p);
+ inc_load(rq, p, now);
}
-static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
+static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
rq->nr_running--;
- dec_raw_weighted_load(rq, p);
+ dec_load(rq, p, now);
+}
+
+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
+
+/*
+ * runqueue iterator, to support SMP load-balancing between different
+ * scheduling classes, without having to expose their internal data
+ * structures to the load-balancing proper:
+ */
+struct rq_iterator {
+ void *arg;
+ struct task_struct *(*start)(void *);
+ struct task_struct *(*next)(void *);
+};
+
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+ unsigned long max_nr_move, unsigned long max_load_move,
+ struct sched_domain *sd, enum cpu_idle_type idle,
+ int *all_pinned, unsigned long *load_moved,
+ int this_best_prio, int best_prio, int best_prio_seen,
+ struct rq_iterator *iterator);
+
+#include "sched_stats.h"
+#include "sched_rt.c"
+#include "sched_fair.c"
+#include "sched_idletask.c"
+#ifdef CONFIG_SCHED_DEBUG
+# include "sched_debug.c"
+#endif
+
+#define sched_class_highest (&rt_sched_class)
+
+static void set_load_weight(struct task_struct *p)
+{
+ task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
+ p->se.wait_runtime = 0;
+
+ if (task_has_rt_policy(p)) {
+ p->se.load.weight = prio_to_weight[0] * 2;
+ p->se.load.inv_weight = prio_to_wmult[0] >> 1;
+ return;
+ }
+
+ /*
+ * SCHED_IDLE tasks get minimal weight:
+ */
+ if (p->policy == SCHED_IDLE) {
+ p->se.load.weight = WEIGHT_IDLEPRIO;
+ p->se.load.inv_weight = WMULT_IDLEPRIO;
+ return;
+ }
+
+ p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
+ p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
+}
+
+static void
+enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+{
+ sched_info_queued(p);
+ p->sched_class->enqueue_task(rq, p, wakeup, now);
+ p->se.on_rq = 1;
+}
+
+static void
+dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
+{
+ p->sched_class->dequeue_task(rq, p, sleep, now);
+ p->se.on_rq = 0;
+}
+
+/*
+ * __normal_prio - return the priority that is based on the static prio
+ */
+static inline int __normal_prio(struct task_struct *p)
+{
+ return p->static_prio;
}
/*
@@ -851,7 +871,7 @@ static inline int normal_prio(struct task_struct *p)
{
int prio;
- if (has_rt_policy(p))
+ if (task_has_rt_policy(p))
prio = MAX_RT_PRIO-1 - p->rt_priority;
else
prio = __normal_prio(p);
@@ -879,222 +899,47 @@ static int effective_prio(struct task_struct *p)
}
/*
- * __activate_task - move a task to the runqueue.
- */
-static void __activate_task(struct task_struct *p, struct rq *rq)
-{
- struct prio_array *target = rq->active;
-
- if (batch_task(p))
- target = rq->expired;
- enqueue_task(p, target);
- inc_nr_running(p, rq);
-}
-
-/*
- * __activate_idle_task - move idle task to the _front_ of runqueue.
- */
-static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
-{
- enqueue_task_head(p, rq->active);
- inc_nr_running(p, rq);
-}
-
-/*
- * Recalculate p->normal_prio and p->prio after having slept,
- * updating the sleep-average too:
+ * activate_task - move a task to the runqueue.
*/
-static int recalc_task_prio(struct task_struct *p, unsigned long long now)
+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
- /* Caller must always ensure 'now >= p->timestamp' */
- unsigned long sleep_time = now - p->timestamp;
-
- if (batch_task(p))
- sleep_time = 0;
-
- if (likely(sleep_time > 0)) {
- /*
- * This ceiling is set to the lowest priority that would allow
- * a task to be reinserted into the active array on timeslice
- * completion.
- */
- unsigned long ceiling = INTERACTIVE_SLEEP(p);
-
- if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
- /*
- * Prevents user tasks from achieving best priority
- * with one single large enough sleep.
- */
- p->sleep_avg = ceiling;
- /*
- * Using INTERACTIVE_SLEEP() as a ceiling places a
- * nice(0) task 1ms sleep away from promotion, and
- * gives it 700ms to round-robin with no chance of
- * being demoted. This is more than generous, so
- * mark this sleep as non-interactive to prevent the
- * on-runqueue bonus logic from intervening should
- * this task not receive cpu immediately.
- */
- p->sleep_type = SLEEP_NONINTERACTIVE;
- } else {
- /*
- * Tasks waking from uninterruptible sleep are
- * limited in their sleep_avg rise as they
- * are likely to be waiting on I/O
- */
- if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
- if (p->sleep_avg >= ceiling)
- sleep_time = 0;
- else if (p->sleep_avg + sleep_time >=
- ceiling) {
- p->sleep_avg = ceiling;
- sleep_time = 0;
- }
- }
+ u64 now = rq_clock(rq);
- /*
- * This code gives a bonus to interactive tasks.
- *
- * The boost works by updating the 'average sleep time'
- * value here, based on ->timestamp. The more time a
- * task spends sleeping, the higher the average gets -
- * and the higher the priority boost gets as well.
- */
- p->sleep_avg += sleep_time;
-
- }
- if (p->sleep_avg > NS_MAX_SLEEP_AVG)
- p->sleep_avg = NS_MAX_SLEEP_AVG;
- }
+ if (p->state == TASK_UNINTERRUPTIBLE)
+ rq->nr_uninterruptible--;
- return effective_prio(p);
+ enqueue_task(rq, p, wakeup, now);
+ inc_nr_running(p, rq, now);
}
/*
- * activate_task - move a task to the runqueue and do priority recalculation
- *
- * Update all the scheduling statistics stuff. (sleep average
- * calculation, priority modifiers, etc.)
+ * activate_idle_task - move idle task to the _front_ of runqueue.
*/
-static void activate_task(struct task_struct *p, struct rq *rq, int local)
+static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
{
- unsigned long long now;
+ u64 now = rq_clock(rq);
- if (rt_task(p))
- goto out;
-
- now = sched_clock();
-#ifdef CONFIG_SMP
- if (!local) {
- /* Compensate for drifting sched_clock */
- struct rq *this_rq = this_rq();
- now = (now - this_rq->most_recent_timestamp)
- + rq->most_recent_timestamp;
- }
-#endif
-
- /*
- * Sleep time is in units of nanosecs, so shift by 20 to get a
- * milliseconds-range estimation of the amount of time that the task
- * spent sleeping:
- */
- if (unlikely(prof_on == SLEEP_PROFILING)) {
- if (p->state == TASK_UNINTERRUPTIBLE)
- profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
- (now - p->timestamp) >> 20);
- }
-
- p->prio = recalc_task_prio(p, now);
+ if (p->state == TASK_UNINTERRUPTIBLE)
+ rq->nr_uninterruptible--;
- /*
- * This checks to make sure it's not an uninterruptible task
- * that is now waking up.
- */
- if (p->sleep_type == SLEEP_NORMAL) {
- /*
- * Tasks which were woken up by interrupts (ie. hw events)
- * are most likely of interactive nature. So we give them
- * the credit of extending their sleep time to the period
- * of time they spend on the runqueue, waiting for execution
- * on a CPU, first time around:
- */
- if (in_interrupt())
- p->sleep_type = SLEEP_INTERRUPTED;
- else {
- /*
- * Normal first-time wakeups get a credit too for
- * on-runqueue time, but it will be weighted down:
- */
- p->sleep_type = SLEEP_INTERACTIVE;
- }
- }
- p->timestamp = now;
-out:
- __activate_task(p, rq);
+ enqueue_task(rq, p, 0, now);
+ inc_nr_running(p, rq, now);
}
/*
* deactivate_task - remove a task from the runqueue.
*/
-static void deactivate_task(struct task_struct *p, struct rq *rq)
-{
- dec_nr_running(p, rq);
- dequeue_task(p, p->array);
- p->array = NULL;
-}
-
-/*
- * resched_task - mark a task 'to be rescheduled now'.
- *
- * On UP this means the setting of the need_resched flag, on SMP it
- * might also involve a cross-CPU call to trigger the scheduler on
- * the target CPU.
- */
-#ifdef CONFIG_SMP
-
-#ifndef tsk_is_polling
-#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
-#endif
-
-static void resched_task(struct task_struct *p)
+static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
- int cpu;
+ u64 now = rq_clock(rq);
- assert_spin_locked(&task_rq(p)->lock);
+ if (p->state == TASK_UNINTERRUPTIBLE)
+ rq->nr_uninterruptible++;
- if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
- return;
-
- set_tsk_thread_flag(p, TIF_NEED_RESCHED);
-
- cpu = task_cpu(p);
- if (cpu == smp_processor_id())
- return;
-
- /* NEED_RESCHED must be visible before we test polling */
- smp_mb();
- if (!tsk_is_polling(p))
- smp_send_reschedule(cpu);
+ dequeue_task(rq, p, sleep, now);
+ dec_nr_running(p, rq, now);
}
-static void resched_cpu(int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
-
- if (!spin_trylock_irqsave(&rq->lock, flags))
- return;
- resched_task(cpu_curr(cpu));
- spin_unlock_irqrestore(&rq->lock, flags);
-}
-#else
-static inline void resched_task(struct task_struct *p)
-{
- assert_spin_locked(&task_rq(p)->lock);
- set_tsk_need_resched(p);
-}
-#endif
-
/**
* task_curr - is this task currently executing on a CPU?
* @p: the task in question.
@@ -1107,10 +952,42 @@ inline int task_curr(const struct task_struct *p)
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
- return cpu_rq(cpu)->raw_weighted_load;
+ return cpu_rq(cpu)->ls.load.weight;
+}
+
+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+#ifdef CONFIG_SMP
+ task_thread_info(p)->cpu = cpu;
+ set_task_cfs_rq(p);
+#endif
}
#ifdef CONFIG_SMP
+
+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
+{
+ int old_cpu = task_cpu(p);
+ struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
+ u64 clock_offset, fair_clock_offset;
+
+ clock_offset = old_rq->clock - new_rq->clock;
+ fair_clock_offset = old_rq->cfs.fair_clock -
+ new_rq->cfs.fair_clock;
+ if (p->se.wait_start)
+ p->se.wait_start -= clock_offset;
+ if (p->se.wait_start_fair)
+ p->se.wait_start_fair -= fair_clock_offset;
+ if (p->se.sleep_start)
+ p->se.sleep_start -= clock_offset;
+ if (p->se.block_start)
+ p->se.block_start -= clock_offset;
+ if (p->se.sleep_start_fair)
+ p->se.sleep_start_fair -= fair_clock_offset;
+
+ __set_task_cpu(p, new_cpu);
+}
+
struct migration_req {
struct list_head list;
@@ -1133,7 +1010,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
* If the task is not on a runqueue (and not running), then
* it is sufficient to simply update the task's cpu field.
*/
- if (!p->array && !task_running(rq, p)) {
+ if (!p->se.on_rq && !task_running(rq, p)) {
set_task_cpu(p, dest_cpu);
return 0;
}
@@ -1158,9 +1035,8 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
void wait_task_inactive(struct task_struct *p)
{
unsigned long flags;
+ int running, on_rq;
struct rq *rq;
- struct prio_array *array;
- int running;
repeat:
/*
@@ -1192,7 +1068,7 @@ repeat:
*/
rq = task_rq_lock(p, &flags);
running = task_running(rq, p);
- array = p->array;
+ on_rq = p->se.on_rq;
task_rq_unlock(rq, &flags);
/*
@@ -1215,7 +1091,7 @@ repeat:
* running right now), it's preempted, and we should
* yield - it could be a while.
*/
- if (unlikely(array)) {
+ if (unlikely(on_rq)) {
yield();
goto repeat;
}
@@ -1261,11 +1137,12 @@ void kick_process(struct task_struct *p)
static inline unsigned long source_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
+ unsigned long total = weighted_cpuload(cpu);
if (type == 0)
- return rq->raw_weighted_load;
+ return total;
- return min(rq->cpu_load[type-1], rq->raw_weighted_load);
+ return min(rq->cpu_load[type-1], total);
}
/*
@@ -1275,11 +1152,12 @@ static inline unsigned long source_load(int cpu, int type)
static inline unsigned long target_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
+ unsigned long total = weighted_cpuload(cpu);
if (type == 0)
- return rq->raw_weighted_load;
+ return total;
- return max(rq->cpu_load[type-1], rq->raw_weighted_load);
+ return max(rq->cpu_load[type-1], total);
}
/*
@@ -1288,9 +1166,10 @@ static inline unsigned long target_load(int cpu, int type)
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
struct rq *rq = cpu_rq(cpu);
+ unsigned long total = weighted_cpuload(cpu);
unsigned long n = rq->nr_running;
- return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
+ return n ? total / n : SCHED_LOAD_SCALE;
}
/*
@@ -1392,9 +1271,9 @@ static int sched_balance_self(int cpu, int flag)
struct sched_domain *tmp, *sd = NULL;
for_each_domain(cpu, tmp) {
- /*
- * If power savings logic is enabled for a domain, stop there.
- */
+ /*
+ * If power savings logic is enabled for a domain, stop there.
+ */
if (tmp->flags & SD_POWERSAVINGS_BALANCE)
break;
if (tmp->flags & flag)
@@ -1477,9 +1356,9 @@ static int wake_idle(int cpu, struct task_struct *p)
if (idle_cpu(i))
return i;
}
- }
- else
+ } else {
break;
+ }
}
return cpu;
}
@@ -1521,7 +1400,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
if (!(old_state & state))
goto out;
- if (p->array)
+ if (p->se.on_rq)
goto out_running;
cpu = task_cpu(p);
@@ -1576,11 +1455,11 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
* of the current CPU:
*/
if (sync)
- tl -= current->load_weight;
+ tl -= current->se.load.weight;
if ((tl <= load &&
tl + target_load(cpu, idx) <= tl_per_task) ||
- 100*(tl + p->load_weight) <= imbalance*load) {
+ 100*(tl + p->se.load.weight) <= imbalance*load) {
/*
* This domain has SD_WAKE_AFFINE and
* p is cache cold in this domain, and
@@ -1614,7 +1493,7 @@ out_set_cpu:
old_state = p->state;
if (!(old_state & state))
goto out;
- if (p->array)
+ if (p->se.on_rq)
goto out_running;
this_cpu = smp_processor_id();
@@ -1623,25 +1502,7 @@ out_set_cpu:
out_activate:
#endif /* CONFIG_SMP */
- if (old_state == TASK_UNINTERRUPTIBLE) {
- rq->nr_uninterruptible--;
- /*
- * Tasks on involuntary sleep don't earn
- * sleep_avg beyond just interactive state.
- */
- p->sleep_type = SLEEP_NONINTERACTIVE;
- } else
-
- /*
- * Tasks that have marked their sleep as noninteractive get
- * woken up with their sleep average not weighted in an
- * interactive way.
- */
- if (old_state & TASK_NONINTERACTIVE)
- p->sleep_type = SLEEP_NONINTERACTIVE;
-
-
- activate_task(p, rq, cpu == this_cpu);
+ activate_task(rq, p, 1);
/*
* Sync wakeups (i.e. those types of wakeups where the waker
* has indicated that it will leave the CPU in short order)
@@ -1650,10 +1511,8 @@ out_activate:
* the waker guarantees that the freshly woken up task is going
* to be considered on this CPU.)
*/
- if (!sync || cpu != this_cpu) {
- if (TASK_PREEMPTS_CURR(p, rq))
- resched_task(rq->curr);
- }
+ if (!sync || cpu != this_cpu)
+ check_preempt_curr(rq, p);
success = 1;
out_running:
@@ -1676,19 +1535,36 @@ int fastcall wake_up_state(struct task_struct *p, unsigned int state)
return try_to_wake_up(p, state, 0);
}
-static void task_running_tick(struct rq *rq, struct task_struct *p);
/*
* Perform scheduler related setup for a newly forked process p.
* p is forked by current.
- */
-void fastcall sched_fork(struct task_struct *p, int clone_flags)
-{
- int cpu = get_cpu();
+ *
+ * __sched_fork() is basic setup used by init_idle() too:
+ */
+static void __sched_fork(struct task_struct *p)
+{
+ p->se.wait_start_fair = 0;
+ p->se.wait_start = 0;
+ p->se.exec_start = 0;
+ p->se.sum_exec_runtime = 0;
+ p->se.delta_exec = 0;
+ p->se.delta_fair_run = 0;
+ p->se.delta_fair_sleep = 0;
+ p->se.wait_runtime = 0;
+ p->se.sum_wait_runtime = 0;
+ p->se.sum_sleep_runtime = 0;
+ p->se.sleep_start = 0;
+ p->se.sleep_start_fair = 0;
+ p->se.block_start = 0;
+ p->se.sleep_max = 0;
+ p->se.block_max = 0;
+ p->se.exec_max = 0;
+ p->se.wait_max = 0;
+ p->se.wait_runtime_overruns = 0;
+ p->se.wait_runtime_underruns = 0;
-#ifdef CONFIG_SMP
- cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
-#endif
- set_task_cpu(p, cpu);
+ INIT_LIST_HEAD(&p->run_list);
+ p->se.on_rq = 0;
/*
* We mark the process as running here, but have not actually
@@ -1697,16 +1573,29 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
* event cannot wake it up and insert it on the runqueue either.
*/
p->state = TASK_RUNNING;
+}
+
+/*
+ * fork()/clone()-time setup:
+ */
+void sched_fork(struct task_struct *p, int clone_flags)
+{
+ int cpu = get_cpu();
+
+ __sched_fork(p);
+
+#ifdef CONFIG_SMP
+ cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
+#endif
+ __set_task_cpu(p, cpu);
/*
* Make sure we do not leak PI boosting priority to the child:
*/
p->prio = current->normal_prio;
- INIT_LIST_HEAD(&p->run_list);
- p->array = NULL;
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
- if (unlikely(sched_info_on()))
+ if (likely(sched_info_on()))
memset(&p->sched_info, 0, sizeof(p->sched_info));
#endif
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
@@ -1716,34 +1605,16 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
/* Want to start with kernel preemption disabled. */
task_thread_info(p)->preempt_count = 1;
#endif
- /*
- * Share the timeslice between parent and child, thus the
- * total amount of pending timeslices in the system doesn't change,
- * resulting in more scheduling fairness.
- */
- local_irq_disable();
- p->time_slice = (current->time_slice + 1) >> 1;
- /*
- * The remainder of the first timeslice might be recovered by
- * the parent if the child exits early enough.
- */
- p->first_time_slice = 1;
- current->time_slice >>= 1;
- p->timestamp = sched_clock();
- if (unlikely(!current->time_slice)) {
- /*
- * This case is rare, it happens when the parent has only
- * a single jiffy left from its timeslice. Taking the
- * runqueue lock is not a problem.
- */
- current->time_slice = 1;
- task_running_tick(cpu_rq(cpu), current);
- }
- local_irq_enable();
put_cpu();
}
/*
+ * After fork, child runs first. (default) If set to 0 then
+ * parent will (try to) run first.
+ */
+unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
+
+/*
* wake_up_new_task - wake up a newly created task for the first time.
*
* This function will do some initial scheduler statistics housekeeping
@@ -1752,107 +1623,27 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
*/
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
{
- struct rq *rq, *this_rq;
unsigned long flags;
- int this_cpu, cpu;
+ struct rq *rq;
+ int this_cpu;
rq = task_rq_lock(p, &flags);
BUG_ON(p->state != TASK_RUNNING);
- this_cpu = smp_processor_id();
- cpu = task_cpu(p);
-
- /*
- * We decrease the sleep average of forking parents
- * and children as well, to keep max-interactive tasks
- * from forking tasks that are max-interactive. The parent
- * (current) is done further down, under its lock.
- */
- p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
- CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
+ this_cpu = smp_processor_id(); /* parent's CPU */
p->prio = effective_prio(p);
- if (likely(cpu == this_cpu)) {
- if (!(clone_flags & CLONE_VM)) {
- /*
- * The VM isn't cloned, so we're in a good position to
- * do child-runs-first in anticipation of an exec. This
- * usually avoids a lot of COW overhead.
- */
- if (unlikely(!current->array))
- __activate_task(p, rq);
- else {
- p->prio = current->prio;
- p->normal_prio = current->normal_prio;
- list_add_tail(&p->run_list, &current->run_list);
- p->array = current->array;
- p->array->nr_active++;
- inc_nr_running(p, rq);
- }
- set_need_resched();
- } else
- /* Run child last */
- __activate_task(p, rq);
- /*
- * We skip the following code due to cpu == this_cpu
- *
- * task_rq_unlock(rq, &flags);
- * this_rq = task_rq_lock(current, &flags);
- */
- this_rq = rq;
+ if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
+ task_cpu(p) != this_cpu || !current->se.on_rq) {
+ activate_task(rq, p, 0);
} else {
- this_rq = cpu_rq(this_cpu);
-
/*
- * Not the local CPU - must adjust timestamp. This should
- * get optimised away in the !CONFIG_SMP case.
+ * Let the scheduling class do new task startup
+ * management (if any):
*/
- p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
- + rq->most_recent_timestamp;
- __activate_task(p, rq);
- if (TASK_PREEMPTS_CURR(p, rq))
- resched_task(rq->curr);
-
- /*
- * Parent and child are on different CPUs, now get the
- * parent runqueue to update the parent's ->sleep_avg:
- */
- task_rq_unlock(rq, &flags);
- this_rq = task_rq_lock(current, &flags);
- }
- current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
- PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
- task_rq_unlock(this_rq, &flags);
-}
-
-/*
- * Potentially available exiting-child timeslices are
- * retrieved here - this way the parent does not get
- * penalized for creating too many threads.
- *
- * (this cannot be used to 'generate' timeslices
- * artificially, because any timeslice recovered here
- * was given away by the parent in the first place.)
- */
-void fastcall sched_exit(struct task_struct *p)
-{
- unsigned long flags;
- struct rq *rq;
-
- /*
- * If the child was a (relative-) CPU hog then decrease
- * the sleep_avg of the parent as well.
- */
- rq = task_rq_lock(p->parent, &flags);
- if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
- p->parent->time_slice += p->time_slice;
- if (unlikely(p->parent->time_slice > task_timeslice(p)))
- p->parent->time_slice = task_timeslice(p);
+ p->sched_class->task_new(rq, p);
}
- if (p->sleep_avg < p->parent->sleep_avg)
- p->parent->sleep_avg = p->parent->sleep_avg /
- (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
- (EXIT_WEIGHT + 1);
+ check_preempt_curr(rq, p);
task_rq_unlock(rq, &flags);
}
@@ -1917,7 +1708,7 @@ static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
/*
* Remove function-return probe instances associated with this
* task and put them back on the free list.
- */
+ */
kprobe_flush_task(prev);
put_task_struct(prev);
}
@@ -1945,13 +1736,15 @@ asmlinkage void schedule_tail(struct task_struct *prev)
* context_switch - switch to the new MM and the new
* thread's register state.
*/
-static inline struct task_struct *
+static inline void
context_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next)
{
- struct mm_struct *mm = next->mm;
- struct mm_struct *oldmm = prev->active_mm;
+ struct mm_struct *mm, *oldmm;
+ prepare_task_switch(rq, next);
+ mm = next->mm;
+ oldmm = prev->active_mm;
/*
* For paravirt, this is coupled with an exit in switch_to to
* combine the page table reload and the switch backend into
@@ -1959,16 +1752,15 @@ context_switch(struct rq *rq, struct task_struct *prev,
*/
arch_enter_lazy_cpu_mode();
- if (!mm) {
+ if (unlikely(!mm)) {
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next);
} else
switch_mm(oldmm, mm, next);
- if (!prev->mm) {
+ if (unlikely(!prev->mm)) {
prev->active_mm = NULL;
- WARN_ON(rq->prev_mm);
rq->prev_mm = oldmm;
}
/*
@@ -1984,7 +1776,13 @@ context_switch(struct rq *rq, struct task_struct *prev,
/* Here we just switch the register state and the stack. */
switch_to(prev, next, prev);
- return prev;
+ barrier();
+ /*
+ * this_rq must be evaluated again because prev may have moved
+ * CPUs since it called schedule(), thus the 'rq' on its stack
+ * frame will be invalid.
+ */
+ finish_task_switch(this_rq(), prev);
}
/*
@@ -2057,17 +1855,65 @@ unsigned long nr_active(void)
return running + uninterruptible;
}
-#ifdef CONFIG_SMP
-
/*
- * Is this task likely cache-hot:
+ * Update rq->cpu_load[] statistics. This function is usually called every
+ * scheduler tick (TICK_NSEC).
*/
-static inline int
-task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
+static void update_cpu_load(struct rq *this_rq)
{
- return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
+ u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
+ unsigned long total_load = this_rq->ls.load.weight;
+ unsigned long this_load = total_load;
+ struct load_stat *ls = &this_rq->ls;
+ u64 now = __rq_clock(this_rq);
+ int i, scale;
+
+ this_rq->nr_load_updates++;
+ if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
+ goto do_avg;
+
+ /* Update delta_fair/delta_exec fields first */
+ update_curr_load(this_rq, now);
+
+ fair_delta64 = ls->delta_fair + 1;
+ ls->delta_fair = 0;
+
+ exec_delta64 = ls->delta_exec + 1;
+ ls->delta_exec = 0;
+
+ sample_interval64 = now - ls->load_update_last;
+ ls->load_update_last = now;
+
+ if ((s64)sample_interval64 < (s64)TICK_NSEC)
+ sample_interval64 = TICK_NSEC;
+
+ if (exec_delta64 > sample_interval64)
+ exec_delta64 = sample_interval64;
+
+ idle_delta64 = sample_interval64 - exec_delta64;
+
+ tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
+ tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
+
+ this_load = (unsigned long)tmp64;
+
+do_avg:
+
+ /* Update our load: */
+ for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
+ unsigned long old_load, new_load;
+
+ /* scale is effectively 1 << i now, and >> i divides by scale */
+
+ old_load = this_rq->cpu_load[i];
+ new_load = this_load;
+
+ this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
+ }
}
+#ifdef CONFIG_SMP
+
/*
* double_rq_lock - safely lock two runqueues
*
@@ -2184,23 +2030,17 @@ void sched_exec(void)
* pull_task - move a task from a remote runqueue to the local runqueue.
* Both runqueues must be locked.
*/
-static void pull_task(struct rq *src_rq, struct prio_array *src_array,
- struct task_struct *p, struct rq *this_rq,
- struct prio_array *this_array, int this_cpu)
+static void pull_task(struct rq *src_rq, struct task_struct *p,
+ struct rq *this_rq, int this_cpu)
{
- dequeue_task(p, src_array);
- dec_nr_running(p, src_rq);
+ deactivate_task(src_rq, p, 0);
set_task_cpu(p, this_cpu);
- inc_nr_running(p, this_rq);
- enqueue_task(p, this_array);
- p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
- + this_rq->most_recent_timestamp;
+ activate_task(this_rq, p, 0);
/*
* Note that idle threads have a prio of MAX_PRIO, for this test
* to be always true for them.
*/
- if (TASK_PREEMPTS_CURR(p, this_rq))
- resched_task(this_rq->curr);
+ check_preempt_curr(this_rq, p);
}
/*
@@ -2208,7 +2048,7 @@ static void pull_task(struct rq *src_rq, struct prio_array *src_array,
*/
static
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
- struct sched_domain *sd, enum idle_type idle,
+ struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned)
{
/*
@@ -2225,132 +2065,67 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
return 0;
/*
- * Aggressive migration if:
- * 1) task is cache cold, or
- * 2) too many balance attempts have failed.
+ * Aggressive migration if too many balance attempts have failed:
*/
-
- if (sd->nr_balance_failed > sd->cache_nice_tries) {
-#ifdef CONFIG_SCHEDSTATS
- if (task_hot(p, rq->most_recent_timestamp, sd))
- schedstat_inc(sd, lb_hot_gained[idle]);
-#endif
+ if (sd->nr_balance_failed > sd->cache_nice_tries)
return 1;
- }
- if (task_hot(p, rq->most_recent_timestamp, sd))
- return 0;
return 1;
}
-#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
-
-/*
- * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
- * load from busiest to this_rq, as part of a balancing operation within
- * "domain". Returns the number of tasks moved.
- *
- * Called with both runqueues locked.
- */
-static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_nr_move, unsigned long max_load_move,
- struct sched_domain *sd, enum idle_type idle,
- int *all_pinned)
+ struct sched_domain *sd, enum cpu_idle_type idle,
+ int *all_pinned, unsigned long *load_moved,
+ int this_best_prio, int best_prio, int best_prio_seen,
+ struct rq_iterator *iterator)
{
- int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
- best_prio_seen, skip_for_load;
- struct prio_array *array, *dst_array;
- struct list_head *head, *curr;
- struct task_struct *tmp;
- long rem_load_move;
+ int pulled = 0, pinned = 0, skip_for_load;
+ struct task_struct *p;
+ long rem_load_move = max_load_move;
if (max_nr_move == 0 || max_load_move == 0)
goto out;
- rem_load_move = max_load_move;
pinned = 1;
- this_best_prio = rq_best_prio(this_rq);
- best_prio = rq_best_prio(busiest);
- /*
- * Enable handling of the case where there is more than one task
- * with the best priority. If the current running task is one
- * of those with prio==best_prio we know it won't be moved
- * and therefore it's safe to override the skip (based on load) of
- * any task we find with that prio.
- */
- best_prio_seen = best_prio == busiest->curr->prio;
/*
- * We first consider expired tasks. Those will likely not be
- * executed in the near future, and they are most likely to
- * be cache-cold, thus switching CPUs has the least effect
- * on them.
+ * Start the load-balancing iterator:
*/
- if (busiest->expired->nr_active) {
- array = busiest->expired;
- dst_array = this_rq->expired;
- } else {
- array = busiest->active;
- dst_array = this_rq->active;
- }
-
-new_array:
- /* Start searching at priority 0: */
- idx = 0;
-skip_bitmap:
- if (!idx)
- idx = sched_find_first_bit(array->bitmap);
- else
- idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
- if (idx >= MAX_PRIO) {
- if (array == busiest->expired && busiest->active->nr_active) {
- array = busiest->active;
- dst_array = this_rq->active;
- goto new_array;
- }
+ p = iterator->start(iterator->arg);
+next:
+ if (!p)
goto out;
- }
-
- head = array->queue + idx;
- curr = head->prev;
-skip_queue:
- tmp = list_entry(curr, struct task_struct, run_list);
-
- curr = curr->prev;
-
/*
* To help distribute high priority tasks accross CPUs we don't
* skip a task if it will be the highest priority task (i.e. smallest
* prio value) on its new queue regardless of its load weight
*/
- skip_for_load = tmp->load_weight > rem_load_move;
- if (skip_for_load && idx < this_best_prio)
- skip_for_load = !best_prio_seen && idx == best_prio;
+ skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
+ SCHED_LOAD_SCALE_FUZZ;
+ if (skip_for_load && p->prio < this_best_prio)
+ skip_for_load = !best_prio_seen && p->prio == best_prio;
if (skip_for_load ||
- !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
+ !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
- best_prio_seen |= idx == best_prio;
- if (curr != head)
- goto skip_queue;
- idx++;
- goto skip_bitmap;
+ best_prio_seen |= p->prio == best_prio;
+ p = iterator->next(iterator->arg);
+ goto next;
}
- pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
+ pull_task(busiest, p, this_rq, this_cpu);
pulled++;
- rem_load_move -= tmp->load_weight;
+ rem_load_move -= p->se.load.weight;
/*
* We only want to steal up to the prescribed number of tasks
* and the prescribed amount of weighted load.
*/
if (pulled < max_nr_move && rem_load_move > 0) {
- if (idx < this_best_prio)
- this_best_prio = idx;
- if (curr != head)
- goto skip_queue;
- idx++;
- goto skip_bitmap;
+ if (p->prio < this_best_prio)
+ this_best_prio = p->prio;
+ p = iterator->next(iterator->arg);
+ goto next;
}
out:
/*
@@ -2362,18 +2137,48 @@ out:
if (all_pinned)
*all_pinned = pinned;
+ *load_moved = max_load_move - rem_load_move;
return pulled;
}
/*
+ * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
+ * load from busiest to this_rq, as part of a balancing operation within
+ * "domain". Returns the number of tasks moved.
+ *
+ * Called with both runqueues locked.
+ */
+static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+ unsigned long max_nr_move, unsigned long max_load_move,
+ struct sched_domain *sd, enum cpu_idle_type idle,
+ int *all_pinned)
+{
+ struct sched_class *class = sched_class_highest;
+ unsigned long load_moved, total_nr_moved = 0, nr_moved;
+ long rem_load_move = max_load_move;
+
+ do {
+ nr_moved = class->load_balance(this_rq, this_cpu, busiest,
+ max_nr_move, (unsigned long)rem_load_move,
+ sd, idle, all_pinned, &load_moved);
+ total_nr_moved += nr_moved;
+ max_nr_move -= nr_moved;
+ rem_load_move -= load_moved;
+ class = class->next;
+ } while (class && max_nr_move && rem_load_move > 0);
+
+ return total_nr_moved;
+}
+
+/*
* find_busiest_group finds and returns the busiest CPU group within the
* domain. It calculates and returns the amount of weighted load which
* should be moved to restore balance via the imbalance parameter.
*/
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
- unsigned long *imbalance, enum idle_type idle, int *sd_idle,
- cpumask_t *cpus, int *balance)
+ unsigned long *imbalance, enum cpu_idle_type idle,
+ int *sd_idle, cpumask_t *cpus, int *balance)
{
struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
unsigned long max_load, avg_load, total_load, this_load, total_pwr;
@@ -2391,9 +2196,9 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
max_load = this_load = total_load = total_pwr = 0;
busiest_load_per_task = busiest_nr_running = 0;
this_load_per_task = this_nr_running = 0;
- if (idle == NOT_IDLE)
+ if (idle == CPU_NOT_IDLE)
load_idx = sd->busy_idx;
- else if (idle == NEWLY_IDLE)
+ else if (idle == CPU_NEWLY_IDLE)
load_idx = sd->newidle_idx;
else
load_idx = sd->idle_idx;
@@ -2437,7 +2242,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
avg_load += load;
sum_nr_running += rq->nr_running;
- sum_weighted_load += rq->raw_weighted_load;
+ sum_weighted_load += weighted_cpuload(i);
}
/*
@@ -2477,8 +2282,9 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
* Busy processors will not participate in power savings
* balance.
*/
- if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
- goto group_next;
+ if (idle == CPU_NOT_IDLE ||
+ !(sd->flags & SD_POWERSAVINGS_BALANCE))
+ goto group_next;
/*
* If the local group is idle or completely loaded
@@ -2488,42 +2294,42 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
!this_nr_running))
power_savings_balance = 0;
- /*
+ /*
* If a group is already running at full capacity or idle,
* don't include that group in power savings calculations
- */
- if (!power_savings_balance || sum_nr_running >= group_capacity
+ */
+ if (!power_savings_balance || sum_nr_running >= group_capacity
|| !sum_nr_running)
- goto group_next;
+ goto group_next;
- /*
+ /*
* Calculate the group which has the least non-idle load.
- * This is the group from where we need to pick up the load
- * for saving power
- */
- if ((sum_nr_running < min_nr_running) ||
- (sum_nr_running == min_nr_running &&
+ * This is the group from where we need to pick up the load
+ * for saving power
+ */
+ if ((sum_nr_running < min_nr_running) ||
+ (sum_nr_running == min_nr_running &&
first_cpu(group->cpumask) <
first_cpu(group_min->cpumask))) {
- group_min = group;
- min_nr_running = sum_nr_running;
+ group_min = group;
+ min_nr_running = sum_nr_running;
min_load_per_task = sum_weighted_load /
sum_nr_running;
- }
+ }
- /*
+ /*
* Calculate the group which is almost near its
- * capacity but still has some space to pick up some load
- * from other group and save more power
- */
- if (sum_nr_running <= group_capacity - 1) {
- if (sum_nr_running > leader_nr_running ||
- (sum_nr_running == leader_nr_running &&
- first_cpu(group->cpumask) >
- first_cpu(group_leader->cpumask))) {
- group_leader = group;
- leader_nr_running = sum_nr_running;
- }
+ * capacity but still has some space to pick up some load
+ * from other group and save more power
+ */
+ if (sum_nr_running <= group_capacity - 1) {
+ if (sum_nr_running > leader_nr_running ||
+ (sum_nr_running == leader_nr_running &&
+ first_cpu(group->cpumask) >
+ first_cpu(group_leader->cpumask))) {
+ group_leader = group;
+ leader_nr_running = sum_nr_running;
+ }
}
group_next:
#endif
@@ -2578,7 +2384,7 @@ group_next:
* a think about bumping its value to force at least one task to be
* moved
*/
- if (*imbalance < busiest_load_per_task) {
+ if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
unsigned long tmp, pwr_now, pwr_move;
unsigned int imbn;
@@ -2592,7 +2398,8 @@ small_imbalance:
} else
this_load_per_task = SCHED_LOAD_SCALE;
- if (max_load - this_load >= busiest_load_per_task * imbn) {
+ if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
+ busiest_load_per_task * imbn) {
*imbalance = busiest_load_per_task;
return busiest;
}
@@ -2639,7 +2446,7 @@ small_imbalance:
out_balanced:
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
+ if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
goto ret;
if (this == group_leader && group_leader != group_min) {
@@ -2656,7 +2463,7 @@ ret:
* find_busiest_queue - find the busiest runqueue among the cpus in group.
*/
static struct rq *
-find_busiest_queue(struct sched_group *group, enum idle_type idle,
+find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
unsigned long imbalance, cpumask_t *cpus)
{
struct rq *busiest = NULL, *rq;
@@ -2664,17 +2471,19 @@ find_busiest_queue(struct sched_group *group, enum idle_type idle,
int i;
for_each_cpu_mask(i, group->cpumask) {
+ unsigned long wl;
if (!cpu_isset(i, *cpus))
continue;
rq = cpu_rq(i);
+ wl = weighted_cpuload(i);
- if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
+ if (rq->nr_running == 1 && wl > imbalance)
continue;
- if (rq->raw_weighted_load > max_load) {
- max_load = rq->raw_weighted_load;
+ if (wl > max_load) {
+ max_load = wl;
busiest = rq;
}
}
@@ -2698,7 +2507,7 @@ static inline unsigned long minus_1_or_zero(unsigned long n)
* tasks if there is an imbalance.
*/
static int load_balance(int this_cpu, struct rq *this_rq,
- struct sched_domain *sd, enum idle_type idle,
+ struct sched_domain *sd, enum cpu_idle_type idle,
int *balance)
{
int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
@@ -2711,10 +2520,10 @@ static int load_balance(int this_cpu, struct rq *this_rq,
/*
* When power savings policy is enabled for the parent domain, idle
* sibling can pick up load irrespective of busy siblings. In this case,
- * let the state of idle sibling percolate up as IDLE, instead of
- * portraying it as NOT_IDLE.
+ * let the state of idle sibling percolate up as CPU_IDLE, instead of
+ * portraying it as CPU_NOT_IDLE.
*/
- if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
+ if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
sd_idle = 1;
@@ -2848,7 +2657,7 @@ out_one_pinned:
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*
- * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
+ * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
* this_rq is locked.
*/
static int
@@ -2865,31 +2674,31 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
* When power savings policy is enabled for the parent domain, idle
* sibling can pick up load irrespective of busy siblings. In this case,
* let the state of idle sibling percolate up as IDLE, instead of
- * portraying it as NOT_IDLE.
+ * portraying it as CPU_NOT_IDLE.
*/
if (sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
sd_idle = 1;
- schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
+ schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
redo:
- group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
+ group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
&sd_idle, &cpus, NULL);
if (!group) {
- schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
+ schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
goto out_balanced;
}
- busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
+ busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
&cpus);
if (!busiest) {
- schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
+ schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
goto out_balanced;
}
BUG_ON(busiest == this_rq);
- schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
+ schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
nr_moved = 0;
if (busiest->nr_running > 1) {
@@ -2897,7 +2706,7 @@ redo:
double_lock_balance(this_rq, busiest);
nr_moved = move_tasks(this_rq, this_cpu, busiest,
minus_1_or_zero(busiest->nr_running),
- imbalance, sd, NEWLY_IDLE, NULL);
+ imbalance, sd, CPU_NEWLY_IDLE, NULL);
spin_unlock(&busiest->lock);
if (!nr_moved) {
@@ -2908,7 +2717,7 @@ redo:
}
if (!nr_moved) {
- schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
+ schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return -1;
@@ -2918,7 +2727,7 @@ redo:
return nr_moved;
out_balanced:
- schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
+ schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return -1;
@@ -2934,8 +2743,8 @@ out_balanced:
static void idle_balance(int this_cpu, struct rq *this_rq)
{
struct sched_domain *sd;
- int pulled_task = 0;
- unsigned long next_balance = jiffies + 60 * HZ;
+ int pulled_task = -1;
+ unsigned long next_balance = jiffies + HZ;
for_each_domain(this_cpu, sd) {
unsigned long interval;
@@ -2954,12 +2763,13 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
if (pulled_task)
break;
}
- if (!pulled_task)
+ if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
/*
* We are going idle. next_balance may be set based on
* a busy processor. So reset next_balance.
*/
this_rq->next_balance = next_balance;
+ }
}
/*
@@ -3003,7 +2813,7 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
schedstat_inc(sd, alb_cnt);
if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
- RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
+ RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
NULL))
schedstat_inc(sd, alb_pushed);
else
@@ -3012,32 +2822,6 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
spin_unlock(&target_rq->lock);
}
-static void update_load(struct rq *this_rq)
-{
- unsigned long this_load;
- unsigned int i, scale;
-
- this_load = this_rq->raw_weighted_load;
-
- /* Update our load: */
- for (i = 0, scale = 1; i < 3; i++, scale += scale) {
- unsigned long old_load, new_load;
-
- /* scale is effectively 1 << i now, and >> i divides by scale */
-
- old_load = this_rq->cpu_load[i];
- new_load = this_load;
- /*
- * Round up the averaging division if load is increasing. This
- * prevents us from getting stuck on 9 if the load is 10, for
- * example.
- */
- if (new_load > old_load)
- new_load += scale-1;
- this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
- }
-}
-
#ifdef CONFIG_NO_HZ
static struct {
atomic_t load_balancer;
@@ -3120,7 +2904,7 @@ static DEFINE_SPINLOCK(balancing);
*
* Balancing parameters are set up in arch_init_sched_domains.
*/
-static inline void rebalance_domains(int cpu, enum idle_type idle)
+static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
int balance = 1;
struct rq *rq = cpu_rq(cpu);
@@ -3134,13 +2918,16 @@ static inline void rebalance_domains(int cpu, enum idle_type idle)
continue;
interval = sd->balance_interval;
- if (idle != SCHED_IDLE)
+ if (idle != CPU_IDLE)
interval *= sd->busy_factor;
/* scale ms to jiffies */
interval = msecs_to_jiffies(interval);
if (unlikely(!interval))
interval = 1;
+ if (interval > HZ*NR_CPUS/10)
+ interval = HZ*NR_CPUS/10;
+
if (sd->flags & SD_SERIALIZE) {
if (!spin_trylock(&balancing))
@@ -3154,7 +2941,7 @@ static inline void rebalance_domains(int cpu, enum idle_type idle)
* longer idle, or one of our SMT siblings is
* not idle.
*/
- idle = NOT_IDLE;
+ idle = CPU_NOT_IDLE;
}
sd->last_balance = jiffies;
}
@@ -3182,11 +2969,12 @@ out:
*/
static void run_rebalance_domains(struct softirq_action *h)
{
- int local_cpu = smp_processor_id();
- struct rq *local_rq = cpu_rq(local_cpu);
- enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
+ int this_cpu = smp_processor_id();
+ struct rq *this_rq = cpu_rq(this_cpu);
+ enum cpu_idle_type idle = this_rq->idle_at_tick ?
+ CPU_IDLE : CPU_NOT_IDLE;
- rebalance_domains(local_cpu, idle);
+ rebalance_domains(this_cpu, idle);
#ifdef CONFIG_NO_HZ
/*
@@ -3194,13 +2982,13 @@ static void run_rebalance_domains(struct softirq_action *h)
* balancing on behalf of the other idle cpus whose ticks are
* stopped.
*/
- if (local_rq->idle_at_tick &&
- atomic_read(&nohz.load_balancer) == local_cpu) {
+ if (this_rq->idle_at_tick &&
+ atomic_read(&nohz.load_balancer) == this_cpu) {
cpumask_t cpus = nohz.cpu_mask;
struct rq *rq;
int balance_cpu;
- cpu_clear(local_cpu, cpus);
+ cpu_clear(this_cpu, cpus);
for_each_cpu_mask(balance_cpu, cpus) {
/*
* If this cpu gets work to do, stop the load balancing
@@ -3213,8 +3001,8 @@ static void run_rebalance_domains(struct softirq_action *h)
rebalance_domains(balance_cpu, SCHED_IDLE);
rq = cpu_rq(balance_cpu);
- if (time_after(local_rq->next_balance, rq->next_balance))
- local_rq->next_balance = rq->next_balance;
+ if (time_after(this_rq->next_balance, rq->next_balance))
+ this_rq->next_balance = rq->next_balance;
}
}
#endif
@@ -3227,9 +3015,8 @@ static void run_rebalance_domains(struct softirq_action *h)
* idle load balancing owner or decide to stop the periodic load balancing,
* if the whole system is idle.
*/
-static inline void trigger_load_balance(int cpu)
+static inline void trigger_load_balance(struct rq *rq, int cpu)
{
- struct rq *rq = cpu_rq(cpu);
#ifdef CONFIG_NO_HZ
/*
* If we were in the nohz mode recently and busy at the current
@@ -3281,13 +3068,29 @@ static inline void trigger_load_balance(int cpu)
if (time_after_eq(jiffies, rq->next_balance))
raise_softirq(SCHED_SOFTIRQ);
}
-#else
+
+#else /* CONFIG_SMP */
+
/*
* on UP we do not need to balance between CPUs:
*/
static inline void idle_balance(int cpu, struct rq *rq)
{
}
+
+/* Avoid "used but not defined" warning on UP */
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
+ unsigned long max_nr_move, unsigned long max_load_move,
+ struct sched_domain *sd, enum cpu_idle_type idle,
+ int *all_pinned, unsigned long *load_moved,
+ int this_best_prio, int best_prio, int best_prio_seen,
+ struct rq_iterator *iterator)
+{
+ *load_moved = 0;
+
+ return 0;
+}
+
#endif
DEFINE_PER_CPU(struct kernel_stat, kstat);
@@ -3295,54 +3098,28 @@ DEFINE_PER_CPU(struct kernel_stat, kstat);
EXPORT_PER_CPU_SYMBOL(kstat);
/*
- * This is called on clock ticks and on context switches.
- * Bank in p->sched_time the ns elapsed since the last tick or switch.
- */
-static inline void
-update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
-{
- p->sched_time += now - p->last_ran;
- p->last_ran = rq->most_recent_timestamp = now;
-}
-
-/*
- * Return current->sched_time plus any more ns on the sched_clock
- * that have not yet been banked.
+ * Return p->sum_exec_runtime plus any more ns on the sched_clock
+ * that have not yet been banked in case the task is currently running.
*/
-unsigned long long current_sched_time(const struct task_struct *p)
+unsigned long long task_sched_runtime(struct task_struct *p)
{
- unsigned long long ns;
unsigned long flags;
+ u64 ns, delta_exec;
+ struct rq *rq;
- local_irq_save(flags);
- ns = p->sched_time + sched_clock() - p->last_ran;
- local_irq_restore(flags);
+ rq = task_rq_lock(p, &flags);
+ ns = p->se.sum_exec_runtime;
+ if (rq->curr == p) {
+ delta_exec = rq_clock(rq) - p->se.exec_start;
+ if ((s64)delta_exec > 0)
+ ns += delta_exec;
+ }
+ task_rq_unlock(rq, &flags);
return ns;
}
/*
- * We place interactive tasks back into the active array, if possible.
- *
- * To guarantee that this does not starve expired tasks we ignore the
- * interactivity of a task if the first expired task had to wait more
- * than a 'reasonable' amount of time. This deadline timeout is
- * load-dependent, as the frequency of array switched decreases with
- * increasing number of running tasks. We also ignore the interactivity
- * if a better static_prio task has expired:
- */
-static inline int expired_starving(struct rq *rq)
-{
- if (rq->curr->static_prio > rq->best_expired_prio)
- return 1;
- if (!STARVATION_LIMIT || !rq->expired_timestamp)
- return 0;
- if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
- return 1;
- return 0;
-}
-
-/*
* Account user cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
@@ -3415,81 +3192,6 @@ void account_steal_time(struct task_struct *p, cputime_t steal)
cpustat->steal = cputime64_add(cpustat->steal, tmp);
}
-static void task_running_tick(struct rq *rq, struct task_struct *p)
-{
- if (p->array != rq->active) {
- /* Task has expired but was not scheduled yet */
- set_tsk_need_resched(p);
- return;
- }
- spin_lock(&rq->lock);
- /*
- * The task was running during this tick - update the
- * time slice counter. Note: we do not update a thread's
- * priority until it either goes to sleep or uses up its
- * timeslice. This makes it possible for interactive tasks
- * to use up their timeslices at their highest priority levels.
- */
- if (rt_task(p)) {
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if ((p->policy == SCHED_RR) && !--p->time_slice) {
- p->time_slice = task_timeslice(p);
- p->first_time_slice = 0;
- set_tsk_need_resched(p);
-
- /* put it at the end of the queue: */
- requeue_task(p, rq->active);
- }
- goto out_unlock;
- }
- if (!--p->time_slice) {
- dequeue_task(p, rq->active);
- set_tsk_need_resched(p);
- p->prio = effective_prio(p);
- p->time_slice = task_timeslice(p);
- p->first_time_slice = 0;
-
- if (!rq->expired_timestamp)
- rq->expired_timestamp = jiffies;
- if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
- enqueue_task(p, rq->expired);
- if (p->static_prio < rq->best_expired_prio)
- rq->best_expired_prio = p->static_prio;
- } else
- enqueue_task(p, rq->active);
- } else {
- /*
- * Prevent a too long timeslice allowing a task to monopolize
- * the CPU. We do this by splitting up the timeslice into
- * smaller pieces.
- *
- * Note: this does not mean the task's timeslices expire or
- * get lost in any way, they just might be preempted by
- * another task of equal priority. (one with higher
- * priority would have preempted this task already.) We
- * requeue this task to the end of the list on this priority
- * level, which is in essence a round-robin of tasks with
- * equal priority.
- *
- * This only applies to tasks in the interactive
- * delta range with at least TIMESLICE_GRANULARITY to requeue.
- */
- if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
- p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
- (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
- (p->array == rq->active)) {
-
- requeue_task(p, rq->active);
- set_tsk_need_resched(p);
- }
- }
-out_unlock:
- spin_unlock(&rq->lock);
-}
-
/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
@@ -3499,20 +3201,19 @@ out_unlock:
*/
void scheduler_tick(void)
{
- unsigned long long now = sched_clock();
- struct task_struct *p = current;
int cpu = smp_processor_id();
- int idle_at_tick = idle_cpu(cpu);
struct rq *rq = cpu_rq(cpu);
+ struct task_struct *curr = rq->curr;
- update_cpu_clock(p, rq, now);
+ spin_lock(&rq->lock);
+ if (curr != rq->idle) /* FIXME: needed? */
+ curr->sched_class->task_tick(rq, curr);
+ update_cpu_load(rq);
+ spin_unlock(&rq->lock);
- if (!idle_at_tick)
- task_running_tick(rq, p);
#ifdef CONFIG_SMP
- update_load(rq);
- rq->idle_at_tick = idle_at_tick;
- trigger_load_balance(cpu);
+ rq->idle_at_tick = idle_cpu(cpu);
+ trigger_load_balance(rq, cpu);
#endif
}
@@ -3554,170 +3255,129 @@ EXPORT_SYMBOL(sub_preempt_count);
#endif
-static inline int interactive_sleep(enum sleep_type sleep_type)
+/*
+ * Print scheduling while atomic bug:
+ */
+static noinline void __schedule_bug(struct task_struct *prev)
{
- return (sleep_type == SLEEP_INTERACTIVE ||
- sleep_type == SLEEP_INTERRUPTED);
+ printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
+ prev->comm, preempt_count(), prev->pid);
+ debug_show_held_locks(prev);
+ if (irqs_disabled())
+ print_irqtrace_events(prev);
+ dump_stack();
}
/*
- * schedule() is the main scheduler function.
+ * Various schedule()-time debugging checks and statistics:
*/
-asmlinkage void __sched schedule(void)
+static inline void schedule_debug(struct task_struct *prev)
{
- struct task_struct *prev, *next;
- struct prio_array *array;
- struct list_head *queue;
- unsigned long long now;
- unsigned long run_time;
- int cpu, idx, new_prio;
- long *switch_count;
- struct rq *rq;
-
/*
* Test if we are atomic. Since do_exit() needs to call into
* schedule() atomically, we ignore that path for now.
* Otherwise, whine if we are scheduling when we should not be.
*/
- if (unlikely(in_atomic() && !current->exit_state)) {
- printk(KERN_ERR "BUG: scheduling while atomic: "
- "%s/0x%08x/%d\n",
- current->comm, preempt_count(), current->pid);
- debug_show_held_locks(current);
- if (irqs_disabled())
- print_irqtrace_events(current);
- dump_stack();
- }
- profile_hit(SCHED_PROFILING, __builtin_return_address(0));
+ if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
+ __schedule_bug(prev);
-need_resched:
- preempt_disable();
- prev = current;
- release_kernel_lock(prev);
-need_resched_nonpreemptible:
- rq = this_rq();
+ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
- /*
- * The idle thread is not allowed to schedule!
- * Remove this check after it has been exercised a bit.
- */
- if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
- printk(KERN_ERR "bad: scheduling from the idle thread!\n");
- dump_stack();
- }
+ schedstat_inc(this_rq(), sched_cnt);
+}
- schedstat_inc(rq, sched_cnt);
- now = sched_clock();
- if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
- run_time = now - prev->timestamp;
- if (unlikely((long long)(now - prev->timestamp) < 0))
- run_time = 0;
- } else
- run_time = NS_MAX_SLEEP_AVG;
+/*
+ * Pick up the highest-prio task:
+ */
+static inline struct task_struct *
+pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
+{
+ struct sched_class *class;
+ struct task_struct *p;
/*
- * Tasks charged proportionately less run_time at high sleep_avg to
- * delay them losing their interactive status
+ * Optimization: we know that if all tasks are in
+ * the fair class we can call that function directly:
*/
- run_time /= (CURRENT_BONUS(prev) ? : 1);
-
- spin_lock_irq(&rq->lock);
-
- switch_count = &prev->nivcsw;
- if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
- switch_count = &prev->nvcsw;
- if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
- unlikely(signal_pending(prev))))
- prev->state = TASK_RUNNING;
- else {
- if (prev->state == TASK_UNINTERRUPTIBLE)
- rq->nr_uninterruptible++;
- deactivate_task(prev, rq);
- }
- }
-
- cpu = smp_processor_id();
- if (unlikely(!rq->nr_running)) {
- idle_balance(cpu, rq);
- if (!rq->nr_running) {
- next = rq->idle;
- rq->expired_timestamp = 0;
- goto switch_tasks;
- }
+ if (likely(rq->nr_running == rq->cfs.nr_running)) {
+ p = fair_sched_class.pick_next_task(rq, now);
+ if (likely(p))
+ return p;
}
- array = rq->active;
- if (unlikely(!array->nr_active)) {
+ class = sched_class_highest;
+ for ( ; ; ) {
+ p = class->pick_next_task(rq, now);
+ if (p)
+ return p;
/*
- * Switch the active and expired arrays.
+ * Will never be NULL as the idle class always
+ * returns a non-NULL p:
*/
- schedstat_inc(rq, sched_switch);
- rq->active = rq->expired;
- rq->expired = array;
- array = rq->active;
- rq->expired_timestamp = 0;
- rq->best_expired_prio = MAX_PRIO;
+ class = class->next;
}
+}
+
+/*
+ * schedule() is the main scheduler function.
+ */
+asmlinkage void __sched schedule(void)
+{
+ struct task_struct *prev, *next;
+ long *switch_count;
+ struct rq *rq;
+ u64 now;
+ int cpu;
- idx = sched_find_first_bit(array->bitmap);
- queue = array->queue + idx;
- next = list_entry(queue->next, struct task_struct, run_list);
+need_resched:
+ preempt_disable();
+ cpu = smp_processor_id();
+ rq = cpu_rq(cpu);
+ rcu_qsctr_inc(cpu);
+ prev = rq->curr;
+ switch_count = &prev->nivcsw;
- if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
- unsigned long long delta = now - next->timestamp;
- if (unlikely((long long)(now - next->timestamp) < 0))
- delta = 0;
+ release_kernel_lock(prev);
+need_resched_nonpreemptible:
- if (next->sleep_type == SLEEP_INTERACTIVE)
- delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
+ schedule_debug(prev);
- array = next->array;
- new_prio = recalc_task_prio(next, next->timestamp + delta);
+ spin_lock_irq(&rq->lock);
+ clear_tsk_need_resched(prev);
- if (unlikely(next->prio != new_prio)) {
- dequeue_task(next, array);
- next->prio = new_prio;
- enqueue_task(next, array);
+ if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
+ if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
+ unlikely(signal_pending(prev)))) {
+ prev->state = TASK_RUNNING;
+ } else {
+ deactivate_task(rq, prev, 1);
}
+ switch_count = &prev->nvcsw;
}
- next->sleep_type = SLEEP_NORMAL;
-switch_tasks:
- if (next == rq->idle)
- schedstat_inc(rq, sched_goidle);
- prefetch(next);
- prefetch_stack(next);
- clear_tsk_need_resched(prev);
- rcu_qsctr_inc(task_cpu(prev));
- update_cpu_clock(prev, rq, now);
+ if (unlikely(!rq->nr_running))
+ idle_balance(cpu, rq);
- prev->sleep_avg -= run_time;
- if ((long)prev->sleep_avg <= 0)
- prev->sleep_avg = 0;
- prev->timestamp = prev->last_ran = now;
+ now = __rq_clock(rq);
+ prev->sched_class->put_prev_task(rq, prev, now);
+ next = pick_next_task(rq, prev, now);
sched_info_switch(prev, next);
+
if (likely(prev != next)) {
- next->timestamp = next->last_ran = now;
rq->nr_switches++;
rq->curr = next;
++*switch_count;
- prepare_task_switch(rq, next);
- prev = context_switch(rq, prev, next);
- barrier();
- /*
- * this_rq must be evaluated again because prev may have moved
- * CPUs since it called schedule(), thus the 'rq' on its stack
- * frame will be invalid.
- */
- finish_task_switch(this_rq(), prev);
+ context_switch(rq, prev, next); /* unlocks the rq */
} else
spin_unlock_irq(&rq->lock);
- prev = current;
- if (unlikely(reacquire_kernel_lock(prev) < 0))
+ if (unlikely(reacquire_kernel_lock(current) < 0)) {
+ cpu = smp_processor_id();
+ rq = cpu_rq(cpu);
goto need_resched_nonpreemptible;
+ }
preempt_enable_no_resched();
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
goto need_resched;
@@ -4045,74 +3705,85 @@ out:
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
-
-#define SLEEP_ON_VAR \
- unsigned long flags; \
- wait_queue_t wait; \
- init_waitqueue_entry(&wait, current);
-
-#define SLEEP_ON_HEAD \
- spin_lock_irqsave(&q->lock,flags); \
- __add_wait_queue(q, &wait); \
+static inline void
+sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
+{
+ spin_lock_irqsave(&q->lock, *flags);
+ __add_wait_queue(q, wait);
spin_unlock(&q->lock);
+}
-#define SLEEP_ON_TAIL \
- spin_lock_irq(&q->lock); \
- __remove_wait_queue(q, &wait); \
- spin_unlock_irqrestore(&q->lock, flags);
+static inline void
+sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
+{
+ spin_lock_irq(&q->lock);
+ __remove_wait_queue(q, wait);
+ spin_unlock_irqrestore(&q->lock, *flags);
+}
-void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
+void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
- SLEEP_ON_VAR
+ unsigned long flags;
+ wait_queue_t wait;
+
+ init_waitqueue_entry(&wait, current);
current->state = TASK_INTERRUPTIBLE;
- SLEEP_ON_HEAD
+ sleep_on_head(q, &wait, &flags);
schedule();
- SLEEP_ON_TAIL
+ sleep_on_tail(q, &wait, &flags);
}
EXPORT_SYMBOL(interruptible_sleep_on);
-long fastcall __sched
+long __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
- SLEEP_ON_VAR
+ unsigned long flags;
+ wait_queue_t wait;
+
+ init_waitqueue_entry(&wait, current);
current->state = TASK_INTERRUPTIBLE;
- SLEEP_ON_HEAD
+ sleep_on_head(q, &wait, &flags);
timeout = schedule_timeout(timeout);
- SLEEP_ON_TAIL
+ sleep_on_tail(q, &wait, &flags);
return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);
-void fastcall __sched sleep_on(wait_queue_head_t *q)
+void __sched sleep_on(wait_queue_head_t *q)
{
- SLEEP_ON_VAR
+ unsigned long flags;
+ wait_queue_t wait;
+
+ init_waitqueue_entry(&wait, current);
current->state = TASK_UNINTERRUPTIBLE;
- SLEEP_ON_HEAD
+ sleep_on_head(q, &wait, &flags);
schedule();
- SLEEP_ON_TAIL
+ sleep_on_tail(q, &wait, &flags);
}
EXPORT_SYMBOL(sleep_on);
-long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
- SLEEP_ON_VAR
+ unsigned long flags;
+ wait_queue_t wait;
+
+ init_waitqueue_entry(&wait, current);
current->state = TASK_UNINTERRUPTIBLE;
- SLEEP_ON_HEAD
+ sleep_on_head(q, &wait, &flags);
timeout = schedule_timeout(timeout);
- SLEEP_ON_TAIL
+ sleep_on_tail(q, &wait, &flags);
return timeout;
}
-
EXPORT_SYMBOL(sleep_on_timeout);
#ifdef CONFIG_RT_MUTEXES
@@ -4129,29 +3800,30 @@ EXPORT_SYMBOL(sleep_on_timeout);
*/
void rt_mutex_setprio(struct task_struct *p, int prio)
{
- struct prio_array *array;
unsigned long flags;
+ int oldprio, on_rq;
struct rq *rq;
- int oldprio;
+ u64 now;
BUG_ON(prio < 0 || prio > MAX_PRIO);
rq = task_rq_lock(p, &flags);
+ now = rq_clock(rq);
oldprio = p->prio;
- array = p->array;
- if (array)
- dequeue_task(p, array);
+ on_rq = p->se.on_rq;
+ if (on_rq)
+ dequeue_task(rq, p, 0, now);
+
+ if (rt_prio(prio))
+ p->sched_class = &rt_sched_class;
+ else
+ p->sched_class = &fair_sched_class;
+
p->prio = prio;
- if (array) {
- /*
- * If changing to an RT priority then queue it
- * in the active array!
- */
- if (rt_task(p))
- array = rq->active;
- enqueue_task(p, array);
+ if (on_rq) {
+ enqueue_task(rq, p, 0, now);
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
@@ -4160,8 +3832,9 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
if (task_running(rq, p)) {
if (p->prio > oldprio)
resched_task(rq->curr);
- } else if (TASK_PREEMPTS_CURR(p, rq))
- resched_task(rq->curr);
+ } else {
+ check_preempt_curr(rq, p);
+ }
}
task_rq_unlock(rq, &flags);
}
@@ -4170,10 +3843,10 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
void set_user_nice(struct task_struct *p, long nice)
{
- struct prio_array *array;
- int old_prio, delta;
+ int old_prio, delta, on_rq;
unsigned long flags;
struct rq *rq;
+ u64 now;
if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
return;
@@ -4182,20 +3855,21 @@ void set_user_nice(struct task_struct *p, long nice)
* the task might be in the middle of scheduling on another CPU.
*/
rq = task_rq_lock(p, &flags);
+ now = rq_clock(rq);
/*
* The RT priorities are set via sched_setscheduler(), but we still
* allow the 'normal' nice value to be set - but as expected
* it wont have any effect on scheduling until the task is
- * not SCHED_NORMAL/SCHED_BATCH:
+ * SCHED_FIFO/SCHED_RR:
*/
- if (has_rt_policy(p)) {
+ if (task_has_rt_policy(p)) {
p->static_prio = NICE_TO_PRIO(nice);
goto out_unlock;
}
- array = p->array;
- if (array) {
- dequeue_task(p, array);
- dec_raw_weighted_load(rq, p);
+ on_rq = p->se.on_rq;
+ if (on_rq) {
+ dequeue_task(rq, p, 0, now);
+ dec_load(rq, p, now);
}
p->static_prio = NICE_TO_PRIO(nice);
@@ -4204,9 +3878,9 @@ void set_user_nice(struct task_struct *p, long nice)
p->prio = effective_prio(p);
delta = p->prio - old_prio;
- if (array) {
- enqueue_task(p, array);
- inc_raw_weighted_load(rq, p);
+ if (on_rq) {
+ enqueue_task(rq, p, 0, now);
+ inc_load(rq, p, now);
/*
* If the task increased its priority or is running and
* lowered its priority, then reschedule its CPU:
@@ -4326,20 +4000,28 @@ static inline struct task_struct *find_process_by_pid(pid_t pid)
}
/* Actually do priority change: must hold rq lock. */
-static void __setscheduler(struct task_struct *p, int policy, int prio)
+static void
+__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
{
- BUG_ON(p->array);
+ BUG_ON(p->se.on_rq);
p->policy = policy;
+ switch (p->policy) {
+ case SCHED_NORMAL:
+ case SCHED_BATCH:
+ case SCHED_IDLE:
+ p->sched_class = &fair_sched_class;
+ break;
+ case SCHED_FIFO:
+ case SCHED_RR:
+ p->sched_class = &rt_sched_class;
+ break;
+ }
+
p->rt_priority = prio;
p->normal_prio = normal_prio(p);
/* we are holding p->pi_lock already */
p->prio = rt_mutex_getprio(p);
- /*
- * SCHED_BATCH tasks are treated as perpetual CPU hogs:
- */
- if (policy == SCHED_BATCH)
- p->sleep_avg = 0;
set_load_weight(p);
}
@@ -4354,8 +4036,7 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)
int sched_setscheduler(struct task_struct *p, int policy,
struct sched_param *param)
{
- int retval, oldprio, oldpolicy = -1;
- struct prio_array *array;
+ int retval, oldprio, oldpolicy = -1, on_rq;
unsigned long flags;
struct rq *rq;
@@ -4366,27 +4047,27 @@ recheck:
if (policy < 0)
policy = oldpolicy = p->policy;
else if (policy != SCHED_FIFO && policy != SCHED_RR &&
- policy != SCHED_NORMAL && policy != SCHED_BATCH)
+ policy != SCHED_NORMAL && policy != SCHED_BATCH &&
+ policy != SCHED_IDLE)
return -EINVAL;
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are
- * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
- * SCHED_BATCH is 0.
+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
+ * SCHED_BATCH and SCHED_IDLE is 0.
*/
if (param->sched_priority < 0 ||
(p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
(!p->mm && param->sched_priority > MAX_RT_PRIO-1))
return -EINVAL;
- if (is_rt_policy(policy) != (param->sched_priority != 0))
+ if (rt_policy(policy) != (param->sched_priority != 0))
return -EINVAL;
/*
* Allow unprivileged RT tasks to decrease priority:
*/
if (!capable(CAP_SYS_NICE)) {
- if (is_rt_policy(policy)) {
+ if (rt_policy(policy)) {
unsigned long rlim_rtprio;
- unsigned long flags;
if (!lock_task_sighand(p, &flags))
return -ESRCH;
@@ -4402,6 +4083,12 @@ recheck:
param->sched_priority > rlim_rtprio)
return -EPERM;
}
+ /*
+ * Like positive nice levels, dont allow tasks to
+ * move out of SCHED_IDLE either:
+ */
+ if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
+ return -EPERM;
/* can't change other user's priorities */
if ((current->euid != p->euid) &&
@@ -4429,13 +4116,13 @@ recheck:
spin_unlock_irqrestore(&p->pi_lock, flags);
goto recheck;
}
- array = p->array;
- if (array)
- deactivate_task(p, rq);
+ on_rq = p->se.on_rq;
+ if (on_rq)
+ deactivate_task(rq, p, 0);
oldprio = p->prio;
- __setscheduler(p, policy, param->sched_priority);
- if (array) {
- __activate_task(p, rq);
+ __setscheduler(rq, p, policy, param->sched_priority);
+ if (on_rq) {
+ activate_task(rq, p, 0);
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
@@ -4444,8 +4131,9 @@ recheck:
if (task_running(rq, p)) {
if (p->prio > oldprio)
resched_task(rq->curr);
- } else if (TASK_PREEMPTS_CURR(p, rq))
- resched_task(rq->curr);
+ } else {
+ check_preempt_curr(rq, p);
+ }
}
__task_rq_unlock(rq);
spin_unlock_irqrestore(&p->pi_lock, flags);
@@ -4717,41 +4405,18 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
/**
* sys_sched_yield - yield the current processor to other threads.
*
- * This function yields the current CPU by moving the calling thread
- * to the expired array. If there are no other threads running on this
- * CPU then this function will return.
+ * This function yields the current CPU to other tasks. If there are no
+ * other threads running on this CPU then this function will return.
*/
asmlinkage long sys_sched_yield(void)
{
struct rq *rq = this_rq_lock();
- struct prio_array *array = current->array, *target = rq->expired;
schedstat_inc(rq, yld_cnt);
- /*
- * We implement yielding by moving the task into the expired
- * queue.
- *
- * (special rule: RT tasks will just roundrobin in the active
- * array.)
- */
- if (rt_task(current))
- target = rq->active;
-
- if (array->nr_active == 1) {
+ if (unlikely(rq->nr_running == 1))
schedstat_inc(rq, yld_act_empty);
- if (!rq->expired->nr_active)
- schedstat_inc(rq, yld_both_empty);
- } else if (!rq->expired->nr_active)
- schedstat_inc(rq, yld_exp_empty);
-
- if (array != target) {
- dequeue_task(current, array);
- enqueue_task(current, target);
- } else
- /*
- * requeue_task is cheaper so perform that if possible.
- */
- requeue_task(current, array);
+ else
+ current->sched_class->yield_task(rq, current);
/*
* Since we are going to call schedule() anyway, there's
@@ -4902,6 +4567,7 @@ asmlinkage long sys_sched_get_priority_max(int policy)
break;
case SCHED_NORMAL:
case SCHED_BATCH:
+ case SCHED_IDLE:
ret = 0;
break;
}
@@ -4926,6 +4592,7 @@ asmlinkage long sys_sched_get_priority_min(int policy)
break;
case SCHED_NORMAL:
case SCHED_BATCH:
+ case SCHED_IDLE:
ret = 0;
}
return ret;
@@ -4960,7 +4627,7 @@ long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
goto out_unlock;
jiffies_to_timespec(p->policy == SCHED_FIFO ?
- 0 : task_timeslice(p), &t);
+ 0 : static_prio_timeslice(p->static_prio), &t);
read_unlock(&tasklist_lock);
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
@@ -5035,6 +4702,9 @@ void show_state_filter(unsigned long state_filter)
touch_all_softlockup_watchdogs();
+#ifdef CONFIG_SCHED_DEBUG
+ sysrq_sched_debug_show();
+#endif
read_unlock(&tasklist_lock);
/*
* Only show locks if all tasks are dumped:
@@ -5043,6 +4713,11 @@ void show_state_filter(unsigned long state_filter)
debug_show_all_locks();
}
+void __cpuinit init_idle_bootup_task(struct task_struct *idle)
+{
+ idle->sched_class = &idle_sched_class;
+}
+
/**
* init_idle - set up an idle thread for a given CPU
* @idle: task in question
@@ -5056,13 +4731,12 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
- idle->timestamp = sched_clock();
- idle->sleep_avg = 0;
- idle->array = NULL;
+ __sched_fork(idle);
+ idle->se.exec_start = sched_clock();
+
idle->prio = idle->normal_prio = MAX_PRIO;
- idle->state = TASK_RUNNING;
idle->cpus_allowed = cpumask_of_cpu(cpu);
- set_task_cpu(idle, cpu);
+ __set_task_cpu(idle, cpu);
spin_lock_irqsave(&rq->lock, flags);
rq->curr = rq->idle = idle;
@@ -5077,6 +4751,10 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
#else
task_thread_info(idle)->preempt_count = 0;
#endif
+ /*
+ * The idle tasks have their own, simple scheduling class:
+ */
+ idle->sched_class = &idle_sched_class;
}
/*
@@ -5088,6 +4766,28 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
*/
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
+/*
+ * Increase the granularity value when there are more CPUs,
+ * because with more CPUs the 'effective latency' as visible
+ * to users decreases. But the relationship is not linear,
+ * so pick a second-best guess by going with the log2 of the
+ * number of CPUs.
+ *
+ * This idea comes from the SD scheduler of Con Kolivas:
+ */
+static inline void sched_init_granularity(void)
+{
+ unsigned int factor = 1 + ilog2(num_online_cpus());
+ const unsigned long gran_limit = 10000000;
+
+ sysctl_sched_granularity *= factor;
+ if (sysctl_sched_granularity > gran_limit)
+ sysctl_sched_granularity = gran_limit;
+
+ sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
+ sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
+}
+
#ifdef CONFIG_SMP
/*
* This is how migration works:
@@ -5161,7 +4861,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed);
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
{
struct rq *rq_dest, *rq_src;
- int ret = 0;
+ int ret = 0, on_rq;
if (unlikely(cpu_is_offline(dest_cpu)))
return ret;
@@ -5177,20 +4877,13 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
if (!cpu_isset(dest_cpu, p->cpus_allowed))
goto out;
+ on_rq = p->se.on_rq;
+ if (on_rq)
+ deactivate_task(rq_src, p, 0);
set_task_cpu(p, dest_cpu);
- if (p->array) {
- /*
- * Sync timestamp with rq_dest's before activating.
- * The same thing could be achieved by doing this step
- * afterwards, and pretending it was a local activate.
- * This way is cleaner and logically correct.
- */
- p->timestamp = p->timestamp - rq_src->most_recent_timestamp
- + rq_dest->most_recent_timestamp;
- deactivate_task(p, rq_src);
- __activate_task(p, rq_dest);
- if (TASK_PREEMPTS_CURR(p, rq_dest))
- resched_task(rq_dest->curr);
+ if (on_rq) {
+ activate_task(rq_dest, p, 0);
+ check_preempt_curr(rq_dest, p);
}
ret = 1;
out:
@@ -5342,7 +5035,8 @@ static void migrate_live_tasks(int src_cpu)
write_unlock_irq(&tasklist_lock);
}
-/* Schedules idle task to be the next runnable task on current CPU.
+/*
+ * Schedules idle task to be the next runnable task on current CPU.
* It does so by boosting its priority to highest possible and adding it to
* the _front_ of the runqueue. Used by CPU offline code.
*/
@@ -5362,10 +5056,10 @@ void sched_idle_next(void)
*/
spin_lock_irqsave(&rq->lock, flags);
- __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+ __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
/* Add idle task to the _front_ of its priority queue: */
- __activate_idle_task(p, rq);
+ activate_idle_task(p, rq);
spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -5415,16 +5109,15 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
static void migrate_dead_tasks(unsigned int dead_cpu)
{
struct rq *rq = cpu_rq(dead_cpu);
- unsigned int arr, i;
+ struct task_struct *next;
- for (arr = 0; arr < 2; arr++) {
- for (i = 0; i < MAX_PRIO; i++) {
- struct list_head *list = &rq->arrays[arr].queue[i];
-
- while (!list_empty(list))
- migrate_dead(dead_cpu, list_entry(list->next,
- struct task_struct, run_list));
- }
+ for ( ; ; ) {
+ if (!rq->nr_running)
+ break;
+ next = pick_next_task(rq, rq->curr, rq_clock(rq));
+ if (!next)
+ break;
+ migrate_dead(dead_cpu, next);
}
}
#endif /* CONFIG_HOTPLUG_CPU */
@@ -5448,14 +5141,14 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
- p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
+ p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
if (IS_ERR(p))
return NOTIFY_BAD;
p->flags |= PF_NOFREEZE;
kthread_bind(p, cpu);
/* Must be high prio: stop_machine expects to yield to it. */
rq = task_rq_lock(p, &flags);
- __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
+ __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
task_rq_unlock(rq, &flags);
cpu_rq(cpu)->migration_thread = p;
break;
@@ -5486,9 +5179,10 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
rq->migration_thread = NULL;
/* Idle task back to normal (off runqueue, low prio) */
rq = task_rq_lock(rq->idle, &flags);
- deactivate_task(rq->idle, rq);
+ deactivate_task(rq, rq->idle, 0);
rq->idle->static_prio = MAX_PRIO;
- __setscheduler(rq->idle, SCHED_NORMAL, 0);
+ __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
+ rq->idle->sched_class = &idle_sched_class;
migrate_dead_tasks(cpu);
task_rq_unlock(rq, &flags);
migrate_nr_uninterruptible(rq);
@@ -5797,483 +5491,6 @@ init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
#define SD_NODES_PER_DOMAIN 16
-/*
- * Self-tuning task migration cost measurement between source and target CPUs.
- *
- * This is done by measuring the cost of manipulating buffers of varying
- * sizes. For a given buffer-size here are the steps that are taken:
- *
- * 1) the source CPU reads+dirties a shared buffer
- * 2) the target CPU reads+dirties the same shared buffer
- *
- * We measure how long they take, in the following 4 scenarios:
- *
- * - source: CPU1, target: CPU2 | cost1
- * - source: CPU2, target: CPU1 | cost2
- * - source: CPU1, target: CPU1 | cost3
- * - source: CPU2, target: CPU2 | cost4
- *
- * We then calculate the cost3+cost4-cost1-cost2 difference - this is
- * the cost of migration.
- *
- * We then start off from a small buffer-size and iterate up to larger
- * buffer sizes, in 5% steps - measuring each buffer-size separately, and
- * doing a maximum search for the cost. (The maximum cost for a migration
- * normally occurs when the working set size is around the effective cache
- * size.)
- */
-#define SEARCH_SCOPE 2
-#define MIN_CACHE_SIZE (64*1024U)
-#define DEFAULT_CACHE_SIZE (5*1024*1024U)
-#define ITERATIONS 1
-#define SIZE_THRESH 130
-#define COST_THRESH 130
-
-/*
- * The migration cost is a function of 'domain distance'. Domain
- * distance is the number of steps a CPU has to iterate down its
- * domain tree to share a domain with the other CPU. The farther
- * two CPUs are from each other, the larger the distance gets.
- *
- * Note that we use the distance only to cache measurement results,
- * the distance value is not used numerically otherwise. When two
- * CPUs have the same distance it is assumed that the migration
- * cost is the same. (this is a simplification but quite practical)
- */
-#define MAX_DOMAIN_DISTANCE 32
-
-static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
- { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
-/*
- * Architectures may override the migration cost and thus avoid
- * boot-time calibration. Unit is nanoseconds. Mostly useful for
- * virtualized hardware:
- */
-#ifdef CONFIG_DEFAULT_MIGRATION_COST
- CONFIG_DEFAULT_MIGRATION_COST
-#else
- -1LL
-#endif
-};
-
-/*
- * Allow override of migration cost - in units of microseconds.
- * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
- * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
- */
-static int __init migration_cost_setup(char *str)
-{
- int ints[MAX_DOMAIN_DISTANCE+1], i;
-
- str = get_options(str, ARRAY_SIZE(ints), ints);
-
- printk("#ints: %d\n", ints[0]);
- for (i = 1; i <= ints[0]; i++) {
- migration_cost[i-1] = (unsigned long long)ints[i]*1000;
- printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
- }
- return 1;
-}
-
-__setup ("migration_cost=", migration_cost_setup);
-
-/*
- * Global multiplier (divisor) for migration-cutoff values,
- * in percentiles. E.g. use a value of 150 to get 1.5 times
- * longer cache-hot cutoff times.
- *
- * (We scale it from 100 to 128 to long long handling easier.)
- */
-
-#define MIGRATION_FACTOR_SCALE 128
-
-static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
-
-static int __init setup_migration_factor(char *str)
-{
- get_option(&str, &migration_factor);
- migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
- return 1;
-}
-
-__setup("migration_factor=", setup_migration_factor);
-
-/*
- * Estimated distance of two CPUs, measured via the number of domains
- * we have to pass for the two CPUs to be in the same span:
- */
-static unsigned long domain_distance(int cpu1, int cpu2)
-{
- unsigned long distance = 0;
- struct sched_domain *sd;
-
- for_each_domain(cpu1, sd) {
- WARN_ON(!cpu_isset(cpu1, sd->span));
- if (cpu_isset(cpu2, sd->span))
- return distance;
- distance++;
- }
- if (distance >= MAX_DOMAIN_DISTANCE) {
- WARN_ON(1);
- distance = MAX_DOMAIN_DISTANCE-1;
- }
-
- return distance;
-}
-
-static unsigned int migration_debug;
-
-static int __init setup_migration_debug(char *str)
-{
- get_option(&str, &migration_debug);
- return 1;
-}
-
-__setup("migration_debug=", setup_migration_debug);
-
-/*
- * Maximum cache-size that the scheduler should try to measure.
- * Architectures with larger caches should tune this up during
- * bootup. Gets used in the domain-setup code (i.e. during SMP
- * bootup).
- */
-unsigned int max_cache_size;
-
-static int __init setup_max_cache_size(char *str)
-{
- get_option(&str, &max_cache_size);
- return 1;
-}
-
-__setup("max_cache_size=", setup_max_cache_size);
-
-/*
- * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
- * is the operation that is timed, so we try to generate unpredictable
- * cachemisses that still end up filling the L2 cache:
- */
-static void touch_cache(void *__cache, unsigned long __size)
-{
- unsigned long size = __size / sizeof(long);
- unsigned long chunk1 = size / 3;
- unsigned long chunk2 = 2 * size / 3;
- unsigned long *cache = __cache;
- int i;
-
- for (i = 0; i < size/6; i += 8) {
- switch (i % 6) {
- case 0: cache[i]++;
- case 1: cache[size-1-i]++;
- case 2: cache[chunk1-i]++;
- case 3: cache[chunk1+i]++;
- case 4: cache[chunk2-i]++;
- case 5: cache[chunk2+i]++;
- }
- }
-}
-
-/*
- * Measure the cache-cost of one task migration. Returns in units of nsec.
- */
-static unsigned long long
-measure_one(void *cache, unsigned long size, int source, int target)
-{
- cpumask_t mask, saved_mask;
- unsigned long long t0, t1, t2, t3, cost;
-
- saved_mask = current->cpus_allowed;
-
- /*
- * Flush source caches to RAM and invalidate them:
- */
- sched_cacheflush();
-
- /*
- * Migrate to the source CPU:
- */
- mask = cpumask_of_cpu(source);
- set_cpus_allowed(current, mask);
- WARN_ON(smp_processor_id() != source);
-
- /*
- * Dirty the working set:
- */
- t0 = sched_clock();
- touch_cache(cache, size);
- t1 = sched_clock();
-
- /*
- * Migrate to the target CPU, dirty the L2 cache and access
- * the shared buffer. (which represents the working set
- * of a migrated task.)
- */
- mask = cpumask_of_cpu(target);
- set_cpus_allowed(current, mask);
- WARN_ON(smp_processor_id() != target);
-
- t2 = sched_clock();
- touch_cache(cache, size);
- t3 = sched_clock();
-
- cost = t1-t0 + t3-t2;
-
- if (migration_debug >= 2)
- printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
- source, target, t1-t0, t1-t0, t3-t2, cost);
- /*
- * Flush target caches to RAM and invalidate them:
- */
- sched_cacheflush();
-
- set_cpus_allowed(current, saved_mask);
-
- return cost;
-}
-
-/*
- * Measure a series of task migrations and return the average
- * result. Since this code runs early during bootup the system
- * is 'undisturbed' and the average latency makes sense.
- *
- * The algorithm in essence auto-detects the relevant cache-size,
- * so it will properly detect different cachesizes for different
- * cache-hierarchies, depending on how the CPUs are connected.
- *
- * Architectures can prime the upper limit of the search range via
- * max_cache_size, otherwise the search range defaults to 20MB...64K.
- */
-static unsigned long long
-measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
-{
- unsigned long long cost1, cost2;
- int i;
-
- /*
- * Measure the migration cost of 'size' bytes, over an
- * average of 10 runs:
- *
- * (We perturb the cache size by a small (0..4k)
- * value to compensate size/alignment related artifacts.
- * We also subtract the cost of the operation done on
- * the same CPU.)
- */
- cost1 = 0;
-
- /*
- * dry run, to make sure we start off cache-cold on cpu1,
- * and to get any vmalloc pagefaults in advance:
- */
- measure_one(cache, size, cpu1, cpu2);
- for (i = 0; i < ITERATIONS; i++)
- cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
-
- measure_one(cache, size, cpu2, cpu1);
- for (i = 0; i < ITERATIONS; i++)
- cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
-
- /*
- * (We measure the non-migrating [cached] cost on both
- * cpu1 and cpu2, to handle CPUs with different speeds)
- */
- cost2 = 0;
-
- measure_one(cache, size, cpu1, cpu1);
- for (i = 0; i < ITERATIONS; i++)
- cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
-
- measure_one(cache, size, cpu2, cpu2);
- for (i = 0; i < ITERATIONS; i++)
- cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
-
- /*
- * Get the per-iteration migration cost:
- */
- do_div(cost1, 2 * ITERATIONS);
- do_div(cost2, 2 * ITERATIONS);
-
- return cost1 - cost2;
-}
-
-static unsigned long long measure_migration_cost(int cpu1, int cpu2)
-{
- unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
- unsigned int max_size, size, size_found = 0;
- long long cost = 0, prev_cost;
- void *cache;
-
- /*
- * Search from max_cache_size*5 down to 64K - the real relevant
- * cachesize has to lie somewhere inbetween.
- */
- if (max_cache_size) {
- max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
- size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
- } else {
- /*
- * Since we have no estimation about the relevant
- * search range
- */
- max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
- size = MIN_CACHE_SIZE;
- }
-
- if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
- printk("cpu %d and %d not both online!\n", cpu1, cpu2);
- return 0;
- }
-
- /*
- * Allocate the working set:
- */
- cache = vmalloc(max_size);
- if (!cache) {
- printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
- return 1000000; /* return 1 msec on very small boxen */
- }
-
- while (size <= max_size) {
- prev_cost = cost;
- cost = measure_cost(cpu1, cpu2, cache, size);
-
- /*
- * Update the max:
- */
- if (cost > 0) {
- if (max_cost < cost) {
- max_cost = cost;
- size_found = size;
- }
- }
- /*
- * Calculate average fluctuation, we use this to prevent
- * noise from triggering an early break out of the loop:
- */
- fluct = abs(cost - prev_cost);
- avg_fluct = (avg_fluct + fluct)/2;
-
- if (migration_debug)
- printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
- "(%8Ld %8Ld)\n",
- cpu1, cpu2, size,
- (long)cost / 1000000,
- ((long)cost / 100000) % 10,
- (long)max_cost / 1000000,
- ((long)max_cost / 100000) % 10,
- domain_distance(cpu1, cpu2),
- cost, avg_fluct);
-
- /*
- * If we iterated at least 20% past the previous maximum,
- * and the cost has dropped by more than 20% already,
- * (taking fluctuations into account) then we assume to
- * have found the maximum and break out of the loop early:
- */
- if (size_found && (size*100 > size_found*SIZE_THRESH))
- if (cost+avg_fluct <= 0 ||
- max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
-
- if (migration_debug)
- printk("-> found max.\n");
- break;
- }
- /*
- * Increase the cachesize in 10% steps:
- */
- size = size * 10 / 9;
- }
-
- if (migration_debug)
- printk("[%d][%d] working set size found: %d, cost: %Ld\n",
- cpu1, cpu2, size_found, max_cost);
-
- vfree(cache);
-
- /*
- * A task is considered 'cache cold' if at least 2 times
- * the worst-case cost of migration has passed.
- *
- * (this limit is only listened to if the load-balancing
- * situation is 'nice' - if there is a large imbalance we
- * ignore it for the sake of CPU utilization and
- * processing fairness.)
- */
- return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
-}
-
-static void calibrate_migration_costs(const cpumask_t *cpu_map)
-{
- int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
- unsigned long j0, j1, distance, max_distance = 0;
- struct sched_domain *sd;
-
- j0 = jiffies;
-
- /*
- * First pass - calculate the cacheflush times:
- */
- for_each_cpu_mask(cpu1, *cpu_map) {
- for_each_cpu_mask(cpu2, *cpu_map) {
- if (cpu1 == cpu2)
- continue;
- distance = domain_distance(cpu1, cpu2);
- max_distance = max(max_distance, distance);
- /*
- * No result cached yet?
- */
- if (migration_cost[distance] == -1LL)
- migration_cost[distance] =
- measure_migration_cost(cpu1, cpu2);
- }
- }
- /*
- * Second pass - update the sched domain hierarchy with
- * the new cache-hot-time estimations:
- */
- for_each_cpu_mask(cpu, *cpu_map) {
- distance = 0;
- for_each_domain(cpu, sd) {
- sd->cache_hot_time = migration_cost[distance];
- distance++;
- }
- }
- /*
- * Print the matrix:
- */
- if (migration_debug)
- printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
- max_cache_size,
-#ifdef CONFIG_X86
- cpu_khz/1000
-#else
- -1
-#endif
- );
- if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
- printk("migration_cost=");
- for (distance = 0; distance <= max_distance; distance++) {
- if (distance)
- printk(",");
- printk("%ld", (long)migration_cost[distance] / 1000);
- }
- printk("\n");
- }
- j1 = jiffies;
- if (migration_debug)
- printk("migration: %ld seconds\n", (j1-j0) / HZ);
-
- /*
- * Move back to the original CPU. NUMA-Q gets confused
- * if we migrate to another quad during bootup.
- */
- if (raw_smp_processor_id() != orig_cpu) {
- cpumask_t mask = cpumask_of_cpu(orig_cpu),
- saved_mask = current->cpus_allowed;
-
- set_cpus_allowed(current, mask);
- set_cpus_allowed(current, saved_mask);
- }
-}
-
#ifdef CONFIG_NUMA
/**
@@ -6574,7 +5791,6 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
static int build_sched_domains(const cpumask_t *cpu_map)
{
int i;
- struct sched_domain *sd;
#ifdef CONFIG_NUMA
struct sched_group **sched_group_nodes = NULL;
int sd_allnodes = 0;
@@ -6582,7 +5798,7 @@ static int build_sched_domains(const cpumask_t *cpu_map)
/*
* Allocate the per-node list of sched groups
*/
- sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
+ sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
GFP_KERNEL);
if (!sched_group_nodes) {
printk(KERN_WARNING "Can not alloc sched group node list\n");
@@ -6601,8 +5817,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
cpus_and(nodemask, nodemask, *cpu_map);
#ifdef CONFIG_NUMA
- if (cpus_weight(*cpu_map)
- > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
+ if (cpus_weight(*cpu_map) >
+ SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
sd = &per_cpu(allnodes_domains, i);
*sd = SD_ALLNODES_INIT;
sd->span = *cpu_map;
@@ -6661,7 +5877,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
if (i != first_cpu(this_sibling_map))
continue;
- init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
+ init_sched_build_groups(this_sibling_map, cpu_map,
+ &cpu_to_cpu_group);
}
#endif
@@ -6672,11 +5889,11 @@ static int build_sched_domains(const cpumask_t *cpu_map)
cpus_and(this_core_map, this_core_map, *cpu_map);
if (i != first_cpu(this_core_map))
continue;
- init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
+ init_sched_build_groups(this_core_map, cpu_map,
+ &cpu_to_core_group);
}
#endif
-
/* Set up physical groups */
for (i = 0; i < MAX_NUMNODES; i++) {
cpumask_t nodemask = node_to_cpumask(i);
@@ -6691,7 +5908,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
#ifdef CONFIG_NUMA
/* Set up node groups */
if (sd_allnodes)
- init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
+ init_sched_build_groups(*cpu_map, cpu_map,
+ &cpu_to_allnodes_group);
for (i = 0; i < MAX_NUMNODES; i++) {
/* Set up node groups */
@@ -6719,6 +5937,7 @@ static int build_sched_domains(const cpumask_t *cpu_map)
sched_group_nodes[i] = sg;
for_each_cpu_mask(j, nodemask) {
struct sched_domain *sd;
+
sd = &per_cpu(node_domains, j);
sd->groups = sg;
}
@@ -6763,19 +5982,22 @@ static int build_sched_domains(const cpumask_t *cpu_map)
/* Calculate CPU power for physical packages and nodes */
#ifdef CONFIG_SCHED_SMT
for_each_cpu_mask(i, *cpu_map) {
- sd = &per_cpu(cpu_domains, i);
+ struct sched_domain *sd = &per_cpu(cpu_domains, i);
+
init_sched_groups_power(i, sd);
}
#endif
#ifdef CONFIG_SCHED_MC
for_each_cpu_mask(i, *cpu_map) {
- sd = &per_cpu(core_domains, i);
+ struct sched_domain *sd = &per_cpu(core_domains, i);
+
init_sched_groups_power(i, sd);
}
#endif
for_each_cpu_mask(i, *cpu_map) {
- sd = &per_cpu(phys_domains, i);
+ struct sched_domain *sd = &per_cpu(phys_domains, i);
+
init_sched_groups_power(i, sd);
}
@@ -6803,10 +6025,6 @@ static int build_sched_domains(const cpumask_t *cpu_map)
#endif
cpu_attach_domain(sd, i);
}
- /*
- * Tune cache-hot values:
- */
- calibrate_migration_costs(cpu_map);
return 0;
@@ -7013,10 +6231,12 @@ void __init sched_init_smp(void)
/* Move init over to a non-isolated CPU */
if (set_cpus_allowed(current, non_isolated_cpus) < 0)
BUG();
+ sched_init_granularity();
}
#else
void __init sched_init_smp(void)
{
+ sched_init_granularity();
}
#endif /* CONFIG_SMP */
@@ -7030,28 +6250,51 @@ int in_sched_functions(unsigned long addr)
&& addr < (unsigned long)__sched_text_end);
}
+static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
+{
+ cfs_rq->tasks_timeline = RB_ROOT;
+ cfs_rq->fair_clock = 1;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ cfs_rq->rq = rq;
+#endif
+}
+
void __init sched_init(void)
{
- int i, j, k;
+ u64 now = sched_clock();
int highest_cpu = 0;
+ int i, j;
+
+ /*
+ * Link up the scheduling class hierarchy:
+ */
+ rt_sched_class.next = &fair_sched_class;
+ fair_sched_class.next = &idle_sched_class;
+ idle_sched_class.next = NULL;
for_each_possible_cpu(i) {
- struct prio_array *array;
+ struct rt_prio_array *array;
struct rq *rq;
rq = cpu_rq(i);
spin_lock_init(&rq->lock);
lockdep_set_class(&rq->lock, &rq->rq_lock_key);
rq->nr_running = 0;
- rq->active = rq->arrays;
- rq->expired = rq->arrays + 1;
- rq->best_expired_prio = MAX_PRIO;
+ rq->clock = 1;
+ init_cfs_rq(&rq->cfs, rq);
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
+ list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
+#endif
+ rq->ls.load_update_last = now;
+ rq->ls.load_update_start = now;
+ for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
+ rq->cpu_load[j] = 0;
#ifdef CONFIG_SMP
rq->sd = NULL;
- for (j = 1; j < 3; j++)
- rq->cpu_load[j] = 0;
rq->active_balance = 0;
+ rq->next_balance = jiffies;
rq->push_cpu = 0;
rq->cpu = i;
rq->migration_thread = NULL;
@@ -7059,16 +6302,14 @@ void __init sched_init(void)
#endif
atomic_set(&rq->nr_iowait, 0);
- for (j = 0; j < 2; j++) {
- array = rq->arrays + j;
- for (k = 0; k < MAX_PRIO; k++) {
- INIT_LIST_HEAD(array->queue + k);
- __clear_bit(k, array->bitmap);
- }
- // delimiter for bitsearch
- __set_bit(MAX_PRIO, array->bitmap);
+ array = &rq->rt.active;
+ for (j = 0; j < MAX_RT_PRIO; j++) {
+ INIT_LIST_HEAD(array->queue + j);
+ __clear_bit(j, array->bitmap);
}
highest_cpu = i;
+ /* delimiter for bitsearch: */
+ __set_bit(MAX_RT_PRIO, array->bitmap);
}
set_load_weight(&init_task);
@@ -7095,6 +6336,10 @@ void __init sched_init(void)
* when this runqueue becomes "idle".
*/
init_idle(current, smp_processor_id());
+ /*
+ * During early bootup we pretend to be a normal task:
+ */
+ current->sched_class = &fair_sched_class;
}
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
@@ -7125,29 +6370,55 @@ EXPORT_SYMBOL(__might_sleep);
#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
- struct prio_array *array;
struct task_struct *g, *p;
unsigned long flags;
struct rq *rq;
+ int on_rq;
read_lock_irq(&tasklist_lock);
-
do_each_thread(g, p) {
- if (!rt_task(p))
+ p->se.fair_key = 0;
+ p->se.wait_runtime = 0;
+ p->se.wait_start_fair = 0;
+ p->se.wait_start = 0;
+ p->se.exec_start = 0;
+ p->se.sleep_start = 0;
+ p->se.sleep_start_fair = 0;
+ p->se.block_start = 0;
+ task_rq(p)->cfs.fair_clock = 0;
+ task_rq(p)->clock = 0;
+
+ if (!rt_task(p)) {
+ /*
+ * Renice negative nice level userspace
+ * tasks back to 0:
+ */
+ if (TASK_NICE(p) < 0 && p->mm)
+ set_user_nice(p, 0);
continue;
+ }
spin_lock_irqsave(&p->pi_lock, flags);
rq = __task_rq_lock(p);
+#ifdef CONFIG_SMP
+ /*
+ * Do not touch the migration thread:
+ */
+ if (p == rq->migration_thread)
+ goto out_unlock;
+#endif
- array = p->array;
- if (array)
- deactivate_task(p, task_rq(p));
- __setscheduler(p, SCHED_NORMAL, 0);
- if (array) {
- __activate_task(p, task_rq(p));
+ on_rq = p->se.on_rq;
+ if (on_rq)
+ deactivate_task(task_rq(p), p, 0);
+ __setscheduler(rq, p, SCHED_NORMAL, 0);
+ if (on_rq) {
+ activate_task(task_rq(p), p, 0);
resched_task(rq->curr);
}
-
+#ifdef CONFIG_SMP
+ out_unlock:
+#endif
__task_rq_unlock(rq);
spin_unlock_irqrestore(&p->pi_lock, flags);
} while_each_thread(g, p);
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c
new file mode 100644
index 000000000000..1baf87cceb7c
--- /dev/null
+++ b/kernel/sched_debug.c
@@ -0,0 +1,275 @@
+/*
+ * kernel/time/sched_debug.c
+ *
+ * Print the CFS rbtree
+ *
+ * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/proc_fs.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/kallsyms.h>
+#include <linux/utsname.h>
+
+/*
+ * This allows printing both to /proc/sched_debug and
+ * to the console
+ */
+#define SEQ_printf(m, x...) \
+ do { \
+ if (m) \
+ seq_printf(m, x); \
+ else \
+ printk(x); \
+ } while (0)
+
+static void
+print_task(struct seq_file *m, struct rq *rq, struct task_struct *p, u64 now)
+{
+ if (rq->curr == p)
+ SEQ_printf(m, "R");
+ else
+ SEQ_printf(m, " ");
+
+ SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d "
+ "%15Ld %15Ld %15Ld %15Ld %15Ld\n",
+ p->comm, p->pid,
+ (long long)p->se.fair_key,
+ (long long)(p->se.fair_key - rq->cfs.fair_clock),
+ (long long)p->se.wait_runtime,
+ (long long)(p->nvcsw + p->nivcsw),
+ p->prio,
+ (long long)p->se.sum_exec_runtime,
+ (long long)p->se.sum_wait_runtime,
+ (long long)p->se.sum_sleep_runtime,
+ (long long)p->se.wait_runtime_overruns,
+ (long long)p->se.wait_runtime_underruns);
+}
+
+static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu, u64 now)
+{
+ struct task_struct *g, *p;
+
+ SEQ_printf(m,
+ "\nrunnable tasks:\n"
+ " task PID tree-key delta waiting"
+ " switches prio"
+ " sum-exec sum-wait sum-sleep"
+ " wait-overrun wait-underrun\n"
+ "------------------------------------------------------------------"
+ "----------------"
+ "------------------------------------------------"
+ "--------------------------------\n");
+
+ read_lock_irq(&tasklist_lock);
+
+ do_each_thread(g, p) {
+ if (!p->se.on_rq || task_cpu(p) != rq_cpu)
+ continue;
+
+ print_task(m, rq, p, now);
+ } while_each_thread(g, p);
+
+ read_unlock_irq(&tasklist_lock);
+}
+
+static void
+print_cfs_rq_runtime_sum(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
+{
+ s64 wait_runtime_rq_sum = 0;
+ struct task_struct *p;
+ struct rb_node *curr;
+ unsigned long flags;
+ struct rq *rq = &per_cpu(runqueues, cpu);
+
+ spin_lock_irqsave(&rq->lock, flags);
+ curr = first_fair(cfs_rq);
+ while (curr) {
+ p = rb_entry(curr, struct task_struct, se.run_node);
+ wait_runtime_rq_sum += p->se.wait_runtime;
+
+ curr = rb_next(curr);
+ }
+ spin_unlock_irqrestore(&rq->lock, flags);
+
+ SEQ_printf(m, " .%-30s: %Ld\n", "wait_runtime_rq_sum",
+ (long long)wait_runtime_rq_sum);
+}
+
+void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq, u64 now)
+{
+ SEQ_printf(m, "\ncfs_rq %p\n", cfs_rq);
+
+#define P(x) \
+ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(cfs_rq->x))
+
+ P(fair_clock);
+ P(exec_clock);
+ P(wait_runtime);
+ P(wait_runtime_overruns);
+ P(wait_runtime_underruns);
+ P(sleeper_bonus);
+#undef P
+
+ print_cfs_rq_runtime_sum(m, cpu, cfs_rq);
+}
+
+static void print_cpu(struct seq_file *m, int cpu, u64 now)
+{
+ struct rq *rq = &per_cpu(runqueues, cpu);
+
+#ifdef CONFIG_X86
+ {
+ unsigned int freq = cpu_khz ? : 1;
+
+ SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
+ cpu, freq / 1000, (freq % 1000));
+ }
+#else
+ SEQ_printf(m, "\ncpu#%d\n", cpu);
+#endif
+
+#define P(x) \
+ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
+
+ P(nr_running);
+ SEQ_printf(m, " .%-30s: %lu\n", "load",
+ rq->ls.load.weight);
+ P(ls.delta_fair);
+ P(ls.delta_exec);
+ P(nr_switches);
+ P(nr_load_updates);
+ P(nr_uninterruptible);
+ SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
+ P(next_balance);
+ P(curr->pid);
+ P(clock);
+ P(prev_clock_raw);
+ P(clock_warps);
+ P(clock_overflows);
+ P(clock_unstable_events);
+ P(clock_max_delta);
+ P(cpu_load[0]);
+ P(cpu_load[1]);
+ P(cpu_load[2]);
+ P(cpu_load[3]);
+ P(cpu_load[4]);
+#undef P
+
+ print_cfs_stats(m, cpu, now);
+
+ print_rq(m, rq, cpu, now);
+}
+
+static int sched_debug_show(struct seq_file *m, void *v)
+{
+ u64 now = ktime_to_ns(ktime_get());
+ int cpu;
+
+ SEQ_printf(m, "Sched Debug Version: v0.04, cfs-v20, %s %.*s\n",
+ init_utsname()->release,
+ (int)strcspn(init_utsname()->version, " "),
+ init_utsname()->version);
+
+ SEQ_printf(m, "now at %Lu nsecs\n", (unsigned long long)now);
+
+ for_each_online_cpu(cpu)
+ print_cpu(m, cpu, now);
+
+ SEQ_printf(m, "\n");
+
+ return 0;
+}
+
+void sysrq_sched_debug_show(void)
+{
+ sched_debug_show(NULL, NULL);
+}
+
+static int sched_debug_open(struct inode *inode, struct file *filp)
+{
+ return single_open(filp, sched_debug_show, NULL);
+}
+
+static struct file_operations sched_debug_fops = {
+ .open = sched_debug_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+static int __init init_sched_debug_procfs(void)
+{
+ struct proc_dir_entry *pe;
+
+ pe = create_proc_entry("sched_debug", 0644, NULL);
+ if (!pe)
+ return -ENOMEM;
+
+ pe->proc_fops = &sched_debug_fops;
+
+ return 0;
+}
+
+__initcall(init_sched_debug_procfs);
+
+void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
+{
+ unsigned long flags;
+ int num_threads = 1;
+
+ rcu_read_lock();
+ if (lock_task_sighand(p, &flags)) {
+ num_threads = atomic_read(&p->signal->count);
+ unlock_task_sighand(p, &flags);
+ }
+ rcu_read_unlock();
+
+ SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
+ SEQ_printf(m, "----------------------------------------------\n");
+#define P(F) \
+ SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F)
+
+ P(se.wait_start);
+ P(se.wait_start_fair);
+ P(se.exec_start);
+ P(se.sleep_start);
+ P(se.sleep_start_fair);
+ P(se.block_start);
+ P(se.sleep_max);
+ P(se.block_max);
+ P(se.exec_max);
+ P(se.wait_max);
+ P(se.wait_runtime);
+ P(se.wait_runtime_overruns);
+ P(se.wait_runtime_underruns);
+ P(se.sum_wait_runtime);
+ P(se.sum_exec_runtime);
+ SEQ_printf(m, "%-25s:%20Ld\n",
+ "nr_switches", (long long)(p->nvcsw + p->nivcsw));
+ P(se.load.weight);
+ P(policy);
+ P(prio);
+#undef P
+
+ {
+ u64 t0, t1;
+
+ t0 = sched_clock();
+ t1 = sched_clock();
+ SEQ_printf(m, "%-25s:%20Ld\n",
+ "clock-delta", (long long)(t1-t0));
+ }
+}
+
+void proc_sched_set_task(struct task_struct *p)
+{
+ p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;
+ p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;
+ p->se.sum_exec_runtime = 0;
+}
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c
new file mode 100644
index 000000000000..6971db0a7160
--- /dev/null
+++ b/kernel/sched_fair.c
@@ -0,0 +1,1131 @@
+/*
+ * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
+ *
+ * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
+ *
+ * Interactivity improvements by Mike Galbraith
+ * (C) 2007 Mike Galbraith <efault@gmx.de>
+ *
+ * Various enhancements by Dmitry Adamushko.
+ * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
+ *
+ * Group scheduling enhancements by Srivatsa Vaddagiri
+ * Copyright IBM Corporation, 2007
+ * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
+ *
+ * Scaled math optimizations by Thomas Gleixner
+ * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
+ */
+
+/*
+ * Preemption granularity:
+ * (default: 2 msec, units: nanoseconds)
+ *
+ * NOTE: this granularity value is not the same as the concept of
+ * 'timeslice length' - timeslices in CFS will typically be somewhat
+ * larger than this value. (to see the precise effective timeslice
+ * length of your workload, run vmstat and monitor the context-switches
+ * field)
+ *
+ * On SMP systems the value of this is multiplied by the log2 of the
+ * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
+ * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
+ */
+unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
+
+/*
+ * SCHED_BATCH wake-up granularity.
+ * (default: 10 msec, units: nanoseconds)
+ *
+ * This option delays the preemption effects of decoupled workloads
+ * and reduces their over-scheduling. Synchronous workloads will still
+ * have immediate wakeup/sleep latencies.
+ */
+unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
+ 10000000000ULL/HZ;
+
+/*
+ * SCHED_OTHER wake-up granularity.
+ * (default: 1 msec, units: nanoseconds)
+ *
+ * This option delays the preemption effects of decoupled workloads
+ * and reduces their over-scheduling. Synchronous workloads will still
+ * have immediate wakeup/sleep latencies.
+ */
+unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
+
+unsigned int sysctl_sched_stat_granularity __read_mostly;
+
+/*
+ * Initialized in sched_init_granularity():
+ */
+unsigned int sysctl_sched_runtime_limit __read_mostly;
+
+/*
+ * Debugging: various feature bits
+ */
+enum {
+ SCHED_FEAT_FAIR_SLEEPERS = 1,
+ SCHED_FEAT_SLEEPER_AVG = 2,
+ SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
+ SCHED_FEAT_PRECISE_CPU_LOAD = 8,
+ SCHED_FEAT_START_DEBIT = 16,
+ SCHED_FEAT_SKIP_INITIAL = 32,
+};
+
+unsigned int sysctl_sched_features __read_mostly =
+ SCHED_FEAT_FAIR_SLEEPERS *1 |
+ SCHED_FEAT_SLEEPER_AVG *1 |
+ SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
+ SCHED_FEAT_PRECISE_CPU_LOAD *1 |
+ SCHED_FEAT_START_DEBIT *1 |
+ SCHED_FEAT_SKIP_INITIAL *0;
+
+extern struct sched_class fair_sched_class;
+
+/**************************************************************
+ * CFS operations on generic schedulable entities:
+ */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* cpu runqueue to which this cfs_rq is attached */
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->rq;
+}
+
+/* currently running entity (if any) on this cfs_rq */
+static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->curr;
+}
+
+/* An entity is a task if it doesn't "own" a runqueue */
+#define entity_is_task(se) (!se->my_q)
+
+static inline void
+set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ cfs_rq->curr = se;
+}
+
+#else /* CONFIG_FAIR_GROUP_SCHED */
+
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+ return container_of(cfs_rq, struct rq, cfs);
+}
+
+static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
+{
+ struct rq *rq = rq_of(cfs_rq);
+
+ if (unlikely(rq->curr->sched_class != &fair_sched_class))
+ return NULL;
+
+ return &rq->curr->se;
+}
+
+#define entity_is_task(se) 1
+
+static inline void
+set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
+
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+ return container_of(se, struct task_struct, se);
+}
+
+
+/**************************************************************
+ * Scheduling class tree data structure manipulation methods:
+ */
+
+/*
+ * Enqueue an entity into the rb-tree:
+ */
+static inline void
+__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
+ struct rb_node *parent = NULL;
+ struct sched_entity *entry;
+ s64 key = se->fair_key;
+ int leftmost = 1;
+
+ /*
+ * Find the right place in the rbtree:
+ */
+ while (*link) {
+ parent = *link;
+ entry = rb_entry(parent, struct sched_entity, run_node);
+ /*
+ * We dont care about collisions. Nodes with
+ * the same key stay together.
+ */
+ if (key - entry->fair_key < 0) {
+ link = &parent->rb_left;
+ } else {
+ link = &parent->rb_right;
+ leftmost = 0;
+ }
+ }
+
+ /*
+ * Maintain a cache of leftmost tree entries (it is frequently
+ * used):
+ */
+ if (leftmost)
+ cfs_rq->rb_leftmost = &se->run_node;
+
+ rb_link_node(&se->run_node, parent, link);
+ rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
+ update_load_add(&cfs_rq->load, se->load.weight);
+ cfs_rq->nr_running++;
+ se->on_rq = 1;
+}
+
+static inline void
+__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ if (cfs_rq->rb_leftmost == &se->run_node)
+ cfs_rq->rb_leftmost = rb_next(&se->run_node);
+ rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
+ update_load_sub(&cfs_rq->load, se->load.weight);
+ cfs_rq->nr_running--;
+ se->on_rq = 0;
+}
+
+static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->rb_leftmost;
+}
+
+static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
+{
+ return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
+}
+
+/**************************************************************
+ * Scheduling class statistics methods:
+ */
+
+/*
+ * We rescale the rescheduling granularity of tasks according to their
+ * nice level, but only linearly, not exponentially:
+ */
+static long
+niced_granularity(struct sched_entity *curr, unsigned long granularity)
+{
+ u64 tmp;
+
+ /*
+ * Negative nice levels get the same granularity as nice-0:
+ */
+ if (likely(curr->load.weight >= NICE_0_LOAD))
+ return granularity;
+ /*
+ * Positive nice level tasks get linearly finer
+ * granularity:
+ */
+ tmp = curr->load.weight * (u64)granularity;
+
+ /*
+ * It will always fit into 'long':
+ */
+ return (long) (tmp >> NICE_0_SHIFT);
+}
+
+static inline void
+limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ long limit = sysctl_sched_runtime_limit;
+
+ /*
+ * Niced tasks have the same history dynamic range as
+ * non-niced tasks:
+ */
+ if (unlikely(se->wait_runtime > limit)) {
+ se->wait_runtime = limit;
+ schedstat_inc(se, wait_runtime_overruns);
+ schedstat_inc(cfs_rq, wait_runtime_overruns);
+ }
+ if (unlikely(se->wait_runtime < -limit)) {
+ se->wait_runtime = -limit;
+ schedstat_inc(se, wait_runtime_underruns);
+ schedstat_inc(cfs_rq, wait_runtime_underruns);
+ }
+}
+
+static inline void
+__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
+{
+ se->wait_runtime += delta;
+ schedstat_add(se, sum_wait_runtime, delta);
+ limit_wait_runtime(cfs_rq, se);
+}
+
+static void
+add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
+{
+ schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
+ __add_wait_runtime(cfs_rq, se, delta);
+ schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
+}
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static inline void
+__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, u64 now)
+{
+ unsigned long delta, delta_exec, delta_fair;
+ long delta_mine;
+ struct load_weight *lw = &cfs_rq->load;
+ unsigned long load = lw->weight;
+
+ if (unlikely(!load))
+ return;
+
+ delta_exec = curr->delta_exec;
+#ifdef CONFIG_SCHEDSTATS
+ if (unlikely(delta_exec > curr->exec_max))
+ curr->exec_max = delta_exec;
+#endif
+
+ curr->sum_exec_runtime += delta_exec;
+ cfs_rq->exec_clock += delta_exec;
+
+ delta_fair = calc_delta_fair(delta_exec, lw);
+ delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
+
+ if (cfs_rq->sleeper_bonus > sysctl_sched_stat_granularity) {
+ delta = calc_delta_mine(cfs_rq->sleeper_bonus,
+ curr->load.weight, lw);
+ if (unlikely(delta > cfs_rq->sleeper_bonus))
+ delta = cfs_rq->sleeper_bonus;
+
+ cfs_rq->sleeper_bonus -= delta;
+ delta_mine -= delta;
+ }
+
+ cfs_rq->fair_clock += delta_fair;
+ /*
+ * We executed delta_exec amount of time on the CPU,
+ * but we were only entitled to delta_mine amount of
+ * time during that period (if nr_running == 1 then
+ * the two values are equal)
+ * [Note: delta_mine - delta_exec is negative]:
+ */
+ add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
+}
+
+static void update_curr(struct cfs_rq *cfs_rq, u64 now)
+{
+ struct sched_entity *curr = cfs_rq_curr(cfs_rq);
+ unsigned long delta_exec;
+
+ if (unlikely(!curr))
+ return;
+
+ /*
+ * Get the amount of time the current task was running
+ * since the last time we changed load (this cannot
+ * overflow on 32 bits):
+ */
+ delta_exec = (unsigned long)(now - curr->exec_start);
+
+ curr->delta_exec += delta_exec;
+
+ if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
+ __update_curr(cfs_rq, curr, now);
+ curr->delta_exec = 0;
+ }
+ curr->exec_start = now;
+}
+
+static inline void
+update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ se->wait_start_fair = cfs_rq->fair_clock;
+ se->wait_start = now;
+}
+
+/*
+ * We calculate fair deltas here, so protect against the random effects
+ * of a multiplication overflow by capping it to the runtime limit:
+ */
+#if BITS_PER_LONG == 32
+static inline unsigned long
+calc_weighted(unsigned long delta, unsigned long weight, int shift)
+{
+ u64 tmp = (u64)delta * weight >> shift;
+
+ if (unlikely(tmp > sysctl_sched_runtime_limit*2))
+ return sysctl_sched_runtime_limit*2;
+ return tmp;
+}
+#else
+static inline unsigned long
+calc_weighted(unsigned long delta, unsigned long weight, int shift)
+{
+ return delta * weight >> shift;
+}
+#endif
+
+/*
+ * Task is being enqueued - update stats:
+ */
+static void
+update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ s64 key;
+
+ /*
+ * Are we enqueueing a waiting task? (for current tasks
+ * a dequeue/enqueue event is a NOP)
+ */
+ if (se != cfs_rq_curr(cfs_rq))
+ update_stats_wait_start(cfs_rq, se, now);
+ /*
+ * Update the key:
+ */
+ key = cfs_rq->fair_clock;
+
+ /*
+ * Optimize the common nice 0 case:
+ */
+ if (likely(se->load.weight == NICE_0_LOAD)) {
+ key -= se->wait_runtime;
+ } else {
+ u64 tmp;
+
+ if (se->wait_runtime < 0) {
+ tmp = -se->wait_runtime;
+ key += (tmp * se->load.inv_weight) >>
+ (WMULT_SHIFT - NICE_0_SHIFT);
+ } else {
+ tmp = se->wait_runtime;
+ key -= (tmp * se->load.weight) >> NICE_0_SHIFT;
+ }
+ }
+
+ se->fair_key = key;
+}
+
+/*
+ * Note: must be called with a freshly updated rq->fair_clock.
+ */
+static inline void
+__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ unsigned long delta_fair = se->delta_fair_run;
+
+#ifdef CONFIG_SCHEDSTATS
+ {
+ s64 delta_wait = now - se->wait_start;
+ if (unlikely(delta_wait > se->wait_max))
+ se->wait_max = delta_wait;
+ }
+#endif
+
+ if (unlikely(se->load.weight != NICE_0_LOAD))
+ delta_fair = calc_weighted(delta_fair, se->load.weight,
+ NICE_0_SHIFT);
+
+ add_wait_runtime(cfs_rq, se, delta_fair);
+}
+
+static void
+update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ unsigned long delta_fair;
+
+ delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
+ (u64)(cfs_rq->fair_clock - se->wait_start_fair));
+
+ se->delta_fair_run += delta_fair;
+ if (unlikely(abs(se->delta_fair_run) >=
+ sysctl_sched_stat_granularity)) {
+ __update_stats_wait_end(cfs_rq, se, now);
+ se->delta_fair_run = 0;
+ }
+
+ se->wait_start_fair = 0;
+ se->wait_start = 0;
+}
+
+static inline void
+update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ update_curr(cfs_rq, now);
+ /*
+ * Mark the end of the wait period if dequeueing a
+ * waiting task:
+ */
+ if (se != cfs_rq_curr(cfs_rq))
+ update_stats_wait_end(cfs_rq, se, now);
+}
+
+/*
+ * We are picking a new current task - update its stats:
+ */
+static inline void
+update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ /*
+ * We are starting a new run period:
+ */
+ se->exec_start = now;
+}
+
+/*
+ * We are descheduling a task - update its stats:
+ */
+static inline void
+update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ se->exec_start = 0;
+}
+
+/**************************************************
+ * Scheduling class queueing methods:
+ */
+
+static void
+__enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ unsigned long load = cfs_rq->load.weight, delta_fair;
+ long prev_runtime;
+
+ if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
+ load = rq_of(cfs_rq)->cpu_load[2];
+
+ delta_fair = se->delta_fair_sleep;
+
+ /*
+ * Fix up delta_fair with the effect of us running
+ * during the whole sleep period:
+ */
+ if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
+ delta_fair = div64_likely32((u64)delta_fair * load,
+ load + se->load.weight);
+
+ if (unlikely(se->load.weight != NICE_0_LOAD))
+ delta_fair = calc_weighted(delta_fair, se->load.weight,
+ NICE_0_SHIFT);
+
+ prev_runtime = se->wait_runtime;
+ __add_wait_runtime(cfs_rq, se, delta_fair);
+ delta_fair = se->wait_runtime - prev_runtime;
+
+ /*
+ * Track the amount of bonus we've given to sleepers:
+ */
+ cfs_rq->sleeper_bonus += delta_fair;
+
+ schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
+}
+
+static void
+enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ struct task_struct *tsk = task_of(se);
+ unsigned long delta_fair;
+
+ if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
+ !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
+ return;
+
+ delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
+ (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
+
+ se->delta_fair_sleep += delta_fair;
+ if (unlikely(abs(se->delta_fair_sleep) >=
+ sysctl_sched_stat_granularity)) {
+ __enqueue_sleeper(cfs_rq, se, now);
+ se->delta_fair_sleep = 0;
+ }
+
+ se->sleep_start_fair = 0;
+
+#ifdef CONFIG_SCHEDSTATS
+ if (se->sleep_start) {
+ u64 delta = now - se->sleep_start;
+
+ if ((s64)delta < 0)
+ delta = 0;
+
+ if (unlikely(delta > se->sleep_max))
+ se->sleep_max = delta;
+
+ se->sleep_start = 0;
+ se->sum_sleep_runtime += delta;
+ }
+ if (se->block_start) {
+ u64 delta = now - se->block_start;
+
+ if ((s64)delta < 0)
+ delta = 0;
+
+ if (unlikely(delta > se->block_max))
+ se->block_max = delta;
+
+ se->block_start = 0;
+ se->sum_sleep_runtime += delta;
+ }
+#endif
+}
+
+static void
+enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
+ int wakeup, u64 now)
+{
+ /*
+ * Update the fair clock.
+ */
+ update_curr(cfs_rq, now);
+
+ if (wakeup)
+ enqueue_sleeper(cfs_rq, se, now);
+
+ update_stats_enqueue(cfs_rq, se, now);
+ __enqueue_entity(cfs_rq, se);
+}
+
+static void
+dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
+ int sleep, u64 now)
+{
+ update_stats_dequeue(cfs_rq, se, now);
+ if (sleep) {
+ se->sleep_start_fair = cfs_rq->fair_clock;
+#ifdef CONFIG_SCHEDSTATS
+ if (entity_is_task(se)) {
+ struct task_struct *tsk = task_of(se);
+
+ if (tsk->state & TASK_INTERRUPTIBLE)
+ se->sleep_start = now;
+ if (tsk->state & TASK_UNINTERRUPTIBLE)
+ se->block_start = now;
+ }
+ cfs_rq->wait_runtime -= se->wait_runtime;
+#endif
+ }
+ __dequeue_entity(cfs_rq, se);
+}
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void
+__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
+ struct sched_entity *curr, unsigned long granularity)
+{
+ s64 __delta = curr->fair_key - se->fair_key;
+
+ /*
+ * Take scheduling granularity into account - do not
+ * preempt the current task unless the best task has
+ * a larger than sched_granularity fairness advantage:
+ */
+ if (__delta > niced_granularity(curr, granularity))
+ resched_task(rq_of(cfs_rq)->curr);
+}
+
+static inline void
+set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
+{
+ /*
+ * Any task has to be enqueued before it get to execute on
+ * a CPU. So account for the time it spent waiting on the
+ * runqueue. (note, here we rely on pick_next_task() having
+ * done a put_prev_task_fair() shortly before this, which
+ * updated rq->fair_clock - used by update_stats_wait_end())
+ */
+ update_stats_wait_end(cfs_rq, se, now);
+ update_stats_curr_start(cfs_rq, se, now);
+ set_cfs_rq_curr(cfs_rq, se);
+}
+
+static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, u64 now)
+{
+ struct sched_entity *se = __pick_next_entity(cfs_rq);
+
+ set_next_entity(cfs_rq, se, now);
+
+ return se;
+}
+
+static void
+put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev, u64 now)
+{
+ /*
+ * If still on the runqueue then deactivate_task()
+ * was not called and update_curr() has to be done:
+ */
+ if (prev->on_rq)
+ update_curr(cfs_rq, now);
+
+ update_stats_curr_end(cfs_rq, prev, now);
+
+ if (prev->on_rq)
+ update_stats_wait_start(cfs_rq, prev, now);
+ set_cfs_rq_curr(cfs_rq, NULL);
+}
+
+static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
+{
+ struct rq *rq = rq_of(cfs_rq);
+ struct sched_entity *next;
+ u64 now = __rq_clock(rq);
+
+ /*
+ * Dequeue and enqueue the task to update its
+ * position within the tree:
+ */
+ dequeue_entity(cfs_rq, curr, 0, now);
+ enqueue_entity(cfs_rq, curr, 0, now);
+
+ /*
+ * Reschedule if another task tops the current one.
+ */
+ next = __pick_next_entity(cfs_rq);
+ if (next == curr)
+ return;
+
+ __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
+}
+
+/**************************************************
+ * CFS operations on tasks:
+ */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* Walk up scheduling entities hierarchy */
+#define for_each_sched_entity(se) \
+ for (; se; se = se->parent)
+
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+ return p->se.cfs_rq;
+}
+
+/* runqueue on which this entity is (to be) queued */
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+ return se->cfs_rq;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+ return grp->my_q;
+}
+
+/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
+ * another cpu ('this_cpu')
+ */
+static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
+{
+ /* A later patch will take group into account */
+ return &cpu_rq(this_cpu)->cfs;
+}
+
+/* Iterate thr' all leaf cfs_rq's on a runqueue */
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
+ list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
+
+/* Do the two (enqueued) tasks belong to the same group ? */
+static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
+{
+ if (curr->se.cfs_rq == p->se.cfs_rq)
+ return 1;
+
+ return 0;
+}
+
+#else /* CONFIG_FAIR_GROUP_SCHED */
+
+#define for_each_sched_entity(se) \
+ for (; se; se = NULL)
+
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+ return &task_rq(p)->cfs;
+}
+
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
+{
+ struct task_struct *p = task_of(se);
+ struct rq *rq = task_rq(p);
+
+ return &rq->cfs;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+ return NULL;
+}
+
+static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
+{
+ return &cpu_rq(this_cpu)->cfs;
+}
+
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
+ for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
+
+static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
+{
+ return 1;
+}
+
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+/*
+ * The enqueue_task method is called before nr_running is
+ * increased. Here we update the fair scheduling stats and
+ * then put the task into the rbtree:
+ */
+static void
+enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+{
+ struct cfs_rq *cfs_rq;
+ struct sched_entity *se = &p->se;
+
+ for_each_sched_entity(se) {
+ if (se->on_rq)
+ break;
+ cfs_rq = cfs_rq_of(se);
+ enqueue_entity(cfs_rq, se, wakeup, now);
+ }
+}
+
+/*
+ * The dequeue_task method is called before nr_running is
+ * decreased. We remove the task from the rbtree and
+ * update the fair scheduling stats:
+ */
+static void
+dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
+{
+ struct cfs_rq *cfs_rq;
+ struct sched_entity *se = &p->se;
+
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+ dequeue_entity(cfs_rq, se, sleep, now);
+ /* Don't dequeue parent if it has other entities besides us */
+ if (cfs_rq->load.weight)
+ break;
+ }
+}
+
+/*
+ * sched_yield() support is very simple - we dequeue and enqueue
+ */
+static void yield_task_fair(struct rq *rq, struct task_struct *p)
+{
+ struct cfs_rq *cfs_rq = task_cfs_rq(p);
+ u64 now = __rq_clock(rq);
+
+ /*
+ * Dequeue and enqueue the task to update its
+ * position within the tree:
+ */
+ dequeue_entity(cfs_rq, &p->se, 0, now);
+ enqueue_entity(cfs_rq, &p->se, 0, now);
+}
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
+{
+ struct task_struct *curr = rq->curr;
+ struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+ unsigned long gran;
+
+ if (unlikely(rt_prio(p->prio))) {
+ update_curr(cfs_rq, rq_clock(rq));
+ resched_task(curr);
+ return;
+ }
+
+ gran = sysctl_sched_wakeup_granularity;
+ /*
+ * Batch tasks prefer throughput over latency:
+ */
+ if (unlikely(p->policy == SCHED_BATCH))
+ gran = sysctl_sched_batch_wakeup_granularity;
+
+ if (is_same_group(curr, p))
+ __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
+}
+
+static struct task_struct *pick_next_task_fair(struct rq *rq, u64 now)
+{
+ struct cfs_rq *cfs_rq = &rq->cfs;
+ struct sched_entity *se;
+
+ if (unlikely(!cfs_rq->nr_running))
+ return NULL;
+
+ do {
+ se = pick_next_entity(cfs_rq, now);
+ cfs_rq = group_cfs_rq(se);
+ } while (cfs_rq);
+
+ return task_of(se);
+}
+
+/*
+ * Account for a descheduled task:
+ */
+static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
+{
+ struct sched_entity *se = &prev->se;
+ struct cfs_rq *cfs_rq;
+
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+ put_prev_entity(cfs_rq, se, now);
+ }
+}
+
+/**************************************************
+ * Fair scheduling class load-balancing methods:
+ */
+
+/*
+ * Load-balancing iterator. Note: while the runqueue stays locked
+ * during the whole iteration, the current task might be
+ * dequeued so the iterator has to be dequeue-safe. Here we
+ * achieve that by always pre-iterating before returning
+ * the current task:
+ */
+static inline struct task_struct *
+__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
+{
+ struct task_struct *p;
+
+ if (!curr)
+ return NULL;
+
+ p = rb_entry(curr, struct task_struct, se.run_node);
+ cfs_rq->rb_load_balance_curr = rb_next(curr);
+
+ return p;
+}
+
+static struct task_struct *load_balance_start_fair(void *arg)
+{
+ struct cfs_rq *cfs_rq = arg;
+
+ return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
+}
+
+static struct task_struct *load_balance_next_fair(void *arg)
+{
+ struct cfs_rq *cfs_rq = arg;
+
+ return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
+}
+
+static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
+{
+ struct sched_entity *curr;
+ struct task_struct *p;
+
+ if (!cfs_rq->nr_running)
+ return MAX_PRIO;
+
+ curr = __pick_next_entity(cfs_rq);
+ p = task_of(curr);
+
+ return p->prio;
+}
+
+static int
+load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
+ unsigned long max_nr_move, unsigned long max_load_move,
+ struct sched_domain *sd, enum cpu_idle_type idle,
+ int *all_pinned, unsigned long *total_load_moved)
+{
+ struct cfs_rq *busy_cfs_rq;
+ unsigned long load_moved, total_nr_moved = 0, nr_moved;
+ long rem_load_move = max_load_move;
+ struct rq_iterator cfs_rq_iterator;
+
+ cfs_rq_iterator.start = load_balance_start_fair;
+ cfs_rq_iterator.next = load_balance_next_fair;
+
+ for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
+ struct cfs_rq *this_cfs_rq;
+ long imbalance;
+ unsigned long maxload;
+ int this_best_prio, best_prio, best_prio_seen = 0;
+
+ this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
+
+ imbalance = busy_cfs_rq->load.weight -
+ this_cfs_rq->load.weight;
+ /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
+ if (imbalance <= 0)
+ continue;
+
+ /* Don't pull more than imbalance/2 */
+ imbalance /= 2;
+ maxload = min(rem_load_move, imbalance);
+
+ this_best_prio = cfs_rq_best_prio(this_cfs_rq);
+ best_prio = cfs_rq_best_prio(busy_cfs_rq);
+
+ /*
+ * Enable handling of the case where there is more than one task
+ * with the best priority. If the current running task is one
+ * of those with prio==best_prio we know it won't be moved
+ * and therefore it's safe to override the skip (based on load)
+ * of any task we find with that prio.
+ */
+ if (cfs_rq_curr(busy_cfs_rq) == &busiest->curr->se)
+ best_prio_seen = 1;
+
+ /* pass busy_cfs_rq argument into
+ * load_balance_[start|next]_fair iterators
+ */
+ cfs_rq_iterator.arg = busy_cfs_rq;
+ nr_moved = balance_tasks(this_rq, this_cpu, busiest,
+ max_nr_move, maxload, sd, idle, all_pinned,
+ &load_moved, this_best_prio, best_prio,
+ best_prio_seen, &cfs_rq_iterator);
+
+ total_nr_moved += nr_moved;
+ max_nr_move -= nr_moved;
+ rem_load_move -= load_moved;
+
+ if (max_nr_move <= 0 || rem_load_move <= 0)
+ break;
+ }
+
+ *total_load_moved = max_load_move - rem_load_move;
+
+ return total_nr_moved;
+}
+
+/*
+ * scheduler tick hitting a task of our scheduling class:
+ */
+static void task_tick_fair(struct rq *rq, struct task_struct *curr)
+{
+ struct cfs_rq *cfs_rq;
+ struct sched_entity *se = &curr->se;
+
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+ entity_tick(cfs_rq, se);
+ }
+}
+
+/*
+ * Share the fairness runtime between parent and child, thus the
+ * total amount of pressure for CPU stays equal - new tasks
+ * get a chance to run but frequent forkers are not allowed to
+ * monopolize the CPU. Note: the parent runqueue is locked,
+ * the child is not running yet.
+ */
+static void task_new_fair(struct rq *rq, struct task_struct *p)
+{
+ struct cfs_rq *cfs_rq = task_cfs_rq(p);
+ struct sched_entity *se = &p->se;
+ u64 now = rq_clock(rq);
+
+ sched_info_queued(p);
+
+ update_stats_enqueue(cfs_rq, se, now);
+ /*
+ * Child runs first: we let it run before the parent
+ * until it reschedules once. We set up the key so that
+ * it will preempt the parent:
+ */
+ p->se.fair_key = current->se.fair_key -
+ niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
+ /*
+ * The first wait is dominated by the child-runs-first logic,
+ * so do not credit it with that waiting time yet:
+ */
+ if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
+ p->se.wait_start_fair = 0;
+
+ /*
+ * The statistical average of wait_runtime is about
+ * -granularity/2, so initialize the task with that:
+ */
+ if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
+ p->se.wait_runtime = -(sysctl_sched_granularity / 2);
+
+ __enqueue_entity(cfs_rq, se);
+ inc_nr_running(p, rq, now);
+}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/* Account for a task changing its policy or group.
+ *
+ * This routine is mostly called to set cfs_rq->curr field when a task
+ * migrates between groups/classes.
+ */
+static void set_curr_task_fair(struct rq *rq)
+{
+ struct task_struct *curr = rq->curr;
+ struct sched_entity *se = &curr->se;
+ u64 now = rq_clock(rq);
+ struct cfs_rq *cfs_rq;
+
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+ set_next_entity(cfs_rq, se, now);
+ }
+}
+#else
+static void set_curr_task_fair(struct rq *rq)
+{
+}
+#endif
+
+/*
+ * All the scheduling class methods:
+ */
+struct sched_class fair_sched_class __read_mostly = {
+ .enqueue_task = enqueue_task_fair,
+ .dequeue_task = dequeue_task_fair,
+ .yield_task = yield_task_fair,
+
+ .check_preempt_curr = check_preempt_curr_fair,
+
+ .pick_next_task = pick_next_task_fair,
+ .put_prev_task = put_prev_task_fair,
+
+ .load_balance = load_balance_fair,
+
+ .set_curr_task = set_curr_task_fair,
+ .task_tick = task_tick_fair,
+ .task_new = task_new_fair,
+};
+
+#ifdef CONFIG_SCHED_DEBUG
+void print_cfs_stats(struct seq_file *m, int cpu, u64 now)
+{
+ struct rq *rq = cpu_rq(cpu);
+ struct cfs_rq *cfs_rq;
+
+ for_each_leaf_cfs_rq(rq, cfs_rq)
+ print_cfs_rq(m, cpu, cfs_rq, now);
+}
+#endif
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c
new file mode 100644
index 000000000000..41841e741c4a
--- /dev/null
+++ b/kernel/sched_idletask.c
@@ -0,0 +1,71 @@
+/*
+ * idle-task scheduling class.
+ *
+ * (NOTE: these are not related to SCHED_IDLE tasks which are
+ * handled in sched_fair.c)
+ */
+
+/*
+ * Idle tasks are unconditionally rescheduled:
+ */
+static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p)
+{
+ resched_task(rq->idle);
+}
+
+static struct task_struct *pick_next_task_idle(struct rq *rq, u64 now)
+{
+ schedstat_inc(rq, sched_goidle);
+
+ return rq->idle;
+}
+
+/*
+ * It is not legal to sleep in the idle task - print a warning
+ * message if some code attempts to do it:
+ */
+static void
+dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep, u64 now)
+{
+ spin_unlock_irq(&rq->lock);
+ printk(KERN_ERR "bad: scheduling from the idle thread!\n");
+ dump_stack();
+ spin_lock_irq(&rq->lock);
+}
+
+static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, u64 now)
+{
+}
+
+static int
+load_balance_idle(struct rq *this_rq, int this_cpu, struct rq *busiest,
+ unsigned long max_nr_move, unsigned long max_load_move,
+ struct sched_domain *sd, enum cpu_idle_type idle,
+ int *all_pinned, unsigned long *total_load_moved)
+{
+ return 0;
+}
+
+static void task_tick_idle(struct rq *rq, struct task_struct *curr)
+{
+}
+
+/*
+ * Simple, special scheduling class for the per-CPU idle tasks:
+ */
+static struct sched_class idle_sched_class __read_mostly = {
+ /* no enqueue/yield_task for idle tasks */
+
+ /* dequeue is not valid, we print a debug message there: */
+ .dequeue_task = dequeue_task_idle,
+
+ .check_preempt_curr = check_preempt_curr_idle,
+
+ .pick_next_task = pick_next_task_idle,
+ .put_prev_task = put_prev_task_idle,
+
+ .load_balance = load_balance_idle,
+
+ .task_tick = task_tick_idle,
+ /* no .task_new for idle tasks */
+};
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
new file mode 100644
index 000000000000..1192a2741b99
--- /dev/null
+++ b/kernel/sched_rt.c
@@ -0,0 +1,255 @@
+/*
+ * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
+ * policies)
+ */
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static inline void update_curr_rt(struct rq *rq, u64 now)
+{
+ struct task_struct *curr = rq->curr;
+ u64 delta_exec;
+
+ if (!task_has_rt_policy(curr))
+ return;
+
+ delta_exec = now - curr->se.exec_start;
+ if (unlikely((s64)delta_exec < 0))
+ delta_exec = 0;
+ if (unlikely(delta_exec > curr->se.exec_max))
+ curr->se.exec_max = delta_exec;
+
+ curr->se.sum_exec_runtime += delta_exec;
+ curr->se.exec_start = now;
+}
+
+static void
+enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+{
+ struct rt_prio_array *array = &rq->rt.active;
+
+ list_add_tail(&p->run_list, array->queue + p->prio);
+ __set_bit(p->prio, array->bitmap);
+}
+
+/*
+ * Adding/removing a task to/from a priority array:
+ */
+static void
+dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep, u64 now)
+{
+ struct rt_prio_array *array = &rq->rt.active;
+
+ update_curr_rt(rq, now);
+
+ list_del(&p->run_list);
+ if (list_empty(array->queue + p->prio))
+ __clear_bit(p->prio, array->bitmap);
+}
+
+/*
+ * Put task to the end of the run list without the overhead of dequeue
+ * followed by enqueue.
+ */
+static void requeue_task_rt(struct rq *rq, struct task_struct *p)
+{
+ struct rt_prio_array *array = &rq->rt.active;
+
+ list_move_tail(&p->run_list, array->queue + p->prio);
+}
+
+static void
+yield_task_rt(struct rq *rq, struct task_struct *p)
+{
+ requeue_task_rt(rq, p);
+}
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
+{
+ if (p->prio < rq->curr->prio)
+ resched_task(rq->curr);
+}
+
+static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
+{
+ struct rt_prio_array *array = &rq->rt.active;
+ struct task_struct *next;
+ struct list_head *queue;
+ int idx;
+
+ idx = sched_find_first_bit(array->bitmap);
+ if (idx >= MAX_RT_PRIO)
+ return NULL;
+
+ queue = array->queue + idx;
+ next = list_entry(queue->next, struct task_struct, run_list);
+
+ next->se.exec_start = now;
+
+ return next;
+}
+
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
+{
+ update_curr_rt(rq, now);
+ p->se.exec_start = 0;
+}
+
+/*
+ * Load-balancing iterator. Note: while the runqueue stays locked
+ * during the whole iteration, the current task might be
+ * dequeued so the iterator has to be dequeue-safe. Here we
+ * achieve that by always pre-iterating before returning
+ * the current task:
+ */
+static struct task_struct *load_balance_start_rt(void *arg)
+{
+ struct rq *rq = arg;
+ struct rt_prio_array *array = &rq->rt.active;
+ struct list_head *head, *curr;
+ struct task_struct *p;
+ int idx;
+
+ idx = sched_find_first_bit(array->bitmap);
+ if (idx >= MAX_RT_PRIO)
+ return NULL;
+
+ head = array->queue + idx;
+ curr = head->prev;
+
+ p = list_entry(curr, struct task_struct, run_list);
+
+ curr = curr->prev;
+
+ rq->rt.rt_load_balance_idx = idx;
+ rq->rt.rt_load_balance_head = head;
+ rq->rt.rt_load_balance_curr = curr;
+
+ return p;
+}
+
+static struct task_struct *load_balance_next_rt(void *arg)
+{
+ struct rq *rq = arg;
+ struct rt_prio_array *array = &rq->rt.active;
+ struct list_head *head, *curr;
+ struct task_struct *p;
+ int idx;
+
+ idx = rq->rt.rt_load_balance_idx;
+ head = rq->rt.rt_load_balance_head;
+ curr = rq->rt.rt_load_balance_curr;
+
+ /*
+ * If we arrived back to the head again then
+ * iterate to the next queue (if any):
+ */
+ if (unlikely(head == curr)) {
+ int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
+
+ if (next_idx >= MAX_RT_PRIO)
+ return NULL;
+
+ idx = next_idx;
+ head = array->queue + idx;
+ curr = head->prev;
+
+ rq->rt.rt_load_balance_idx = idx;
+ rq->rt.rt_load_balance_head = head;
+ }
+
+ p = list_entry(curr, struct task_struct, run_list);
+
+ curr = curr->prev;
+
+ rq->rt.rt_load_balance_curr = curr;
+
+ return p;
+}
+
+static int
+load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
+ unsigned long max_nr_move, unsigned long max_load_move,
+ struct sched_domain *sd, enum cpu_idle_type idle,
+ int *all_pinned, unsigned long *load_moved)
+{
+ int this_best_prio, best_prio, best_prio_seen = 0;
+ int nr_moved;
+ struct rq_iterator rt_rq_iterator;
+
+ best_prio = sched_find_first_bit(busiest->rt.active.bitmap);
+ this_best_prio = sched_find_first_bit(this_rq->rt.active.bitmap);
+
+ /*
+ * Enable handling of the case where there is more than one task
+ * with the best priority. If the current running task is one
+ * of those with prio==best_prio we know it won't be moved
+ * and therefore it's safe to override the skip (based on load)
+ * of any task we find with that prio.
+ */
+ if (busiest->curr->prio == best_prio)
+ best_prio_seen = 1;
+
+ rt_rq_iterator.start = load_balance_start_rt;
+ rt_rq_iterator.next = load_balance_next_rt;
+ /* pass 'busiest' rq argument into
+ * load_balance_[start|next]_rt iterators
+ */
+ rt_rq_iterator.arg = busiest;
+
+ nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
+ max_load_move, sd, idle, all_pinned, load_moved,
+ this_best_prio, best_prio, best_prio_seen,
+ &rt_rq_iterator);
+
+ return nr_moved;
+}
+
+static void task_tick_rt(struct rq *rq, struct task_struct *p)
+{
+ /*
+ * RR tasks need a special form of timeslice management.
+ * FIFO tasks have no timeslices.
+ */
+ if (p->policy != SCHED_RR)
+ return;
+
+ if (--p->time_slice)
+ return;
+
+ p->time_slice = static_prio_timeslice(p->static_prio);
+ set_tsk_need_resched(p);
+
+ /* put it at the end of the queue: */
+ requeue_task_rt(rq, p);
+}
+
+/*
+ * No parent/child timeslice management necessary for RT tasks,
+ * just activate them:
+ */
+static void task_new_rt(struct rq *rq, struct task_struct *p)
+{
+ activate_task(rq, p, 1);
+}
+
+static struct sched_class rt_sched_class __read_mostly = {
+ .enqueue_task = enqueue_task_rt,
+ .dequeue_task = dequeue_task_rt,
+ .yield_task = yield_task_rt,
+
+ .check_preempt_curr = check_preempt_curr_rt,
+
+ .pick_next_task = pick_next_task_rt,
+ .put_prev_task = put_prev_task_rt,
+
+ .load_balance = load_balance_rt,
+
+ .task_tick = task_tick_rt,
+ .task_new = task_new_rt,
+};
diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h
new file mode 100644
index 000000000000..c63c38f6fa6e
--- /dev/null
+++ b/kernel/sched_stats.h
@@ -0,0 +1,235 @@
+
+#ifdef CONFIG_SCHEDSTATS
+/*
+ * bump this up when changing the output format or the meaning of an existing
+ * format, so that tools can adapt (or abort)
+ */
+#define SCHEDSTAT_VERSION 14
+
+static int show_schedstat(struct seq_file *seq, void *v)
+{
+ int cpu;
+
+ seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
+ seq_printf(seq, "timestamp %lu\n", jiffies);
+ for_each_online_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+#ifdef CONFIG_SMP
+ struct sched_domain *sd;
+ int dcnt = 0;
+#endif
+
+ /* runqueue-specific stats */
+ seq_printf(seq,
+ "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %llu %llu %lu",
+ cpu, rq->yld_both_empty,
+ rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
+ rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
+ rq->ttwu_cnt, rq->ttwu_local,
+ rq->rq_sched_info.cpu_time,
+ rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
+
+ seq_printf(seq, "\n");
+
+#ifdef CONFIG_SMP
+ /* domain-specific stats */
+ preempt_disable();
+ for_each_domain(cpu, sd) {
+ enum cpu_idle_type itype;
+ char mask_str[NR_CPUS];
+
+ cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
+ seq_printf(seq, "domain%d %s", dcnt++, mask_str);
+ for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
+ itype++) {
+ seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
+ "%lu",
+ sd->lb_cnt[itype],
+ sd->lb_balanced[itype],
+ sd->lb_failed[itype],
+ sd->lb_imbalance[itype],
+ sd->lb_gained[itype],
+ sd->lb_hot_gained[itype],
+ sd->lb_nobusyq[itype],
+ sd->lb_nobusyg[itype]);
+ }
+ seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
+ " %lu %lu %lu\n",
+ sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
+ sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
+ sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
+ sd->ttwu_wake_remote, sd->ttwu_move_affine,
+ sd->ttwu_move_balance);
+ }
+ preempt_enable();
+#endif
+ }
+ return 0;
+}
+
+static int schedstat_open(struct inode *inode, struct file *file)
+{
+ unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
+ char *buf = kmalloc(size, GFP_KERNEL);
+ struct seq_file *m;
+ int res;
+
+ if (!buf)
+ return -ENOMEM;
+ res = single_open(file, show_schedstat, NULL);
+ if (!res) {
+ m = file->private_data;
+ m->buf = buf;
+ m->size = size;
+ } else
+ kfree(buf);
+ return res;
+}
+
+const struct file_operations proc_schedstat_operations = {
+ .open = schedstat_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+/*
+ * Expects runqueue lock to be held for atomicity of update
+ */
+static inline void
+rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
+{
+ if (rq) {
+ rq->rq_sched_info.run_delay += delta;
+ rq->rq_sched_info.pcnt++;
+ }
+}
+
+/*
+ * Expects runqueue lock to be held for atomicity of update
+ */
+static inline void
+rq_sched_info_depart(struct rq *rq, unsigned long long delta)
+{
+ if (rq)
+ rq->rq_sched_info.cpu_time += delta;
+}
+# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
+# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
+#else /* !CONFIG_SCHEDSTATS */
+static inline void
+rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
+{}
+static inline void
+rq_sched_info_depart(struct rq *rq, unsigned long long delta)
+{}
+# define schedstat_inc(rq, field) do { } while (0)
+# define schedstat_add(rq, field, amt) do { } while (0)
+#endif
+
+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
+/*
+ * Called when a process is dequeued from the active array and given
+ * the cpu. We should note that with the exception of interactive
+ * tasks, the expired queue will become the active queue after the active
+ * queue is empty, without explicitly dequeuing and requeuing tasks in the
+ * expired queue. (Interactive tasks may be requeued directly to the
+ * active queue, thus delaying tasks in the expired queue from running;
+ * see scheduler_tick()).
+ *
+ * This function is only called from sched_info_arrive(), rather than
+ * dequeue_task(). Even though a task may be queued and dequeued multiple
+ * times as it is shuffled about, we're really interested in knowing how
+ * long it was from the *first* time it was queued to the time that it
+ * finally hit a cpu.
+ */
+static inline void sched_info_dequeued(struct task_struct *t)
+{
+ t->sched_info.last_queued = 0;
+}
+
+/*
+ * Called when a task finally hits the cpu. We can now calculate how
+ * long it was waiting to run. We also note when it began so that we
+ * can keep stats on how long its timeslice is.
+ */
+static void sched_info_arrive(struct task_struct *t)
+{
+ unsigned long long now = sched_clock(), delta = 0;
+
+ if (t->sched_info.last_queued)
+ delta = now - t->sched_info.last_queued;
+ sched_info_dequeued(t);
+ t->sched_info.run_delay += delta;
+ t->sched_info.last_arrival = now;
+ t->sched_info.pcnt++;
+
+ rq_sched_info_arrive(task_rq(t), delta);
+}
+
+/*
+ * Called when a process is queued into either the active or expired
+ * array. The time is noted and later used to determine how long we
+ * had to wait for us to reach the cpu. Since the expired queue will
+ * become the active queue after active queue is empty, without dequeuing
+ * and requeuing any tasks, we are interested in queuing to either. It
+ * is unusual but not impossible for tasks to be dequeued and immediately
+ * requeued in the same or another array: this can happen in sched_yield(),
+ * set_user_nice(), and even load_balance() as it moves tasks from runqueue
+ * to runqueue.
+ *
+ * This function is only called from enqueue_task(), but also only updates
+ * the timestamp if it is already not set. It's assumed that
+ * sched_info_dequeued() will clear that stamp when appropriate.
+ */
+static inline void sched_info_queued(struct task_struct *t)
+{
+ if (unlikely(sched_info_on()))
+ if (!t->sched_info.last_queued)
+ t->sched_info.last_queued = sched_clock();
+}
+
+/*
+ * Called when a process ceases being the active-running process, either
+ * voluntarily or involuntarily. Now we can calculate how long we ran.
+ */
+static inline void sched_info_depart(struct task_struct *t)
+{
+ unsigned long long delta = sched_clock() - t->sched_info.last_arrival;
+
+ t->sched_info.cpu_time += delta;
+ rq_sched_info_depart(task_rq(t), delta);
+}
+
+/*
+ * Called when tasks are switched involuntarily due, typically, to expiring
+ * their time slice. (This may also be called when switching to or from
+ * the idle task.) We are only called when prev != next.
+ */
+static inline void
+__sched_info_switch(struct task_struct *prev, struct task_struct *next)
+{
+ struct rq *rq = task_rq(prev);
+
+ /*
+ * prev now departs the cpu. It's not interesting to record
+ * stats about how efficient we were at scheduling the idle
+ * process, however.
+ */
+ if (prev != rq->idle)
+ sched_info_depart(prev);
+
+ if (next != rq->idle)
+ sched_info_arrive(next);
+}
+static inline void
+sched_info_switch(struct task_struct *prev, struct task_struct *next)
+{
+ if (unlikely(sched_info_on()))
+ __sched_info_switch(prev, next);
+}
+#else
+#define sched_info_queued(t) do { } while (0)
+#define sched_info_switch(t, next) do { } while (0)
+#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
+
diff --git a/kernel/softirq.c b/kernel/softirq.c
index 0b9886a00e74..73217a9e2875 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -488,7 +488,6 @@ void __init softirq_init(void)
static int ksoftirqd(void * __bind_cpu)
{
- set_user_nice(current, 19);
current->flags |= PF_NOFREEZE;
set_current_state(TASK_INTERRUPTIBLE);
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 30ee462ee79f..51f5dac42a00 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -206,7 +206,87 @@ static ctl_table root_table[] = {
{ .ctl_name = 0 }
};
+#ifdef CONFIG_SCHED_DEBUG
+static unsigned long min_sched_granularity_ns = 100000; /* 100 usecs */
+static unsigned long max_sched_granularity_ns = 1000000000; /* 1 second */
+static unsigned long min_wakeup_granularity_ns; /* 0 usecs */
+static unsigned long max_wakeup_granularity_ns = 1000000000; /* 1 second */
+#endif
+
static ctl_table kern_table[] = {
+#ifdef CONFIG_SCHED_DEBUG
+ {
+ .ctl_name = CTL_UNNUMBERED,
+ .procname = "sched_granularity_ns",
+ .data = &sysctl_sched_granularity,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .strategy = &sysctl_intvec,
+ .extra1 = &min_sched_granularity_ns,
+ .extra2 = &max_sched_granularity_ns,
+ },
+ {
+ .ctl_name = CTL_UNNUMBERED,
+ .procname = "sched_wakeup_granularity_ns",
+ .data = &sysctl_sched_wakeup_granularity,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .strategy = &sysctl_intvec,
+ .extra1 = &min_wakeup_granularity_ns,
+ .extra2 = &max_wakeup_granularity_ns,
+ },
+ {
+ .ctl_name = CTL_UNNUMBERED,
+ .procname = "sched_batch_wakeup_granularity_ns",
+ .data = &sysctl_sched_batch_wakeup_granularity,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .strategy = &sysctl_intvec,
+ .extra1 = &min_wakeup_granularity_ns,
+ .extra2 = &max_wakeup_granularity_ns,
+ },
+ {
+ .ctl_name = CTL_UNNUMBERED,
+ .procname = "sched_stat_granularity_ns",
+ .data = &sysctl_sched_stat_granularity,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .strategy = &sysctl_intvec,
+ .extra1 = &min_wakeup_granularity_ns,
+ .extra2 = &max_wakeup_granularity_ns,
+ },
+ {
+ .ctl_name = CTL_UNNUMBERED,
+ .procname = "sched_runtime_limit_ns",
+ .data = &sysctl_sched_runtime_limit,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec_minmax,
+ .strategy = &sysctl_intvec,
+ .extra1 = &min_sched_granularity_ns,
+ .extra2 = &max_sched_granularity_ns,
+ },
+ {
+ .ctl_name = CTL_UNNUMBERED,
+ .procname = "sched_child_runs_first",
+ .data = &sysctl_sched_child_runs_first,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec,
+ },
+ {
+ .ctl_name = CTL_UNNUMBERED,
+ .procname = "sched_features",
+ .data = &sysctl_sched_features,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = &proc_dointvec,
+ },
+#endif
{
.ctl_name = KERN_PANIC,
.procname = "panic",