summaryrefslogtreecommitdiffstats
path: root/lib/crc32.c
diff options
context:
space:
mode:
authorHerbert Xu <herbert@gondor.apana.org.au>2007-08-30 10:24:15 +0200
committerDavid S. Miller <davem@sunset.davemloft.net>2007-10-11 01:55:43 +0200
commit3c09f17c3d11f3e98928f55b600e6de22f58017a (patch)
tree1c707e78054804fba65719a6dc87bc555fe9566b /lib/crc32.c
parent[CRYPTO] api: Fixed crypto_*_reqsize return type (diff)
downloadlinux-3c09f17c3d11f3e98928f55b600e6de22f58017a.tar.xz
linux-3c09f17c3d11f3e98928f55b600e6de22f58017a.zip
[CRYPTO] aead: Add authenc
This patch adds the authenc algorithm which constructs an AEAD algorithm from an asynchronous block cipher and a hash. The construction is done by concatenating the encrypted result from the cipher with the output from the hash, as is used by the IPsec ESP protocol. The authenc algorithm exists as a template with four parameters: authenc(auth, authsize, enc, enckeylen). The authentication algorithm, the authentication size (i.e., truncating the output of the authentication algorithm), the encryption algorithm, and the encryption key length. Both the size field and the key length field are in bytes. For example, AES-128 with SHA1-HMAC would be represented by authenc(hmac(sha1), 12, cbc(aes), 16) The key for the authenc algorithm is the concatenation of the keys for the authentication algorithm with the encryption algorithm. For the above example, if a key of length 36 bytes is given, then hmac(sha1) would receive the first 20 bytes while the last 16 would be given to cbc(aes). Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'lib/crc32.c')
0 files changed, 0 insertions, 0 deletions