diff options
author | Dmitry Kasatkin <dmitry.kasatkin@intel.com> | 2011-08-31 13:05:16 +0200 |
---|---|---|
committer | Dmitry Kasatkin <dmitry.kasatkin@intel.com> | 2011-11-09 10:45:22 +0100 |
commit | cdec9cb5167ab1113ba9c58e395f664d9d3f9acb (patch) | |
tree | 7d9a4ab3e86b937354d0151a24d412ea8d56ad43 /lib/mpi/mpih-mul.c | |
parent | Linux 3.2-rc1 (diff) | |
download | linux-cdec9cb5167ab1113ba9c58e395f664d9d3f9acb.tar.xz linux-cdec9cb5167ab1113ba9c58e395f664d9d3f9acb.zip |
crypto: GnuPG based MPI lib - source files (part 1)
Adds the multi-precision-integer maths library which was originally taken
from GnuPG and ported to the kernel by (among others) David Howells.
This version is taken from Fedora kernel 2.6.32-71.14.1.el6.
The difference is that checkpatch reported errors and warnings have been fixed.
This library is used to implemenet RSA digital signature verification
used in IMA/EVM integrity protection subsystem.
Due to patch size limitation, the patch is divided into 4 parts.
Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com>
Diffstat (limited to 'lib/mpi/mpih-mul.c')
-rw-r--r-- | lib/mpi/mpih-mul.c | 527 |
1 files changed, 527 insertions, 0 deletions
diff --git a/lib/mpi/mpih-mul.c b/lib/mpi/mpih-mul.c new file mode 100644 index 000000000000..c69c5eef233b --- /dev/null +++ b/lib/mpi/mpih-mul.c @@ -0,0 +1,527 @@ +/* mpihelp-mul.c - MPI helper functions + * Copyright (C) 1994, 1996, 1998, 1999, + * 2000 Free Software Foundation, Inc. + * + * This file is part of GnuPG. + * + * GnuPG is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * GnuPG is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA + * + * Note: This code is heavily based on the GNU MP Library. + * Actually it's the same code with only minor changes in the + * way the data is stored; this is to support the abstraction + * of an optional secure memory allocation which may be used + * to avoid revealing of sensitive data due to paging etc. + * The GNU MP Library itself is published under the LGPL; + * however I decided to publish this code under the plain GPL. + */ + +#include <linux/string.h> +#include "mpi-internal.h" +#include "longlong.h" + +#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \ + do { \ + if ((size) < KARATSUBA_THRESHOLD) \ + mul_n_basecase(prodp, up, vp, size); \ + else \ + mul_n(prodp, up, vp, size, tspace); \ + } while (0); + +#define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \ + do { \ + if ((size) < KARATSUBA_THRESHOLD) \ + mpih_sqr_n_basecase(prodp, up, size); \ + else \ + mpih_sqr_n(prodp, up, size, tspace); \ + } while (0); + +/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), + * both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are + * always stored. Return the most significant limb. + * + * Argument constraints: + * 1. PRODP != UP and PRODP != VP, i.e. the destination + * must be distinct from the multiplier and the multiplicand. + * + * + * Handle simple cases with traditional multiplication. + * + * This is the most critical code of multiplication. All multiplies rely + * on this, both small and huge. Small ones arrive here immediately. Huge + * ones arrive here as this is the base case for Karatsuba's recursive + * algorithm below. + */ + +static mpi_limb_t +mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) +{ + mpi_size_t i; + mpi_limb_t cy; + mpi_limb_t v_limb; + + /* Multiply by the first limb in V separately, as the result can be + * stored (not added) to PROD. We also avoid a loop for zeroing. */ + v_limb = vp[0]; + if (v_limb <= 1) { + if (v_limb == 1) + MPN_COPY(prodp, up, size); + else + MPN_ZERO(prodp, size); + cy = 0; + } else + cy = mpihelp_mul_1(prodp, up, size, v_limb); + + prodp[size] = cy; + prodp++; + + /* For each iteration in the outer loop, multiply one limb from + * U with one limb from V, and add it to PROD. */ + for (i = 1; i < size; i++) { + v_limb = vp[i]; + if (v_limb <= 1) { + cy = 0; + if (v_limb == 1) + cy = mpihelp_add_n(prodp, prodp, up, size); + } else + cy = mpihelp_addmul_1(prodp, up, size, v_limb); + + prodp[size] = cy; + prodp++; + } + + return cy; +} + +static void +mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, + mpi_size_t size, mpi_ptr_t tspace) +{ + if (size & 1) { + /* The size is odd, and the code below doesn't handle that. + * Multiply the least significant (size - 1) limbs with a recursive + * call, and handle the most significant limb of S1 and S2 + * separately. + * A slightly faster way to do this would be to make the Karatsuba + * code below behave as if the size were even, and let it check for + * odd size in the end. I.e., in essence move this code to the end. + * Doing so would save us a recursive call, and potentially make the + * stack grow a lot less. + */ + mpi_size_t esize = size - 1; /* even size */ + mpi_limb_t cy_limb; + + MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace); + cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]); + prodp[esize + esize] = cy_limb; + cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]); + prodp[esize + size] = cy_limb; + } else { + /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. + * + * Split U in two pieces, U1 and U0, such that + * U = U0 + U1*(B**n), + * and V in V1 and V0, such that + * V = V0 + V1*(B**n). + * + * UV is then computed recursively using the identity + * + * 2n n n n + * UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V + * 1 1 1 0 0 1 0 0 + * + * Where B = 2**BITS_PER_MP_LIMB. + */ + mpi_size_t hsize = size >> 1; + mpi_limb_t cy; + int negflg; + + /* Product H. ________________ ________________ + * |_____U1 x V1____||____U0 x V0_____| + * Put result in upper part of PROD and pass low part of TSPACE + * as new TSPACE. + */ + MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, + tspace); + + /* Product M. ________________ + * |_(U1-U0)(V0-V1)_| + */ + if (mpihelp_cmp(up + hsize, up, hsize) >= 0) { + mpihelp_sub_n(prodp, up + hsize, up, hsize); + negflg = 0; + } else { + mpihelp_sub_n(prodp, up, up + hsize, hsize); + negflg = 1; + } + if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) { + mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize); + negflg ^= 1; + } else { + mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize); + /* No change of NEGFLG. */ + } + /* Read temporary operands from low part of PROD. + * Put result in low part of TSPACE using upper part of TSPACE + * as new TSPACE. + */ + MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, + tspace + size); + + /* Add/copy product H. */ + MPN_COPY(prodp + hsize, prodp + size, hsize); + cy = mpihelp_add_n(prodp + size, prodp + size, + prodp + size + hsize, hsize); + + /* Add product M (if NEGFLG M is a negative number) */ + if (negflg) + cy -= + mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, + size); + else + cy += + mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, + size); + + /* Product L. ________________ ________________ + * |________________||____U0 x V0_____| + * Read temporary operands from low part of PROD. + * Put result in low part of TSPACE using upper part of TSPACE + * as new TSPACE. + */ + MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size); + + /* Add/copy Product L (twice) */ + + cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); + if (cy) + mpihelp_add_1(prodp + hsize + size, + prodp + hsize + size, hsize, cy); + + MPN_COPY(prodp, tspace, hsize); + cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, + hsize); + if (cy) + mpihelp_add_1(prodp + size, prodp + size, size, 1); + } +} + +void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size) +{ + mpi_size_t i; + mpi_limb_t cy_limb; + mpi_limb_t v_limb; + + /* Multiply by the first limb in V separately, as the result can be + * stored (not added) to PROD. We also avoid a loop for zeroing. */ + v_limb = up[0]; + if (v_limb <= 1) { + if (v_limb == 1) + MPN_COPY(prodp, up, size); + else + MPN_ZERO(prodp, size); + cy_limb = 0; + } else + cy_limb = mpihelp_mul_1(prodp, up, size, v_limb); + + prodp[size] = cy_limb; + prodp++; + + /* For each iteration in the outer loop, multiply one limb from + * U with one limb from V, and add it to PROD. */ + for (i = 1; i < size; i++) { + v_limb = up[i]; + if (v_limb <= 1) { + cy_limb = 0; + if (v_limb == 1) + cy_limb = mpihelp_add_n(prodp, prodp, up, size); + } else + cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb); + + prodp[size] = cy_limb; + prodp++; + } +} + +void +mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) +{ + if (size & 1) { + /* The size is odd, and the code below doesn't handle that. + * Multiply the least significant (size - 1) limbs with a recursive + * call, and handle the most significant limb of S1 and S2 + * separately. + * A slightly faster way to do this would be to make the Karatsuba + * code below behave as if the size were even, and let it check for + * odd size in the end. I.e., in essence move this code to the end. + * Doing so would save us a recursive call, and potentially make the + * stack grow a lot less. + */ + mpi_size_t esize = size - 1; /* even size */ + mpi_limb_t cy_limb; + + MPN_SQR_N_RECURSE(prodp, up, esize, tspace); + cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]); + prodp[esize + esize] = cy_limb; + cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]); + + prodp[esize + size] = cy_limb; + } else { + mpi_size_t hsize = size >> 1; + mpi_limb_t cy; + + /* Product H. ________________ ________________ + * |_____U1 x U1____||____U0 x U0_____| + * Put result in upper part of PROD and pass low part of TSPACE + * as new TSPACE. + */ + MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace); + + /* Product M. ________________ + * |_(U1-U0)(U0-U1)_| + */ + if (mpihelp_cmp(up + hsize, up, hsize) >= 0) + mpihelp_sub_n(prodp, up + hsize, up, hsize); + else + mpihelp_sub_n(prodp, up, up + hsize, hsize); + + /* Read temporary operands from low part of PROD. + * Put result in low part of TSPACE using upper part of TSPACE + * as new TSPACE. */ + MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size); + + /* Add/copy product H */ + MPN_COPY(prodp + hsize, prodp + size, hsize); + cy = mpihelp_add_n(prodp + size, prodp + size, + prodp + size + hsize, hsize); + + /* Add product M (if NEGFLG M is a negative number). */ + cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size); + + /* Product L. ________________ ________________ + * |________________||____U0 x U0_____| + * Read temporary operands from low part of PROD. + * Put result in low part of TSPACE using upper part of TSPACE + * as new TSPACE. */ + MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size); + + /* Add/copy Product L (twice). */ + cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); + if (cy) + mpihelp_add_1(prodp + hsize + size, + prodp + hsize + size, hsize, cy); + + MPN_COPY(prodp, tspace, hsize); + cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, + hsize); + if (cy) + mpihelp_add_1(prodp + size, prodp + size, size, 1); + } +} + +/* This should be made into an inline function in gmp.h. */ +int mpihelp_mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) +{ + if (up == vp) { + if (size < KARATSUBA_THRESHOLD) + mpih_sqr_n_basecase(prodp, up, size); + else { + mpi_ptr_t tspace; + tspace = mpi_alloc_limb_space(2 * size); + if (!tspace) + return -ENOMEM; + mpih_sqr_n(prodp, up, size, tspace); + mpi_free_limb_space(tspace); + } + } else { + if (size < KARATSUBA_THRESHOLD) + mul_n_basecase(prodp, up, vp, size); + else { + mpi_ptr_t tspace; + tspace = mpi_alloc_limb_space(2 * size); + if (!tspace) + return -ENOMEM; + mul_n(prodp, up, vp, size, tspace); + mpi_free_limb_space(tspace); + } + } + + return 0; +} + +int +mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, + mpi_ptr_t up, mpi_size_t usize, + mpi_ptr_t vp, mpi_size_t vsize, + struct karatsuba_ctx *ctx) +{ + mpi_limb_t cy; + + if (!ctx->tspace || ctx->tspace_size < vsize) { + if (ctx->tspace) + mpi_free_limb_space(ctx->tspace); + ctx->tspace = mpi_alloc_limb_space(2 * vsize); + if (!ctx->tspace) + return -ENOMEM; + ctx->tspace_size = vsize; + } + + MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace); + + prodp += vsize; + up += vsize; + usize -= vsize; + if (usize >= vsize) { + if (!ctx->tp || ctx->tp_size < vsize) { + if (ctx->tp) + mpi_free_limb_space(ctx->tp); + ctx->tp = mpi_alloc_limb_space(2 * vsize); + if (!ctx->tp) { + if (ctx->tspace) + mpi_free_limb_space(ctx->tspace); + ctx->tspace = NULL; + return -ENOMEM; + } + ctx->tp_size = vsize; + } + + do { + MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace); + cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize); + mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize, + cy); + prodp += vsize; + up += vsize; + usize -= vsize; + } while (usize >= vsize); + } + + if (usize) { + if (usize < KARATSUBA_THRESHOLD) { + mpi_limb_t tmp; + if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp) + < 0) + return -ENOMEM; + } else { + if (!ctx->next) { + ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL); + if (!ctx->next) + return -ENOMEM; + } + if (mpihelp_mul_karatsuba_case(ctx->tspace, + vp, vsize, + up, usize, + ctx->next) < 0) + return -ENOMEM; + } + + cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize); + mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy); + } + + return 0; +} + +void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx) +{ + struct karatsuba_ctx *ctx2; + + if (ctx->tp) + mpi_free_limb_space(ctx->tp); + if (ctx->tspace) + mpi_free_limb_space(ctx->tspace); + for (ctx = ctx->next; ctx; ctx = ctx2) { + ctx2 = ctx->next; + if (ctx->tp) + mpi_free_limb_space(ctx->tp); + if (ctx->tspace) + mpi_free_limb_space(ctx->tspace); + kfree(ctx); + } +} + +/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) + * and v (pointed to by VP, with VSIZE limbs), and store the result at + * PRODP. USIZE + VSIZE limbs are always stored, but if the input + * operands are normalized. Return the most significant limb of the + * result. + * + * NOTE: The space pointed to by PRODP is overwritten before finished + * with U and V, so overlap is an error. + * + * Argument constraints: + * 1. USIZE >= VSIZE. + * 2. PRODP != UP and PRODP != VP, i.e. the destination + * must be distinct from the multiplier and the multiplicand. + */ + +int +mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, + mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result) +{ + mpi_ptr_t prod_endp = prodp + usize + vsize - 1; + mpi_limb_t cy; + struct karatsuba_ctx ctx; + + if (vsize < KARATSUBA_THRESHOLD) { + mpi_size_t i; + mpi_limb_t v_limb; + + if (!vsize) { + *_result = 0; + return 0; + } + + /* Multiply by the first limb in V separately, as the result can be + * stored (not added) to PROD. We also avoid a loop for zeroing. */ + v_limb = vp[0]; + if (v_limb <= 1) { + if (v_limb == 1) + MPN_COPY(prodp, up, usize); + else + MPN_ZERO(prodp, usize); + cy = 0; + } else + cy = mpihelp_mul_1(prodp, up, usize, v_limb); + + prodp[usize] = cy; + prodp++; + + /* For each iteration in the outer loop, multiply one limb from + * U with one limb from V, and add it to PROD. */ + for (i = 1; i < vsize; i++) { + v_limb = vp[i]; + if (v_limb <= 1) { + cy = 0; + if (v_limb == 1) + cy = mpihelp_add_n(prodp, prodp, up, + usize); + } else + cy = mpihelp_addmul_1(prodp, up, usize, v_limb); + + prodp[usize] = cy; + prodp++; + } + + *_result = cy; + return 0; + } + + memset(&ctx, 0, sizeof ctx); + if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0) + return -ENOMEM; + mpihelp_release_karatsuba_ctx(&ctx); + *_result = *prod_endp; + return 0; +} |