summaryrefslogtreecommitdiffstats
path: root/mm/mlock.c
diff options
context:
space:
mode:
authorHugh Dickins <hughd@google.com>2022-02-15 03:20:24 +0100
committerMatthew Wilcox (Oracle) <willy@infradead.org>2022-02-17 17:56:13 +0100
commitebcbc6ea7d8a604ad8504dae70a6ac1b1e64a0b7 (patch)
tree014fb16d25e6e420bbaef89f800f58fd24983747 /mm/mlock.c
parentMerge tag 'mmc-v5.17-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/... (diff)
downloadlinux-ebcbc6ea7d8a604ad8504dae70a6ac1b1e64a0b7.tar.xz
linux-ebcbc6ea7d8a604ad8504dae70a6ac1b1e64a0b7.zip
mm/munlock: delete page_mlock() and all its works
We have recommended some applications to mlock their userspace, but that turns out to be counter-productive: when many processes mlock the same file, contention on rmap's i_mmap_rwsem can become intolerable at exit: it is needed for write, to remove any vma mapping that file from rmap's tree; but hogged for read by those with mlocks calling page_mlock() (formerly known as try_to_munlock()) on *each* page mapped from the file (the purpose being to find out whether another process has the page mlocked, so therefore it should not be unmlocked yet). Several optimizations have been made in the past: one is to skip page_mlock() when mapcount tells that nothing else has this page mapped; but that doesn't help at all when others do have it mapped. This time around, I initially intended to add a preliminary search of the rmap tree for overlapping VM_LOCKED ranges; but that gets messy with locking order, when in doubt whether a page is actually present; and risks adding even more contention on the i_mmap_rwsem. A solution would be much easier, if only there were space in struct page for an mlock_count... but actually, most of the time, there is space for it - an mlocked page spends most of its life on an unevictable LRU, but since 3.18 removed the scan_unevictable_pages sysctl, that "LRU" has been redundant. Let's try to reuse its page->lru. But leave that until a later patch: in this patch, clear the ground by removing page_mlock(), and all the infrastructure that has gathered around it - which mostly hinders understanding, and will make reviewing new additions harder. Don't mind those old comments about THPs, they date from before 4.5's refcounting rework: splitting is not a risk here. Just keep a minimal version of munlock_vma_page(), as reminder of what it should attend to (in particular, the odd way PGSTRANDED is counted out of PGMUNLOCKED), and likewise a stub for munlock_vma_pages_range(). Move unchanged __mlock_posix_error_return() out of the way, down to above its caller: this series then makes no further change after mlock_fixup(). After this and each following commit, the kernel builds, boots and runs; but with deficiencies which may show up in testing of mlock and munlock. The system calls succeed or fail as before, and mlock remains effective in preventing page reclaim; but meminfo's Unevictable and Mlocked amounts may be shown too low after mlock, grow, then stay too high after munlock: with previously mlocked pages remaining unevictable for too long, until finally unmapped and freed and counts corrected. Normal service will be resumed in "mm/munlock: mlock_pte_range() when mlocking or munlocking". Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Diffstat (limited to 'mm/mlock.c')
-rw-r--r--mm/mlock.c375
1 files changed, 24 insertions, 351 deletions
diff --git a/mm/mlock.c b/mm/mlock.c
index 8f584eddd305..aec4ce7919da 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -46,12 +46,6 @@ EXPORT_SYMBOL(can_do_mlock);
* be placed on the LRU "unevictable" list, rather than the [in]active lists.
* The unevictable list is an LRU sibling list to the [in]active lists.
* PageUnevictable is set to indicate the unevictable state.
- *
- * When lazy mlocking via vmscan, it is important to ensure that the
- * vma's VM_LOCKED status is not concurrently being modified, otherwise we
- * may have mlocked a page that is being munlocked. So lazy mlock must take
- * the mmap_lock for read, and verify that the vma really is locked
- * (see mm/rmap.c).
*/
/*
@@ -106,299 +100,28 @@ void mlock_vma_page(struct page *page)
}
}
-/*
- * Finish munlock after successful page isolation
- *
- * Page must be locked. This is a wrapper for page_mlock()
- * and putback_lru_page() with munlock accounting.
- */
-static void __munlock_isolated_page(struct page *page)
-{
- /*
- * Optimization: if the page was mapped just once, that's our mapping
- * and we don't need to check all the other vmas.
- */
- if (page_mapcount(page) > 1)
- page_mlock(page);
-
- /* Did try_to_unlock() succeed or punt? */
- if (!PageMlocked(page))
- count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
-
- putback_lru_page(page);
-}
-
-/*
- * Accounting for page isolation fail during munlock
- *
- * Performs accounting when page isolation fails in munlock. There is nothing
- * else to do because it means some other task has already removed the page
- * from the LRU. putback_lru_page() will take care of removing the page from
- * the unevictable list, if necessary. vmscan [page_referenced()] will move
- * the page back to the unevictable list if some other vma has it mlocked.
- */
-static void __munlock_isolation_failed(struct page *page)
-{
- int nr_pages = thp_nr_pages(page);
-
- if (PageUnevictable(page))
- __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
- else
- __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
-}
-
/**
* munlock_vma_page - munlock a vma page
* @page: page to be unlocked, either a normal page or THP page head
- *
- * returns the size of the page as a page mask (0 for normal page,
- * HPAGE_PMD_NR - 1 for THP head page)
- *
- * called from munlock()/munmap() path with page supposedly on the LRU.
- * When we munlock a page, because the vma where we found the page is being
- * munlock()ed or munmap()ed, we want to check whether other vmas hold the
- * page locked so that we can leave it on the unevictable lru list and not
- * bother vmscan with it. However, to walk the page's rmap list in
- * page_mlock() we must isolate the page from the LRU. If some other
- * task has removed the page from the LRU, we won't be able to do that.
- * So we clear the PageMlocked as we might not get another chance. If we
- * can't isolate the page, we leave it for putback_lru_page() and vmscan
- * [page_referenced()/try_to_unmap()] to deal with.
*/
-unsigned int munlock_vma_page(struct page *page)
+void munlock_vma_page(struct page *page)
{
- int nr_pages;
-
- /* For page_mlock() and to serialize with page migration */
+ /* Serialize with page migration */
BUG_ON(!PageLocked(page));
- VM_BUG_ON_PAGE(PageTail(page), page);
-
- if (!TestClearPageMlocked(page)) {
- /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
- return 0;
- }
-
- nr_pages = thp_nr_pages(page);
- mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
-
- if (!isolate_lru_page(page))
- __munlock_isolated_page(page);
- else
- __munlock_isolation_failed(page);
-
- return nr_pages - 1;
-}
-
-/*
- * convert get_user_pages() return value to posix mlock() error
- */
-static int __mlock_posix_error_return(long retval)
-{
- if (retval == -EFAULT)
- retval = -ENOMEM;
- else if (retval == -ENOMEM)
- retval = -EAGAIN;
- return retval;
-}
-
-/*
- * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
- *
- * The fast path is available only for evictable pages with single mapping.
- * Then we can bypass the per-cpu pvec and get better performance.
- * when mapcount > 1 we need page_mlock() which can fail.
- * when !page_evictable(), we need the full redo logic of putback_lru_page to
- * avoid leaving evictable page in unevictable list.
- *
- * In case of success, @page is added to @pvec and @pgrescued is incremented
- * in case that the page was previously unevictable. @page is also unlocked.
- */
-static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
- int *pgrescued)
-{
- VM_BUG_ON_PAGE(PageLRU(page), page);
- VM_BUG_ON_PAGE(!PageLocked(page), page);
-
- if (page_mapcount(page) <= 1 && page_evictable(page)) {
- pagevec_add(pvec, page);
- if (TestClearPageUnevictable(page))
- (*pgrescued)++;
- unlock_page(page);
- return true;
- }
-
- return false;
-}
-/*
- * Putback multiple evictable pages to the LRU
- *
- * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
- * the pages might have meanwhile become unevictable but that is OK.
- */
-static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
-{
- count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
- /*
- *__pagevec_lru_add() calls release_pages() so we don't call
- * put_page() explicitly
- */
- __pagevec_lru_add(pvec);
- count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
-}
-
-/*
- * Munlock a batch of pages from the same zone
- *
- * The work is split to two main phases. First phase clears the Mlocked flag
- * and attempts to isolate the pages, all under a single zone lru lock.
- * The second phase finishes the munlock only for pages where isolation
- * succeeded.
- *
- * Note that the pagevec may be modified during the process.
- */
-static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
-{
- int i;
- int nr = pagevec_count(pvec);
- int delta_munlocked = -nr;
- struct pagevec pvec_putback;
- struct lruvec *lruvec = NULL;
- int pgrescued = 0;
-
- pagevec_init(&pvec_putback);
-
- /* Phase 1: page isolation */
- for (i = 0; i < nr; i++) {
- struct page *page = pvec->pages[i];
- struct folio *folio = page_folio(page);
-
- if (TestClearPageMlocked(page)) {
- /*
- * We already have pin from follow_page_mask()
- * so we can spare the get_page() here.
- */
- if (TestClearPageLRU(page)) {
- lruvec = folio_lruvec_relock_irq(folio, lruvec);
- del_page_from_lru_list(page, lruvec);
- continue;
- } else
- __munlock_isolation_failed(page);
- } else {
- delta_munlocked++;
- }
+ VM_BUG_ON_PAGE(PageTail(page), page);
- /*
- * We won't be munlocking this page in the next phase
- * but we still need to release the follow_page_mask()
- * pin. We cannot do it under lru_lock however. If it's
- * the last pin, __page_cache_release() would deadlock.
- */
- pagevec_add(&pvec_putback, pvec->pages[i]);
- pvec->pages[i] = NULL;
- }
- if (lruvec) {
- __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
- unlock_page_lruvec_irq(lruvec);
- } else if (delta_munlocked) {
- mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
- }
+ if (TestClearPageMlocked(page)) {
+ int nr_pages = thp_nr_pages(page);
- /* Now we can release pins of pages that we are not munlocking */
- pagevec_release(&pvec_putback);
-
- /* Phase 2: page munlock */
- for (i = 0; i < nr; i++) {
- struct page *page = pvec->pages[i];
-
- if (page) {
- lock_page(page);
- if (!__putback_lru_fast_prepare(page, &pvec_putback,
- &pgrescued)) {
- /*
- * Slow path. We don't want to lose the last
- * pin before unlock_page()
- */
- get_page(page); /* for putback_lru_page() */
- __munlock_isolated_page(page);
- unlock_page(page);
- put_page(page); /* from follow_page_mask() */
- }
+ mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
+ if (!isolate_lru_page(page)) {
+ putback_lru_page(page);
+ count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
+ } else if (PageUnevictable(page)) {
+ count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
}
}
-
- /*
- * Phase 3: page putback for pages that qualified for the fast path
- * This will also call put_page() to return pin from follow_page_mask()
- */
- if (pagevec_count(&pvec_putback))
- __putback_lru_fast(&pvec_putback, pgrescued);
-}
-
-/*
- * Fill up pagevec for __munlock_pagevec using pte walk
- *
- * The function expects that the struct page corresponding to @start address is
- * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
- *
- * The rest of @pvec is filled by subsequent pages within the same pmd and same
- * zone, as long as the pte's are present and vm_normal_page() succeeds. These
- * pages also get pinned.
- *
- * Returns the address of the next page that should be scanned. This equals
- * @start + PAGE_SIZE when no page could be added by the pte walk.
- */
-static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
- struct vm_area_struct *vma, struct zone *zone,
- unsigned long start, unsigned long end)
-{
- pte_t *pte;
- spinlock_t *ptl;
-
- /*
- * Initialize pte walk starting at the already pinned page where we
- * are sure that there is a pte, as it was pinned under the same
- * mmap_lock write op.
- */
- pte = get_locked_pte(vma->vm_mm, start, &ptl);
- /* Make sure we do not cross the page table boundary */
- end = pgd_addr_end(start, end);
- end = p4d_addr_end(start, end);
- end = pud_addr_end(start, end);
- end = pmd_addr_end(start, end);
-
- /* The page next to the pinned page is the first we will try to get */
- start += PAGE_SIZE;
- while (start < end) {
- struct page *page = NULL;
- pte++;
- if (pte_present(*pte))
- page = vm_normal_page(vma, start, *pte);
- /*
- * Break if page could not be obtained or the page's node+zone does not
- * match
- */
- if (!page || page_zone(page) != zone)
- break;
-
- /*
- * Do not use pagevec for PTE-mapped THP,
- * munlock_vma_pages_range() will handle them.
- */
- if (PageTransCompound(page))
- break;
-
- get_page(page);
- /*
- * Increase the address that will be returned *before* the
- * eventual break due to pvec becoming full by adding the page
- */
- start += PAGE_SIZE;
- if (pagevec_add(pvec, page) == 0)
- break;
- }
- pte_unmap_unlock(pte, ptl);
- return start;
}
/*
@@ -413,75 +136,13 @@ static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
*
* Returns with VM_LOCKED cleared. Callers must be prepared to
* deal with this.
- *
- * We don't save and restore VM_LOCKED here because pages are
- * still on lru. In unmap path, pages might be scanned by reclaim
- * and re-mlocked by page_mlock/try_to_unmap before we unmap and
- * free them. This will result in freeing mlocked pages.
*/
void munlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
- while (start < end) {
- struct page *page;
- unsigned int page_mask = 0;
- unsigned long page_increm;
- struct pagevec pvec;
- struct zone *zone;
-
- pagevec_init(&pvec);
- /*
- * Although FOLL_DUMP is intended for get_dump_page(),
- * it just so happens that its special treatment of the
- * ZERO_PAGE (returning an error instead of doing get_page)
- * suits munlock very well (and if somehow an abnormal page
- * has sneaked into the range, we won't oops here: great).
- */
- page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
-
- if (page && !IS_ERR(page)) {
- if (PageTransTail(page)) {
- VM_BUG_ON_PAGE(PageMlocked(page), page);
- put_page(page); /* follow_page_mask() */
- } else if (PageTransHuge(page)) {
- lock_page(page);
- /*
- * Any THP page found by follow_page_mask() may
- * have gotten split before reaching
- * munlock_vma_page(), so we need to compute
- * the page_mask here instead.
- */
- page_mask = munlock_vma_page(page);
- unlock_page(page);
- put_page(page); /* follow_page_mask() */
- } else {
- /*
- * Non-huge pages are handled in batches via
- * pagevec. The pin from follow_page_mask()
- * prevents them from collapsing by THP.
- */
- pagevec_add(&pvec, page);
- zone = page_zone(page);
-
- /*
- * Try to fill the rest of pagevec using fast
- * pte walk. This will also update start to
- * the next page to process. Then munlock the
- * pagevec.
- */
- start = __munlock_pagevec_fill(&pvec, vma,
- zone, start, end);
- __munlock_pagevec(&pvec, zone);
- goto next;
- }
- }
- page_increm = 1 + page_mask;
- start += page_increm * PAGE_SIZE;
-next:
- cond_resched();
- }
+ /* Reimplementation to follow in later commit */
}
/*
@@ -645,6 +306,18 @@ static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
return count >> PAGE_SHIFT;
}
+/*
+ * convert get_user_pages() return value to posix mlock() error
+ */
+static int __mlock_posix_error_return(long retval)
+{
+ if (retval == -EFAULT)
+ retval = -ENOMEM;
+ else if (retval == -ENOMEM)
+ retval = -EAGAIN;
+ return retval;
+}
+
static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
{
unsigned long locked;