summaryrefslogtreecommitdiffstats
path: root/mm/rmap.c
diff options
context:
space:
mode:
authorJan Kara <jack@suse.cz>2021-01-28 19:19:45 +0100
committerJan Kara <jack@suse.cz>2021-07-13 13:14:27 +0200
commit730633f0b7f951726e87f912a6323641f674ae34 (patch)
tree1c4a6eb5ddbc0c28e6d37a1418ec259cb6daef27 /mm/rmap.c
parentdocumentation: Sync file_operations members with reality (diff)
downloadlinux-730633f0b7f951726e87f912a6323641f674ae34.tar.xz
linux-730633f0b7f951726e87f912a6323641f674ae34.zip
mm: Protect operations adding pages to page cache with invalidate_lock
Currently, serializing operations such as page fault, read, or readahead against hole punching is rather difficult. The basic race scheme is like: fallocate(FALLOC_FL_PUNCH_HOLE) read / fault / .. truncate_inode_pages_range() <create pages in page cache here> <update fs block mapping and free blocks> Now the problem is in this way read / page fault / readahead can instantiate pages in page cache with potentially stale data (if blocks get quickly reused). Avoiding this race is not simple - page locks do not work because we want to make sure there are *no* pages in given range. inode->i_rwsem does not work because page fault happens under mmap_sem which ranks below inode->i_rwsem. Also using it for reads makes the performance for mixed read-write workloads suffer. So create a new rw_semaphore in the address_space - invalidate_lock - that protects adding of pages to page cache for page faults / reads / readahead. Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz>
Diffstat (limited to 'mm/rmap.c')
-rw-r--r--mm/rmap.c37
1 files changed, 19 insertions, 18 deletions
diff --git a/mm/rmap.c b/mm/rmap.c
index a8b01929ab2e..86471aacc54a 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -22,24 +22,25 @@
*
* inode->i_rwsem (while writing or truncating, not reading or faulting)
* mm->mmap_lock
- * page->flags PG_locked (lock_page) * (see hugetlbfs below)
- * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
- * mapping->i_mmap_rwsem
- * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
- * anon_vma->rwsem
- * mm->page_table_lock or pte_lock
- * swap_lock (in swap_duplicate, swap_info_get)
- * mmlist_lock (in mmput, drain_mmlist and others)
- * mapping->private_lock (in __set_page_dirty_buffers)
- * lock_page_memcg move_lock (in __set_page_dirty_buffers)
- * i_pages lock (widely used)
- * lruvec->lru_lock (in lock_page_lruvec_irq)
- * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
- * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
- * sb_lock (within inode_lock in fs/fs-writeback.c)
- * i_pages lock (widely used, in set_page_dirty,
- * in arch-dependent flush_dcache_mmap_lock,
- * within bdi.wb->list_lock in __sync_single_inode)
+ * mapping->invalidate_lock (in filemap_fault)
+ * page->flags PG_locked (lock_page) * (see hugetlbfs below)
+ * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
+ * mapping->i_mmap_rwsem
+ * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
+ * anon_vma->rwsem
+ * mm->page_table_lock or pte_lock
+ * swap_lock (in swap_duplicate, swap_info_get)
+ * mmlist_lock (in mmput, drain_mmlist and others)
+ * mapping->private_lock (in __set_page_dirty_buffers)
+ * lock_page_memcg move_lock (in __set_page_dirty_buffers)
+ * i_pages lock (widely used)
+ * lruvec->lru_lock (in lock_page_lruvec_irq)
+ * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
+ * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
+ * sb_lock (within inode_lock in fs/fs-writeback.c)
+ * i_pages lock (widely used, in set_page_dirty,
+ * in arch-dependent flush_dcache_mmap_lock,
+ * within bdi.wb->list_lock in __sync_single_inode)
*
* anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
* ->tasklist_lock