summaryrefslogtreecommitdiffstats
path: root/mm/swap_state.c
diff options
context:
space:
mode:
authorHuang Ying <ying.huang@intel.com>2019-07-12 05:55:33 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2019-07-12 20:05:43 +0200
commiteb085574a7526c4375965c5fbf7e5b0c19cdd336 (patch)
treed650ed2fa646d7ba36d665c4b809c2f7db088b49 /mm/swap_state.c
parentmm/filemap.c: correct the comment about VM_FAULT_RETRY (diff)
downloadlinux-eb085574a7526c4375965c5fbf7e5b0c19cdd336.tar.xz
linux-eb085574a7526c4375965c5fbf7e5b0c19cdd336.zip
mm, swap: fix race between swapoff and some swap operations
When swapin is performed, after getting the swap entry information from the page table, system will swap in the swap entry, without any lock held to prevent the swap device from being swapoff. This may cause the race like below, CPU 1 CPU 2 ----- ----- do_swap_page swapin_readahead __read_swap_cache_async swapoff swapcache_prepare p->swap_map = NULL __swap_duplicate p->swap_map[?] /* !!! NULL pointer access */ Because swapoff is usually done when system shutdown only, the race may not hit many people in practice. But it is still a race need to be fixed. To fix the race, get_swap_device() is added to check whether the specified swap entry is valid in its swap device. If so, it will keep the swap entry valid via preventing the swap device from being swapoff, until put_swap_device() is called. Because swapoff() is very rare code path, to make the normal path runs as fast as possible, rcu_read_lock/unlock() and synchronize_rcu() instead of reference count is used to implement get/put_swap_device(). >From get_swap_device() to put_swap_device(), RCU reader side is locked, so synchronize_rcu() in swapoff() will wait until put_swap_device() is called. In addition to swap_map, cluster_info, etc. data structure in the struct swap_info_struct, the swap cache radix tree will be freed after swapoff, so this patch fixes the race between swap cache looking up and swapoff too. Races between some other swap cache usages and swapoff are fixed too via calling synchronize_rcu() between clearing PageSwapCache() and freeing swap cache data structure. Another possible method to fix this is to use preempt_off() + stop_machine() to prevent the swap device from being swapoff when its data structure is being accessed. The overhead in hot-path of both methods is similar. The advantages of RCU based method are, 1. stop_machine() may disturb the normal execution code path on other CPUs. 2. File cache uses RCU to protect its radix tree. If the similar mechanism is used for swap cache too, it is easier to share code between them. 3. RCU is used to protect swap cache in total_swapcache_pages() and exit_swap_address_space() already. The two mechanisms can be merged to simplify the logic. Link: http://lkml.kernel.org/r/20190522015423.14418-1-ying.huang@intel.com Fixes: 235b62176712 ("mm/swap: add cluster lock") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Not-nacked-by: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/swap_state.c')
-rw-r--r--mm/swap_state.c16
1 files changed, 13 insertions, 3 deletions
diff --git a/mm/swap_state.c b/mm/swap_state.c
index 85245fdec8d9..61453f1faf72 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -310,8 +310,13 @@ struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
+ struct swap_info_struct *si;
+ si = get_swap_device(entry);
+ if (!si)
+ return NULL;
page = find_get_page(swap_address_space(entry), swp_offset(entry));
+ put_swap_device(si);
INC_CACHE_INFO(find_total);
if (page) {
@@ -354,8 +359,8 @@ struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr,
bool *new_page_allocated)
{
- struct page *found_page, *new_page = NULL;
- struct address_space *swapper_space = swap_address_space(entry);
+ struct page *found_page = NULL, *new_page = NULL;
+ struct swap_info_struct *si;
int err;
*new_page_allocated = false;
@@ -365,7 +370,12 @@ struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
* called after lookup_swap_cache() failed, re-calling
* that would confuse statistics.
*/
- found_page = find_get_page(swapper_space, swp_offset(entry));
+ si = get_swap_device(entry);
+ if (!si)
+ break;
+ found_page = find_get_page(swap_address_space(entry),
+ swp_offset(entry));
+ put_swap_device(si);
if (found_page)
break;