summaryrefslogtreecommitdiffstats
path: root/mm/zsmalloc.c
diff options
context:
space:
mode:
authorMinchan Kim <minchan@kernel.org>2015-04-16 01:15:46 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2015-04-16 01:35:21 +0200
commitd02be50dba649b4246e0c1c4b7cb5d8a8d49de9a (patch)
tree8f9abae32accfac491d48a044fa92c9f6a17ea90 /mm/zsmalloc.c
parentzsmalloc: add fullness into stat (diff)
downloadlinux-d02be50dba649b4246e0c1c4b7cb5d8a8d49de9a.tar.xz
linux-d02be50dba649b4246e0c1c4b7cb5d8a8d49de9a.zip
zsmalloc: zsmalloc documentation
Create zsmalloc doc which explains design concept and stat information. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Gunho Lee <gunho.lee@lge.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Seth Jennings <sjennings@variantweb.net> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/zsmalloc.c')
-rw-r--r--mm/zsmalloc.c29
1 files changed, 0 insertions, 29 deletions
diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c
index 461243e14d3e..1833fc9e09cb 100644
--- a/mm/zsmalloc.c
+++ b/mm/zsmalloc.c
@@ -12,35 +12,6 @@
*/
/*
- * This allocator is designed for use with zram. Thus, the allocator is
- * supposed to work well under low memory conditions. In particular, it
- * never attempts higher order page allocation which is very likely to
- * fail under memory pressure. On the other hand, if we just use single
- * (0-order) pages, it would suffer from very high fragmentation --
- * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
- * This was one of the major issues with its predecessor (xvmalloc).
- *
- * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
- * and links them together using various 'struct page' fields. These linked
- * pages act as a single higher-order page i.e. an object can span 0-order
- * page boundaries. The code refers to these linked pages as a single entity
- * called zspage.
- *
- * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
- * since this satisfies the requirements of all its current users (in the
- * worst case, page is incompressible and is thus stored "as-is" i.e. in
- * uncompressed form). For allocation requests larger than this size, failure
- * is returned (see zs_malloc).
- *
- * Additionally, zs_malloc() does not return a dereferenceable pointer.
- * Instead, it returns an opaque handle (unsigned long) which encodes actual
- * location of the allocated object. The reason for this indirection is that
- * zsmalloc does not keep zspages permanently mapped since that would cause
- * issues on 32-bit systems where the VA region for kernel space mappings
- * is very small. So, before using the allocating memory, the object has to
- * be mapped using zs_map_object() to get a usable pointer and subsequently
- * unmapped using zs_unmap_object().
- *
* Following is how we use various fields and flags of underlying
* struct page(s) to form a zspage.
*