summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-10-28 16:26:12 +0100
committerIngo Molnar <mingo@elte.hu>2008-10-28 16:26:12 +0100
commit7a9787e1eba95a166265e6a260cf30af04ef0a99 (patch)
treee730a4565e0318140d2fbd2f0415d18a339d7336 /mm
parentx86, pci: introduce config option for pci reroute quirks (was: [PATCH 0/3] Bo... (diff)
parentLinux 2.6.28-rc2 (diff)
downloadlinux-7a9787e1eba95a166265e6a260cf30af04ef0a99.tar.xz
linux-7a9787e1eba95a166265e6a260cf30af04ef0a99.zip
Merge commit 'v2.6.28-rc2' into x86/pci-ioapic-boot-irq-quirks
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig23
-rw-r--r--mm/Makefile6
-rw-r--r--mm/allocpercpu.c24
-rw-r--r--mm/bootmem.c948
-rw-r--r--mm/bounce.c2
-rw-r--r--mm/fadvise.c2
-rw-r--r--mm/filemap.c474
-rw-r--r--mm/filemap_xip.c70
-rw-r--r--mm/fremap.c30
-rw-r--r--mm/highmem.c6
-rw-r--r--mm/hugetlb.c1733
-rw-r--r--mm/internal.h192
-rw-r--r--mm/madvise.c4
-rw-r--r--mm/memcontrol.c772
-rw-r--r--mm/memory.c421
-rw-r--r--mm/memory_hotplug.c99
-rw-r--r--mm/mempolicy.c21
-rw-r--r--mm/migrate.c323
-rw-r--r--mm/mlock.c445
-rw-r--r--mm/mm_init.c152
-rw-r--r--mm/mmap.c267
-rw-r--r--mm/mmu_notifier.c277
-rw-r--r--mm/mmzone.c2
-rw-r--r--mm/mprotect.c9
-rw-r--r--mm/mremap.c14
-rw-r--r--mm/nommu.c69
-rw-r--r--mm/oom_kill.c6
-rw-r--r--mm/page-writeback.c34
-rw-r--r--mm/page_alloc.c304
-rw-r--r--mm/page_cgroup.c256
-rw-r--r--mm/page_isolation.c13
-rw-r--r--mm/pdflush.c6
-rw-r--r--mm/quicklist.c9
-rw-r--r--mm/readahead.c10
-rw-r--r--mm/rmap.c380
-rw-r--r--mm/shmem.c118
-rw-r--r--mm/shmem_acl.c2
-rw-r--r--mm/slab.c64
-rw-r--r--mm/slob.c28
-rw-r--r--mm/slub.c149
-rw-r--r--mm/sparse.c116
-rw-r--r--mm/swap.c183
-rw-r--r--mm/swap_state.c47
-rw-r--r--mm/swapfile.c90
-rw-r--r--mm/tiny-shmem.c27
-rw-r--r--mm/truncate.c22
-rw-r--r--mm/util.c70
-rw-r--r--mm/vmalloc.c1056
-rw-r--r--mm/vmscan.c1117
-rw-r--r--mm/vmstat.c124
50 files changed, 7869 insertions, 2747 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index c4de85285bb4..5b5790f8a816 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -101,7 +101,7 @@ config HAVE_MEMORY_PRESENT
# with gcc 3.4 and later.
#
config SPARSEMEM_STATIC
- def_bool n
+ bool
#
# Architecture platforms which require a two level mem_section in SPARSEMEM
@@ -113,7 +113,7 @@ config SPARSEMEM_EXTREME
depends on SPARSEMEM && !SPARSEMEM_STATIC
config SPARSEMEM_VMEMMAP_ENABLE
- def_bool n
+ bool
config SPARSEMEM_VMEMMAP
bool "Sparse Memory virtual memmap"
@@ -174,7 +174,7 @@ config SPLIT_PTLOCK_CPUS
config MIGRATION
bool "Page migration"
def_bool y
- depends on NUMA
+ depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE
help
Allows the migration of the physical location of pages of processes
while the virtual addresses are not changed. This is useful for
@@ -187,6 +187,9 @@ config RESOURCES_64BIT
help
This option allows memory and IO resources to be 64 bit.
+config PHYS_ADDR_T_64BIT
+ def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT
+
config ZONE_DMA_FLAG
int
default "0" if !ZONE_DMA
@@ -205,3 +208,17 @@ config NR_QUICK
config VIRT_TO_BUS
def_bool y
depends on !ARCH_NO_VIRT_TO_BUS
+
+config UNEVICTABLE_LRU
+ bool "Add LRU list to track non-evictable pages"
+ default y
+ depends on MMU
+ help
+ Keeps unevictable pages off of the active and inactive pageout
+ lists, so kswapd will not waste CPU time or have its balancing
+ algorithms thrown off by scanning these pages. Selecting this
+ will use one page flag and increase the code size a little,
+ say Y unless you know what you are doing.
+
+config MMU_NOTIFIER
+ bool
diff --git a/mm/Makefile b/mm/Makefile
index 18c143b3c46c..c06b45a1ff5f 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -11,7 +11,7 @@ obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \
maccess.o page_alloc.o page-writeback.o pdflush.o \
readahead.o swap.o truncate.o vmscan.o \
prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \
- page_isolation.o $(mmu-y)
+ page_isolation.o mm_init.o $(mmu-y)
obj-$(CONFIG_PROC_PAGE_MONITOR) += pagewalk.o
obj-$(CONFIG_BOUNCE) += bounce.o
@@ -25,6 +25,7 @@ obj-$(CONFIG_SHMEM) += shmem.o
obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o
obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
obj-$(CONFIG_SLOB) += slob.o
+obj-$(CONFIG_MMU_NOTIFIER) += mmu_notifier.o
obj-$(CONFIG_SLAB) += slab.o
obj-$(CONFIG_SLUB) += slub.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
@@ -32,5 +33,4 @@ obj-$(CONFIG_FS_XIP) += filemap_xip.o
obj-$(CONFIG_MIGRATION) += migrate.o
obj-$(CONFIG_SMP) += allocpercpu.o
obj-$(CONFIG_QUICKLIST) += quicklist.o
-obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o
-
+obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o page_cgroup.o
diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c
index 05f2b4009ccc..4297bc41bfd2 100644
--- a/mm/allocpercpu.c
+++ b/mm/allocpercpu.c
@@ -18,27 +18,28 @@
* Depopulating per-cpu data for a cpu going offline would be a typical
* use case. You need to register a cpu hotplug handler for that purpose.
*/
-void percpu_depopulate(void *__pdata, int cpu)
+static void percpu_depopulate(void *__pdata, int cpu)
{
struct percpu_data *pdata = __percpu_disguise(__pdata);
kfree(pdata->ptrs[cpu]);
pdata->ptrs[cpu] = NULL;
}
-EXPORT_SYMBOL_GPL(percpu_depopulate);
/**
* percpu_depopulate_mask - depopulate per-cpu data for some cpu's
* @__pdata: per-cpu data to depopulate
* @mask: depopulate per-cpu data for cpu's selected through mask bits
*/
-void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
+static void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
{
int cpu;
- for_each_cpu_mask(cpu, *mask)
+ for_each_cpu_mask_nr(cpu, *mask)
percpu_depopulate(__pdata, cpu);
}
-EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
+
+#define percpu_depopulate_mask(__pdata, mask) \
+ __percpu_depopulate_mask((__pdata), &(mask))
/**
* percpu_populate - populate per-cpu data for given cpu
@@ -51,7 +52,7 @@ EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
* use case. You need to register a cpu hotplug handler for that purpose.
* Per-cpu object is populated with zeroed buffer.
*/
-void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
+static void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
{
struct percpu_data *pdata = __percpu_disguise(__pdata);
int node = cpu_to_node(cpu);
@@ -68,7 +69,6 @@ void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
pdata->ptrs[cpu] = kzalloc(size, gfp);
return pdata->ptrs[cpu];
}
-EXPORT_SYMBOL_GPL(percpu_populate);
/**
* percpu_populate_mask - populate per-cpu data for more cpu's
@@ -79,14 +79,14 @@ EXPORT_SYMBOL_GPL(percpu_populate);
*
* Per-cpu objects are populated with zeroed buffers.
*/
-int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
- cpumask_t *mask)
+static int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
+ cpumask_t *mask)
{
cpumask_t populated;
int cpu;
cpus_clear(populated);
- for_each_cpu_mask(cpu, *mask)
+ for_each_cpu_mask_nr(cpu, *mask)
if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
__percpu_depopulate_mask(__pdata, &populated);
return -ENOMEM;
@@ -94,7 +94,9 @@ int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
cpu_set(cpu, populated);
return 0;
}
-EXPORT_SYMBOL_GPL(__percpu_populate_mask);
+
+#define percpu_populate_mask(__pdata, size, gfp, mask) \
+ __percpu_populate_mask((__pdata), (size), (gfp), &(mask))
/**
* percpu_alloc_mask - initial setup of per-cpu data
diff --git a/mm/bootmem.c b/mm/bootmem.c
index 8d9f60e06f62..ac5a891f142a 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -1,12 +1,12 @@
/*
- * linux/mm/bootmem.c
+ * bootmem - A boot-time physical memory allocator and configurator
*
* Copyright (C) 1999 Ingo Molnar
- * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
+ * 1999 Kanoj Sarcar, SGI
+ * 2008 Johannes Weiner
*
- * simple boot-time physical memory area allocator and
- * free memory collector. It's used to deal with reserved
- * system memory and memory holes as well.
+ * Access to this subsystem has to be serialized externally (which is true
+ * for the boot process anyway).
*/
#include <linux/init.h>
#include <linux/pfn.h>
@@ -19,15 +19,10 @@
#include "internal.h"
-/*
- * Access to this subsystem has to be serialized externally. (this is
- * true for the boot process anyway)
- */
unsigned long max_low_pfn;
unsigned long min_low_pfn;
unsigned long max_pfn;
-static LIST_HEAD(bdata_list);
#ifdef CONFIG_CRASH_DUMP
/*
* If we have booted due to a crash, max_pfn will be a very low value. We need
@@ -36,63 +31,72 @@ static LIST_HEAD(bdata_list);
unsigned long saved_max_pfn;
#endif
-/* return the number of _pages_ that will be allocated for the boot bitmap */
-unsigned long __init bootmem_bootmap_pages(unsigned long pages)
+bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
+
+static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
+
+static int bootmem_debug;
+
+static int __init bootmem_debug_setup(char *buf)
{
- unsigned long mapsize;
+ bootmem_debug = 1;
+ return 0;
+}
+early_param("bootmem_debug", bootmem_debug_setup);
- mapsize = (pages+7)/8;
- mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
- mapsize >>= PAGE_SHIFT;
+#define bdebug(fmt, args...) ({ \
+ if (unlikely(bootmem_debug)) \
+ printk(KERN_INFO \
+ "bootmem::%s " fmt, \
+ __func__, ## args); \
+})
- return mapsize;
+static unsigned long __init bootmap_bytes(unsigned long pages)
+{
+ unsigned long bytes = (pages + 7) / 8;
+
+ return ALIGN(bytes, sizeof(long));
}
-/*
- * link bdata in order
+/**
+ * bootmem_bootmap_pages - calculate bitmap size in pages
+ * @pages: number of pages the bitmap has to represent
*/
-static void __init link_bootmem(bootmem_data_t *bdata)
+unsigned long __init bootmem_bootmap_pages(unsigned long pages)
{
- bootmem_data_t *ent;
+ unsigned long bytes = bootmap_bytes(pages);
- if (list_empty(&bdata_list)) {
- list_add(&bdata->list, &bdata_list);
- return;
- }
- /* insert in order */
- list_for_each_entry(ent, &bdata_list, list) {
- if (bdata->node_boot_start < ent->node_boot_start) {
- list_add_tail(&bdata->list, &ent->list);
- return;
- }
- }
- list_add_tail(&bdata->list, &bdata_list);
+ return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
}
/*
- * Given an initialised bdata, it returns the size of the boot bitmap
+ * link bdata in order
*/
-static unsigned long __init get_mapsize(bootmem_data_t *bdata)
+static void __init link_bootmem(bootmem_data_t *bdata)
{
- unsigned long mapsize;
- unsigned long start = PFN_DOWN(bdata->node_boot_start);
- unsigned long end = bdata->node_low_pfn;
+ struct list_head *iter;
- mapsize = ((end - start) + 7) / 8;
- return ALIGN(mapsize, sizeof(long));
+ list_for_each(iter, &bdata_list) {
+ bootmem_data_t *ent;
+
+ ent = list_entry(iter, bootmem_data_t, list);
+ if (bdata->node_min_pfn < ent->node_min_pfn)
+ break;
+ }
+ list_add_tail(&bdata->list, iter);
}
/*
* Called once to set up the allocator itself.
*/
-static unsigned long __init init_bootmem_core(pg_data_t *pgdat,
+static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
unsigned long mapstart, unsigned long start, unsigned long end)
{
- bootmem_data_t *bdata = pgdat->bdata;
unsigned long mapsize;
+ mminit_validate_memmodel_limits(&start, &end);
bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
- bdata->node_boot_start = PFN_PHYS(start);
+ bdata->node_min_pfn = start;
bdata->node_low_pfn = end;
link_bootmem(bdata);
@@ -100,429 +104,484 @@ static unsigned long __init init_bootmem_core(pg_data_t *pgdat,
* Initially all pages are reserved - setup_arch() has to
* register free RAM areas explicitly.
*/
- mapsize = get_mapsize(bdata);
+ mapsize = bootmap_bytes(end - start);
memset(bdata->node_bootmem_map, 0xff, mapsize);
+ bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
+ bdata - bootmem_node_data, start, mapstart, end, mapsize);
+
return mapsize;
}
-/*
- * Marks a particular physical memory range as unallocatable. Usable RAM
- * might be used for boot-time allocations - or it might get added
- * to the free page pool later on.
+/**
+ * init_bootmem_node - register a node as boot memory
+ * @pgdat: node to register
+ * @freepfn: pfn where the bitmap for this node is to be placed
+ * @startpfn: first pfn on the node
+ * @endpfn: first pfn after the node
+ *
+ * Returns the number of bytes needed to hold the bitmap for this node.
*/
-static int __init can_reserve_bootmem_core(bootmem_data_t *bdata,
- unsigned long addr, unsigned long size, int flags)
+unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
+ unsigned long startpfn, unsigned long endpfn)
{
- unsigned long sidx, eidx;
- unsigned long i;
+ return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
+}
- BUG_ON(!size);
+/**
+ * init_bootmem - register boot memory
+ * @start: pfn where the bitmap is to be placed
+ * @pages: number of available physical pages
+ *
+ * Returns the number of bytes needed to hold the bitmap.
+ */
+unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
+{
+ max_low_pfn = pages;
+ min_low_pfn = start;
+ return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
+}
+
+static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
+{
+ int aligned;
+ struct page *page;
+ unsigned long start, end, pages, count = 0;
- /* out of range, don't hold other */
- if (addr + size < bdata->node_boot_start ||
- PFN_DOWN(addr) > bdata->node_low_pfn)
+ if (!bdata->node_bootmem_map)
return 0;
+ start = bdata->node_min_pfn;
+ end = bdata->node_low_pfn;
+
/*
- * Round up to index to the range.
+ * If the start is aligned to the machines wordsize, we might
+ * be able to free pages in bulks of that order.
*/
- if (addr > bdata->node_boot_start)
- sidx= PFN_DOWN(addr - bdata->node_boot_start);
- else
- sidx = 0;
+ aligned = !(start & (BITS_PER_LONG - 1));
- eidx = PFN_UP(addr + size - bdata->node_boot_start);
- if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
- eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
+ bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
+ bdata - bootmem_node_data, start, end, aligned);
- for (i = sidx; i < eidx; i++) {
- if (test_bit(i, bdata->node_bootmem_map)) {
- if (flags & BOOTMEM_EXCLUSIVE)
- return -EBUSY;
+ while (start < end) {
+ unsigned long *map, idx, vec;
+
+ map = bdata->node_bootmem_map;
+ idx = start - bdata->node_min_pfn;
+ vec = ~map[idx / BITS_PER_LONG];
+
+ if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
+ int order = ilog2(BITS_PER_LONG);
+
+ __free_pages_bootmem(pfn_to_page(start), order);
+ count += BITS_PER_LONG;
+ } else {
+ unsigned long off = 0;
+
+ while (vec && off < BITS_PER_LONG) {
+ if (vec & 1) {
+ page = pfn_to_page(start + off);
+ __free_pages_bootmem(page, 0);
+ count++;
+ }
+ vec >>= 1;
+ off++;
+ }
}
+ start += BITS_PER_LONG;
}
- return 0;
+ page = virt_to_page(bdata->node_bootmem_map);
+ pages = bdata->node_low_pfn - bdata->node_min_pfn;
+ pages = bootmem_bootmap_pages(pages);
+ count += pages;
+ while (pages--)
+ __free_pages_bootmem(page++, 0);
+ bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
+
+ return count;
}
-static void __init reserve_bootmem_core(bootmem_data_t *bdata,
- unsigned long addr, unsigned long size, int flags)
+/**
+ * free_all_bootmem_node - release a node's free pages to the buddy allocator
+ * @pgdat: node to be released
+ *
+ * Returns the number of pages actually released.
+ */
+unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
{
- unsigned long sidx, eidx;
- unsigned long i;
+ register_page_bootmem_info_node(pgdat);
+ return free_all_bootmem_core(pgdat->bdata);
+}
- BUG_ON(!size);
+/**
+ * free_all_bootmem - release free pages to the buddy allocator
+ *
+ * Returns the number of pages actually released.
+ */
+unsigned long __init free_all_bootmem(void)
+{
+ return free_all_bootmem_core(NODE_DATA(0)->bdata);
+}
- /* out of range */
- if (addr + size < bdata->node_boot_start ||
- PFN_DOWN(addr) > bdata->node_low_pfn)
- return;
+static void __init __free(bootmem_data_t *bdata,
+ unsigned long sidx, unsigned long eidx)
+{
+ unsigned long idx;
- /*
- * Round up to index to the range.
- */
- if (addr > bdata->node_boot_start)
- sidx= PFN_DOWN(addr - bdata->node_boot_start);
- else
- sidx = 0;
+ bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
+ sidx + bdata->node_min_pfn,
+ eidx + bdata->node_min_pfn);
- eidx = PFN_UP(addr + size - bdata->node_boot_start);
- if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
- eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
+ if (bdata->hint_idx > sidx)
+ bdata->hint_idx = sidx;
- for (i = sidx; i < eidx; i++) {
- if (test_and_set_bit(i, bdata->node_bootmem_map)) {
-#ifdef CONFIG_DEBUG_BOOTMEM
- printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
-#endif
+ for (idx = sidx; idx < eidx; idx++)
+ if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
+ BUG();
+}
+
+static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
+ unsigned long eidx, int flags)
+{
+ unsigned long idx;
+ int exclusive = flags & BOOTMEM_EXCLUSIVE;
+
+ bdebug("nid=%td start=%lx end=%lx flags=%x\n",
+ bdata - bootmem_node_data,
+ sidx + bdata->node_min_pfn,
+ eidx + bdata->node_min_pfn,
+ flags);
+
+ for (idx = sidx; idx < eidx; idx++)
+ if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
+ if (exclusive) {
+ __free(bdata, sidx, idx);
+ return -EBUSY;
+ }
+ bdebug("silent double reserve of PFN %lx\n",
+ idx + bdata->node_min_pfn);
}
- }
+ return 0;
}
-static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
- unsigned long size)
+static int __init mark_bootmem_node(bootmem_data_t *bdata,
+ unsigned long start, unsigned long end,
+ int reserve, int flags)
{
unsigned long sidx, eidx;
- unsigned long i;
- BUG_ON(!size);
+ bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
+ bdata - bootmem_node_data, start, end, reserve, flags);
- /* out range */
- if (addr + size < bdata->node_boot_start ||
- PFN_DOWN(addr) > bdata->node_low_pfn)
- return;
- /*
- * round down end of usable mem, partially free pages are
- * considered reserved.
- */
+ BUG_ON(start < bdata->node_min_pfn);
+ BUG_ON(end > bdata->node_low_pfn);
- if (addr >= bdata->node_boot_start && addr < bdata->last_success)
- bdata->last_success = addr;
+ sidx = start - bdata->node_min_pfn;
+ eidx = end - bdata->node_min_pfn;
- /*
- * Round up to index to the range.
- */
- if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start))
- sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
+ if (reserve)
+ return __reserve(bdata, sidx, eidx, flags);
else
- sidx = 0;
+ __free(bdata, sidx, eidx);
+ return 0;
+}
- eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
- if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
- eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
+static int __init mark_bootmem(unsigned long start, unsigned long end,
+ int reserve, int flags)
+{
+ unsigned long pos;
+ bootmem_data_t *bdata;
- for (i = sidx; i < eidx; i++) {
- if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
- BUG();
+ pos = start;
+ list_for_each_entry(bdata, &bdata_list, list) {
+ int err;
+ unsigned long max;
+
+ if (pos < bdata->node_min_pfn ||
+ pos >= bdata->node_low_pfn) {
+ BUG_ON(pos != start);
+ continue;
+ }
+
+ max = min(bdata->node_low_pfn, end);
+
+ err = mark_bootmem_node(bdata, pos, max, reserve, flags);
+ if (reserve && err) {
+ mark_bootmem(start, pos, 0, 0);
+ return err;
+ }
+
+ if (max == end)
+ return 0;
+ pos = bdata->node_low_pfn;
}
+ BUG();
}
-/*
- * We 'merge' subsequent allocations to save space. We might 'lose'
- * some fraction of a page if allocations cannot be satisfied due to
- * size constraints on boxes where there is physical RAM space
- * fragmentation - in these cases (mostly large memory boxes) this
- * is not a problem.
- *
- * On low memory boxes we get it right in 100% of the cases.
+/**
+ * free_bootmem_node - mark a page range as usable
+ * @pgdat: node the range resides on
+ * @physaddr: starting address of the range
+ * @size: size of the range in bytes
*
- * alignment has to be a power of 2 value.
+ * Partial pages will be considered reserved and left as they are.
*
- * NOTE: This function is _not_ reentrant.
+ * The range must reside completely on the specified node.
*/
-void * __init
-__alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
- unsigned long align, unsigned long goal, unsigned long limit)
+void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
+ unsigned long size)
{
- unsigned long areasize, preferred;
- unsigned long i, start = 0, incr, eidx, end_pfn;
- void *ret;
- unsigned long node_boot_start;
- void *node_bootmem_map;
-
- if (!size) {
- printk("__alloc_bootmem_core(): zero-sized request\n");
- BUG();
- }
- BUG_ON(align & (align-1));
+ unsigned long start, end;
- /* on nodes without memory - bootmem_map is NULL */
- if (!bdata->node_bootmem_map)
- return NULL;
-
- /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */
- node_boot_start = bdata->node_boot_start;
- node_bootmem_map = bdata->node_bootmem_map;
- if (align) {
- node_boot_start = ALIGN(bdata->node_boot_start, align);
- if (node_boot_start > bdata->node_boot_start)
- node_bootmem_map = (unsigned long *)bdata->node_bootmem_map +
- PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG;
- }
-
- if (limit && node_boot_start >= limit)
- return NULL;
+ start = PFN_UP(physaddr);
+ end = PFN_DOWN(physaddr + size);
- end_pfn = bdata->node_low_pfn;
- limit = PFN_DOWN(limit);
- if (limit && end_pfn > limit)
- end_pfn = limit;
+ mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
+}
- eidx = end_pfn - PFN_DOWN(node_boot_start);
+/**
+ * free_bootmem - mark a page range as usable
+ * @addr: starting address of the range
+ * @size: size of the range in bytes
+ *
+ * Partial pages will be considered reserved and left as they are.
+ *
+ * The range must be contiguous but may span node boundaries.
+ */
+void __init free_bootmem(unsigned long addr, unsigned long size)
+{
+ unsigned long start, end;
- /*
- * We try to allocate bootmem pages above 'goal'
- * first, then we try to allocate lower pages.
- */
- preferred = 0;
- if (goal && PFN_DOWN(goal) < end_pfn) {
- if (goal > node_boot_start)
- preferred = goal - node_boot_start;
-
- if (bdata->last_success > node_boot_start &&
- bdata->last_success - node_boot_start >= preferred)
- if (!limit || (limit && limit > bdata->last_success))
- preferred = bdata->last_success - node_boot_start;
- }
+ start = PFN_UP(addr);
+ end = PFN_DOWN(addr + size);
- preferred = PFN_DOWN(ALIGN(preferred, align));
- areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
- incr = align >> PAGE_SHIFT ? : 1;
+ mark_bootmem(start, end, 0, 0);
+}
-restart_scan:
- for (i = preferred; i < eidx;) {
- unsigned long j;
+/**
+ * reserve_bootmem_node - mark a page range as reserved
+ * @pgdat: node the range resides on
+ * @physaddr: starting address of the range
+ * @size: size of the range in bytes
+ * @flags: reservation flags (see linux/bootmem.h)
+ *
+ * Partial pages will be reserved.
+ *
+ * The range must reside completely on the specified node.
+ */
+int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
+ unsigned long size, int flags)
+{
+ unsigned long start, end;
- i = find_next_zero_bit(node_bootmem_map, eidx, i);
- i = ALIGN(i, incr);
- if (i >= eidx)
- break;
- if (test_bit(i, node_bootmem_map)) {
- i += incr;
- continue;
- }
- for (j = i + 1; j < i + areasize; ++j) {
- if (j >= eidx)
- goto fail_block;
- if (test_bit(j, node_bootmem_map))
- goto fail_block;
- }
- start = i;
- goto found;
- fail_block:
- i = ALIGN(j, incr);
- if (i == j)
- i += incr;
- }
+ start = PFN_DOWN(physaddr);
+ end = PFN_UP(physaddr + size);
- if (preferred > 0) {
- preferred = 0;
- goto restart_scan;
- }
- return NULL;
+ return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
+}
-found:
- bdata->last_success = PFN_PHYS(start) + node_boot_start;
- BUG_ON(start >= eidx);
+#ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
+/**
+ * reserve_bootmem - mark a page range as usable
+ * @addr: starting address of the range
+ * @size: size of the range in bytes
+ * @flags: reservation flags (see linux/bootmem.h)
+ *
+ * Partial pages will be reserved.
+ *
+ * The range must be contiguous but may span node boundaries.
+ */
+int __init reserve_bootmem(unsigned long addr, unsigned long size,
+ int flags)
+{
+ unsigned long start, end;
- /*
- * Is the next page of the previous allocation-end the start
- * of this allocation's buffer? If yes then we can 'merge'
- * the previous partial page with this allocation.
- */
- if (align < PAGE_SIZE &&
- bdata->last_offset && bdata->last_pos+1 == start) {
- unsigned long offset, remaining_size;
- offset = ALIGN(bdata->last_offset, align);
- BUG_ON(offset > PAGE_SIZE);
- remaining_size = PAGE_SIZE - offset;
- if (size < remaining_size) {
- areasize = 0;
- /* last_pos unchanged */
- bdata->last_offset = offset + size;
- ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
- offset + node_boot_start);
- } else {
- remaining_size = size - remaining_size;
- areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
- ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
- offset + node_boot_start);
- bdata->last_pos = start + areasize - 1;
- bdata->last_offset = remaining_size;
- }
- bdata->last_offset &= ~PAGE_MASK;
- } else {
- bdata->last_pos = start + areasize - 1;
- bdata->last_offset = size & ~PAGE_MASK;
- ret = phys_to_virt(start * PAGE_SIZE + node_boot_start);
- }
+ start = PFN_DOWN(addr);
+ end = PFN_UP(addr + size);
- /*
- * Reserve the area now:
- */
- for (i = start; i < start + areasize; i++)
- if (unlikely(test_and_set_bit(i, node_bootmem_map)))
- BUG();
- memset(ret, 0, size);
- return ret;
+ return mark_bootmem(start, end, 1, flags);
}
+#endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
-static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
+static unsigned long align_idx(struct bootmem_data *bdata, unsigned long idx,
+ unsigned long step)
{
- struct page *page;
- unsigned long pfn;
- bootmem_data_t *bdata = pgdat->bdata;
- unsigned long i, count, total = 0;
- unsigned long idx;
- unsigned long *map;
- int gofast = 0;
-
- BUG_ON(!bdata->node_bootmem_map);
-
- count = 0;
- /* first extant page of the node */
- pfn = PFN_DOWN(bdata->node_boot_start);
- idx = bdata->node_low_pfn - pfn;
- map = bdata->node_bootmem_map;
- /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
- if (bdata->node_boot_start == 0 ||
- ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
- gofast = 1;
- for (i = 0; i < idx; ) {
- unsigned long v = ~map[i / BITS_PER_LONG];
-
- if (gofast && v == ~0UL) {
- int order;
-
- page = pfn_to_page(pfn);
- count += BITS_PER_LONG;
- order = ffs(BITS_PER_LONG) - 1;
- __free_pages_bootmem(page, order);
- i += BITS_PER_LONG;
- page += BITS_PER_LONG;
- } else if (v) {
- unsigned long m;
-
- page = pfn_to_page(pfn);
- for (m = 1; m && i < idx; m<<=1, page++, i++) {
- if (v & m) {
- count++;
- __free_pages_bootmem(page, 0);
- }
- }
- } else {
- i += BITS_PER_LONG;
- }
- pfn += BITS_PER_LONG;
- }
- total += count;
+ unsigned long base = bdata->node_min_pfn;
/*
- * Now free the allocator bitmap itself, it's not
- * needed anymore:
+ * Align the index with respect to the node start so that the
+ * combination of both satisfies the requested alignment.
*/
- page = virt_to_page(bdata->node_bootmem_map);
- count = 0;
- idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
- for (i = 0; i < idx; i++, page++) {
- __free_pages_bootmem(page, 0);
- count++;
- }
- total += count;
- bdata->node_bootmem_map = NULL;
- return total;
+ return ALIGN(base + idx, step) - base;
}
-unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
- unsigned long startpfn, unsigned long endpfn)
+static unsigned long align_off(struct bootmem_data *bdata, unsigned long off,
+ unsigned long align)
{
- return init_bootmem_core(pgdat, freepfn, startpfn, endpfn);
+ unsigned long base = PFN_PHYS(bdata->node_min_pfn);
+
+ /* Same as align_idx for byte offsets */
+
+ return ALIGN(base + off, align) - base;
}
-int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
- unsigned long size, int flags)
+static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
+ unsigned long size, unsigned long align,
+ unsigned long goal, unsigned long limit)
{
- int ret;
+ unsigned long fallback = 0;
+ unsigned long min, max, start, sidx, midx, step;
- ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
- if (ret < 0)
- return -ENOMEM;
- reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
+ BUG_ON(!size);
+ BUG_ON(align & (align - 1));
+ BUG_ON(limit && goal + size > limit);
- return 0;
-}
+ if (!bdata->node_bootmem_map)
+ return NULL;
-void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
- unsigned long size)
-{
- free_bootmem_core(pgdat->bdata, physaddr, size);
-}
+ bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
+ bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
+ align, goal, limit);
-unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
-{
- register_page_bootmem_info_node(pgdat);
- return free_all_bootmem_core(pgdat);
-}
+ min = bdata->node_min_pfn;
+ max = bdata->node_low_pfn;
-unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
-{
- max_low_pfn = pages;
- min_low_pfn = start;
- return init_bootmem_core(NODE_DATA(0), start, 0, pages);
-}
+ goal >>= PAGE_SHIFT;
+ limit >>= PAGE_SHIFT;
-#ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
-int __init reserve_bootmem(unsigned long addr, unsigned long size,
- int flags)
-{
- bootmem_data_t *bdata;
- int ret;
+ if (limit && max > limit)
+ max = limit;
+ if (max <= min)
+ return NULL;
- list_for_each_entry(bdata, &bdata_list, list) {
- ret = can_reserve_bootmem_core(bdata, addr, size, flags);
- if (ret < 0)
- return ret;
+ step = max(align >> PAGE_SHIFT, 1UL);
+
+ if (goal && min < goal && goal < max)
+ start = ALIGN(goal, step);
+ else
+ start = ALIGN(min, step);
+
+ sidx = start - bdata->node_min_pfn;
+ midx = max - bdata->node_min_pfn;
+
+ if (bdata->hint_idx > sidx) {
+ /*
+ * Handle the valid case of sidx being zero and still
+ * catch the fallback below.
+ */
+ fallback = sidx + 1;
+ sidx = align_idx(bdata, bdata->hint_idx, step);
}
- list_for_each_entry(bdata, &bdata_list, list)
- reserve_bootmem_core(bdata, addr, size, flags);
- return 0;
-}
-#endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
+ while (1) {
+ int merge;
+ void *region;
+ unsigned long eidx, i, start_off, end_off;
+find_block:
+ sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
+ sidx = align_idx(bdata, sidx, step);
+ eidx = sidx + PFN_UP(size);
-void __init free_bootmem(unsigned long addr, unsigned long size)
-{
- bootmem_data_t *bdata;
- list_for_each_entry(bdata, &bdata_list, list)
- free_bootmem_core(bdata, addr, size);
-}
+ if (sidx >= midx || eidx > midx)
+ break;
-unsigned long __init free_all_bootmem(void)
-{
- return free_all_bootmem_core(NODE_DATA(0));
+ for (i = sidx; i < eidx; i++)
+ if (test_bit(i, bdata->node_bootmem_map)) {
+ sidx = align_idx(bdata, i, step);
+ if (sidx == i)
+ sidx += step;
+ goto find_block;
+ }
+
+ if (bdata->last_end_off & (PAGE_SIZE - 1) &&
+ PFN_DOWN(bdata->last_end_off) + 1 == sidx)
+ start_off = align_off(bdata, bdata->last_end_off, align);
+ else
+ start_off = PFN_PHYS(sidx);
+
+ merge = PFN_DOWN(start_off) < sidx;
+ end_off = start_off + size;
+
+ bdata->last_end_off = end_off;
+ bdata->hint_idx = PFN_UP(end_off);
+
+ /*
+ * Reserve the area now:
+ */
+ if (__reserve(bdata, PFN_DOWN(start_off) + merge,
+ PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
+ BUG();
+
+ region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
+ start_off);
+ memset(region, 0, size);
+ return region;
+ }
+
+ if (fallback) {
+ sidx = align_idx(bdata, fallback - 1, step);
+ fallback = 0;
+ goto find_block;
+ }
+
+ return NULL;
}
-void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
- unsigned long goal)
+static void * __init ___alloc_bootmem_nopanic(unsigned long size,
+ unsigned long align,
+ unsigned long goal,
+ unsigned long limit)
{
bootmem_data_t *bdata;
- void *ptr;
+restart:
list_for_each_entry(bdata, &bdata_list, list) {
- ptr = __alloc_bootmem_core(bdata, size, align, goal, 0);
- if (ptr)
- return ptr;
+ void *region;
+
+ if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
+ continue;
+ if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
+ break;
+
+ region = alloc_bootmem_core(bdata, size, align, goal, limit);
+ if (region)
+ return region;
+ }
+
+ if (goal) {
+ goal = 0;
+ goto restart;
}
+
return NULL;
}
-void * __init __alloc_bootmem(unsigned long size, unsigned long align,
- unsigned long goal)
+/**
+ * __alloc_bootmem_nopanic - allocate boot memory without panicking
+ * @size: size of the request in bytes
+ * @align: alignment of the region
+ * @goal: preferred starting address of the region
+ *
+ * The goal is dropped if it can not be satisfied and the allocation will
+ * fall back to memory below @goal.
+ *
+ * Allocation may happen on any node in the system.
+ *
+ * Returns NULL on failure.
+ */
+void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
+ unsigned long goal)
{
- void *mem = __alloc_bootmem_nopanic(size,align,goal);
+ return ___alloc_bootmem_nopanic(size, align, goal, 0);
+}
+
+static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
+ unsigned long goal, unsigned long limit)
+{
+ void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
if (mem)
return mem;
@@ -534,78 +593,135 @@ void * __init __alloc_bootmem(unsigned long size, unsigned long align,
return NULL;
}
+/**
+ * __alloc_bootmem - allocate boot memory
+ * @size: size of the request in bytes
+ * @align: alignment of the region
+ * @goal: preferred starting address of the region
+ *
+ * The goal is dropped if it can not be satisfied and the allocation will
+ * fall back to memory below @goal.
+ *
+ * Allocation may happen on any node in the system.
+ *
+ * The function panics if the request can not be satisfied.
+ */
+void * __init __alloc_bootmem(unsigned long size, unsigned long align,
+ unsigned long goal)
+{
+ return ___alloc_bootmem(size, align, goal, 0);
+}
-void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
- unsigned long align, unsigned long goal)
+static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
+ unsigned long size, unsigned long align,
+ unsigned long goal, unsigned long limit)
{
void *ptr;
- ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
+ ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
if (ptr)
return ptr;
- return __alloc_bootmem(size, align, goal);
+ return ___alloc_bootmem(size, align, goal, limit);
+}
+
+/**
+ * __alloc_bootmem_node - allocate boot memory from a specific node
+ * @pgdat: node to allocate from
+ * @size: size of the request in bytes
+ * @align: alignment of the region
+ * @goal: preferred starting address of the region
+ *
+ * The goal is dropped if it can not be satisfied and the allocation will
+ * fall back to memory below @goal.
+ *
+ * Allocation may fall back to any node in the system if the specified node
+ * can not hold the requested memory.
+ *
+ * The function panics if the request can not be satisfied.
+ */
+void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
+ unsigned long align, unsigned long goal)
+{
+ return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
}
#ifdef CONFIG_SPARSEMEM
+/**
+ * alloc_bootmem_section - allocate boot memory from a specific section
+ * @size: size of the request in bytes
+ * @section_nr: sparse map section to allocate from
+ *
+ * Return NULL on failure.
+ */
void * __init alloc_bootmem_section(unsigned long size,
unsigned long section_nr)
{
- void *ptr;
- unsigned long limit, goal, start_nr, end_nr, pfn;
- struct pglist_data *pgdat;
+ bootmem_data_t *bdata;
+ unsigned long pfn, goal, limit;
pfn = section_nr_to_pfn(section_nr);
- goal = PFN_PHYS(pfn);
- limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1;
- pgdat = NODE_DATA(early_pfn_to_nid(pfn));
- ptr = __alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal,
- limit);
+ goal = pfn << PAGE_SHIFT;
+ limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
+ bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
- if (!ptr)
- return NULL;
+ return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
+}
+#endif
- start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr)));
- end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size));
- if (start_nr != section_nr || end_nr != section_nr) {
- printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n",
- section_nr);
- free_bootmem_core(pgdat->bdata, __pa(ptr), size);
- ptr = NULL;
- }
+void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
+ unsigned long align, unsigned long goal)
+{
+ void *ptr;
- return ptr;
+ ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
+ if (ptr)
+ return ptr;
+
+ return __alloc_bootmem_nopanic(size, align, goal);
}
-#endif
#ifndef ARCH_LOW_ADDRESS_LIMIT
#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
#endif
+/**
+ * __alloc_bootmem_low - allocate low boot memory
+ * @size: size of the request in bytes
+ * @align: alignment of the region
+ * @goal: preferred starting address of the region
+ *
+ * The goal is dropped if it can not be satisfied and the allocation will
+ * fall back to memory below @goal.
+ *
+ * Allocation may happen on any node in the system.
+ *
+ * The function panics if the request can not be satisfied.
+ */
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
unsigned long goal)
{
- bootmem_data_t *bdata;
- void *ptr;
-
- list_for_each_entry(bdata, &bdata_list, list) {
- ptr = __alloc_bootmem_core(bdata, size, align, goal,
- ARCH_LOW_ADDRESS_LIMIT);
- if (ptr)
- return ptr;
- }
-
- /*
- * Whoops, we cannot satisfy the allocation request.
- */
- printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
- panic("Out of low memory");
- return NULL;
+ return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
}
+/**
+ * __alloc_bootmem_low_node - allocate low boot memory from a specific node
+ * @pgdat: node to allocate from
+ * @size: size of the request in bytes
+ * @align: alignment of the region
+ * @goal: preferred starting address of the region
+ *
+ * The goal is dropped if it can not be satisfied and the allocation will
+ * fall back to memory below @goal.
+ *
+ * Allocation may fall back to any node in the system if the specified node
+ * can not hold the requested memory.
+ *
+ * The function panics if the request can not be satisfied.
+ */
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
- return __alloc_bootmem_core(pgdat->bdata, size, align, goal,
- ARCH_LOW_ADDRESS_LIMIT);
+ return ___alloc_bootmem_node(pgdat->bdata, size, align,
+ goal, ARCH_LOW_ADDRESS_LIMIT);
}
diff --git a/mm/bounce.c b/mm/bounce.c
index b6d2d0f1019b..06722c403058 100644
--- a/mm/bounce.c
+++ b/mm/bounce.c
@@ -267,7 +267,7 @@ void blk_queue_bounce(struct request_queue *q, struct bio **bio_orig)
/*
* Data-less bio, nothing to bounce
*/
- if (bio_empty_barrier(*bio_orig))
+ if (!bio_has_data(*bio_orig))
return;
/*
diff --git a/mm/fadvise.c b/mm/fadvise.c
index 343cfdfebd9e..a1da969bd980 100644
--- a/mm/fadvise.c
+++ b/mm/fadvise.c
@@ -3,7 +3,7 @@
*
* Copyright (C) 2002, Linus Torvalds
*
- * 11Jan2003 akpm@digeo.com
+ * 11Jan2003 Andrew Morton
* Initial version.
*/
diff --git a/mm/filemap.c b/mm/filemap.c
index 65d9d9e2b755..ab8553658af3 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -33,6 +33,7 @@
#include <linux/cpuset.h>
#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
#include <linux/memcontrol.h>
+#include <linux/mm_inline.h> /* for page_is_file_cache() */
#include "internal.h"
/*
@@ -42,9 +43,6 @@
#include <asm/mman.h>
-static ssize_t
-generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
- loff_t offset, unsigned long nr_segs);
/*
* Shared mappings implemented 30.11.1994. It's not fully working yet,
@@ -112,18 +110,18 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
/*
* Remove a page from the page cache and free it. Caller has to make
* sure the page is locked and that nobody else uses it - or that usage
- * is safe. The caller must hold a write_lock on the mapping's tree_lock.
+ * is safe. The caller must hold the mapping's tree_lock.
*/
void __remove_from_page_cache(struct page *page)
{
struct address_space *mapping = page->mapping;
- mem_cgroup_uncharge_page(page);
radix_tree_delete(&mapping->page_tree, page->index);
page->mapping = NULL;
mapping->nrpages--;
__dec_zone_page_state(page, NR_FILE_PAGES);
BUG_ON(page_mapped(page));
+ mem_cgroup_uncharge_cache_page(page);
/*
* Some filesystems seem to re-dirty the page even after
@@ -144,9 +142,9 @@ void remove_from_page_cache(struct page *page)
BUG_ON(!PageLocked(page));
- write_lock_irq(&mapping->tree_lock);
+ spin_lock_irq(&mapping->tree_lock);
__remove_from_page_cache(page);
- write_unlock_irq(&mapping->tree_lock);
+ spin_unlock_irq(&mapping->tree_lock);
}
static int sync_page(void *word)
@@ -445,55 +443,74 @@ int filemap_write_and_wait_range(struct address_space *mapping,
}
/**
- * add_to_page_cache - add newly allocated pagecache pages
+ * add_to_page_cache_locked - add a locked page to the pagecache
* @page: page to add
* @mapping: the page's address_space
* @offset: page index
* @gfp_mask: page allocation mode
*
- * This function is used to add newly allocated pagecache pages;
- * the page is new, so we can just run SetPageLocked() against it.
- * The other page state flags were set by rmqueue().
- *
+ * This function is used to add a page to the pagecache. It must be locked.
* This function does not add the page to the LRU. The caller must do that.
*/
-int add_to_page_cache(struct page *page, struct address_space *mapping,
+int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
- int error = mem_cgroup_cache_charge(page, current->mm,
+ int error;
+
+ VM_BUG_ON(!PageLocked(page));
+
+ error = mem_cgroup_cache_charge(page, current->mm,
gfp_mask & ~__GFP_HIGHMEM);
if (error)
goto out;
error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
if (error == 0) {
- write_lock_irq(&mapping->tree_lock);
+ page_cache_get(page);
+ page->mapping = mapping;
+ page->index = offset;
+
+ spin_lock_irq(&mapping->tree_lock);
error = radix_tree_insert(&mapping->page_tree, offset, page);
- if (!error) {
- page_cache_get(page);
- SetPageLocked(page);
- page->mapping = mapping;
- page->index = offset;
+ if (likely(!error)) {
mapping->nrpages++;
__inc_zone_page_state(page, NR_FILE_PAGES);
- } else
- mem_cgroup_uncharge_page(page);
+ } else {
+ page->mapping = NULL;
+ mem_cgroup_uncharge_cache_page(page);
+ page_cache_release(page);
+ }
- write_unlock_irq(&mapping->tree_lock);
+ spin_unlock_irq(&mapping->tree_lock);
radix_tree_preload_end();
} else
- mem_cgroup_uncharge_page(page);
+ mem_cgroup_uncharge_cache_page(page);
out:
return error;
}
-EXPORT_SYMBOL(add_to_page_cache);
+EXPORT_SYMBOL(add_to_page_cache_locked);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
- int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
- if (ret == 0)
- lru_cache_add(page);
+ int ret;
+
+ /*
+ * Splice_read and readahead add shmem/tmpfs pages into the page cache
+ * before shmem_readpage has a chance to mark them as SwapBacked: they
+ * need to go on the active_anon lru below, and mem_cgroup_cache_charge
+ * (called in add_to_page_cache) needs to know where they're going too.
+ */
+ if (mapping_cap_swap_backed(mapping))
+ SetPageSwapBacked(page);
+
+ ret = add_to_page_cache(page, mapping, offset, gfp_mask);
+ if (ret == 0) {
+ if (page_is_file_cache(page))
+ lru_cache_add_file(page);
+ else
+ lru_cache_add_active_anon(page);
+ }
return ret;
}
@@ -556,17 +573,14 @@ EXPORT_SYMBOL(wait_on_page_bit);
* mechananism between PageLocked pages and PageWriteback pages is shared.
* But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
*
- * The first mb is necessary to safely close the critical section opened by the
- * TestSetPageLocked(), the second mb is necessary to enforce ordering between
- * the clear_bit and the read of the waitqueue (to avoid SMP races with a
- * parallel wait_on_page_locked()).
+ * The mb is necessary to enforce ordering between the clear_bit and the read
+ * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
*/
void unlock_page(struct page *page)
{
- smp_mb__before_clear_bit();
- if (!TestClearPageLocked(page))
- BUG();
- smp_mb__after_clear_bit();
+ VM_BUG_ON(!PageLocked(page));
+ clear_bit_unlock(PG_locked, &page->flags);
+ smp_mb__after_clear_bit();
wake_up_page(page, PG_locked);
}
EXPORT_SYMBOL(unlock_page);
@@ -636,15 +650,35 @@ void __lock_page_nosync(struct page *page)
* Is there a pagecache struct page at the given (mapping, offset) tuple?
* If yes, increment its refcount and return it; if no, return NULL.
*/
-struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
+struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
{
+ void **pagep;
struct page *page;
- read_lock_irq(&mapping->tree_lock);
- page = radix_tree_lookup(&mapping->page_tree, offset);
- if (page)
- page_cache_get(page);
- read_unlock_irq(&mapping->tree_lock);
+ rcu_read_lock();
+repeat:
+ page = NULL;
+ pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
+ if (pagep) {
+ page = radix_tree_deref_slot(pagep);
+ if (unlikely(!page || page == RADIX_TREE_RETRY))
+ goto repeat;
+
+ if (!page_cache_get_speculative(page))
+ goto repeat;
+
+ /*
+ * Has the page moved?
+ * This is part of the lockless pagecache protocol. See
+ * include/linux/pagemap.h for details.
+ */
+ if (unlikely(page != *pagep)) {
+ page_cache_release(page);
+ goto repeat;
+ }
+ }
+ rcu_read_unlock();
+
return page;
}
EXPORT_SYMBOL(find_get_page);
@@ -659,32 +693,22 @@ EXPORT_SYMBOL(find_get_page);
*
* Returns zero if the page was not present. find_lock_page() may sleep.
*/
-struct page *find_lock_page(struct address_space *mapping,
- pgoff_t offset)
+struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
{
struct page *page;
repeat:
- read_lock_irq(&mapping->tree_lock);
- page = radix_tree_lookup(&mapping->page_tree, offset);
+ page = find_get_page(mapping, offset);
if (page) {
- page_cache_get(page);
- if (TestSetPageLocked(page)) {
- read_unlock_irq(&mapping->tree_lock);
- __lock_page(page);
-
- /* Has the page been truncated while we slept? */
- if (unlikely(page->mapping != mapping)) {
- unlock_page(page);
- page_cache_release(page);
- goto repeat;
- }
- VM_BUG_ON(page->index != offset);
- goto out;
+ lock_page(page);
+ /* Has the page been truncated? */
+ if (unlikely(page->mapping != mapping)) {
+ unlock_page(page);
+ page_cache_release(page);
+ goto repeat;
}
+ VM_BUG_ON(page->index != offset);
}
- read_unlock_irq(&mapping->tree_lock);
-out:
return page;
}
EXPORT_SYMBOL(find_lock_page);
@@ -750,13 +774,39 @@ unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
{
unsigned int i;
unsigned int ret;
+ unsigned int nr_found;
+
+ rcu_read_lock();
+restart:
+ nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
+ (void ***)pages, start, nr_pages);
+ ret = 0;
+ for (i = 0; i < nr_found; i++) {
+ struct page *page;
+repeat:
+ page = radix_tree_deref_slot((void **)pages[i]);
+ if (unlikely(!page))
+ continue;
+ /*
+ * this can only trigger if nr_found == 1, making livelock
+ * a non issue.
+ */
+ if (unlikely(page == RADIX_TREE_RETRY))
+ goto restart;
- read_lock_irq(&mapping->tree_lock);
- ret = radix_tree_gang_lookup(&mapping->page_tree,
- (void **)pages, start, nr_pages);
- for (i = 0; i < ret; i++)
- page_cache_get(pages[i]);
- read_unlock_irq(&mapping->tree_lock);
+ if (!page_cache_get_speculative(page))
+ goto repeat;
+
+ /* Has the page moved? */
+ if (unlikely(page != *((void **)pages[i]))) {
+ page_cache_release(page);
+ goto repeat;
+ }
+
+ pages[ret] = page;
+ ret++;
+ }
+ rcu_read_unlock();
return ret;
}
@@ -777,19 +827,44 @@ unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
{
unsigned int i;
unsigned int ret;
+ unsigned int nr_found;
+
+ rcu_read_lock();
+restart:
+ nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
+ (void ***)pages, index, nr_pages);
+ ret = 0;
+ for (i = 0; i < nr_found; i++) {
+ struct page *page;
+repeat:
+ page = radix_tree_deref_slot((void **)pages[i]);
+ if (unlikely(!page))
+ continue;
+ /*
+ * this can only trigger if nr_found == 1, making livelock
+ * a non issue.
+ */
+ if (unlikely(page == RADIX_TREE_RETRY))
+ goto restart;
- read_lock_irq(&mapping->tree_lock);
- ret = radix_tree_gang_lookup(&mapping->page_tree,
- (void **)pages, index, nr_pages);
- for (i = 0; i < ret; i++) {
- if (pages[i]->mapping == NULL || pages[i]->index != index)
+ if (page->mapping == NULL || page->index != index)
break;
- page_cache_get(pages[i]);
+ if (!page_cache_get_speculative(page))
+ goto repeat;
+
+ /* Has the page moved? */
+ if (unlikely(page != *((void **)pages[i]))) {
+ page_cache_release(page);
+ goto repeat;
+ }
+
+ pages[ret] = page;
+ ret++;
index++;
}
- read_unlock_irq(&mapping->tree_lock);
- return i;
+ rcu_read_unlock();
+ return ret;
}
EXPORT_SYMBOL(find_get_pages_contig);
@@ -809,15 +884,43 @@ unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
{
unsigned int i;
unsigned int ret;
+ unsigned int nr_found;
+
+ rcu_read_lock();
+restart:
+ nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
+ (void ***)pages, *index, nr_pages, tag);
+ ret = 0;
+ for (i = 0; i < nr_found; i++) {
+ struct page *page;
+repeat:
+ page = radix_tree_deref_slot((void **)pages[i]);
+ if (unlikely(!page))
+ continue;
+ /*
+ * this can only trigger if nr_found == 1, making livelock
+ * a non issue.
+ */
+ if (unlikely(page == RADIX_TREE_RETRY))
+ goto restart;
+
+ if (!page_cache_get_speculative(page))
+ goto repeat;
+
+ /* Has the page moved? */
+ if (unlikely(page != *((void **)pages[i]))) {
+ page_cache_release(page);
+ goto repeat;
+ }
+
+ pages[ret] = page;
+ ret++;
+ }
+ rcu_read_unlock();
- read_lock_irq(&mapping->tree_lock);
- ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
- (void **)pages, *index, nr_pages, tag);
- for (i = 0; i < ret; i++)
- page_cache_get(pages[i]);
if (ret)
*index = pages[ret - 1]->index + 1;
- read_unlock_irq(&mapping->tree_lock);
+
return ret;
}
EXPORT_SYMBOL(find_get_pages_tag);
@@ -841,7 +944,7 @@ grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
struct page *page = find_get_page(mapping, index);
if (page) {
- if (!TestSetPageLocked(page))
+ if (trylock_page(page))
return page;
page_cache_release(page);
return NULL;
@@ -933,8 +1036,17 @@ find_page:
ra, filp, page,
index, last_index - index);
}
- if (!PageUptodate(page))
- goto page_not_up_to_date;
+ if (!PageUptodate(page)) {
+ if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
+ !mapping->a_ops->is_partially_uptodate)
+ goto page_not_up_to_date;
+ if (!trylock_page(page))
+ goto page_not_up_to_date;
+ if (!mapping->a_ops->is_partially_uptodate(page,
+ desc, offset))
+ goto page_not_up_to_date_locked;
+ unlock_page(page);
+ }
page_ok:
/*
* i_size must be checked after we know the page is Uptodate.
@@ -1001,9 +1113,11 @@ page_ok:
page_not_up_to_date:
/* Get exclusive access to the page ... */
- if (lock_page_killable(page))
- goto readpage_eio;
+ error = lock_page_killable(page);
+ if (unlikely(error))
+ goto readpage_error;
+page_not_up_to_date_locked:
/* Did it get truncated before we got the lock? */
if (!page->mapping) {
unlock_page(page);
@@ -1030,8 +1144,9 @@ readpage:
}
if (!PageUptodate(page)) {
- if (lock_page_killable(page))
- goto readpage_eio;
+ error = lock_page_killable(page);
+ if (unlikely(error))
+ goto readpage_error;
if (!PageUptodate(page)) {
if (page->mapping == NULL) {
/*
@@ -1043,15 +1158,14 @@ readpage:
}
unlock_page(page);
shrink_readahead_size_eio(filp, ra);
- goto readpage_eio;
+ error = -EIO;
+ goto readpage_error;
}
unlock_page(page);
}
goto page_ok;
-readpage_eio:
- error = -EIO;
readpage_error:
/* UHHUH! A synchronous read error occurred. Report it */
desc->error = error;
@@ -1086,8 +1200,7 @@ out:
ra->prev_pos |= prev_offset;
*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
- if (filp)
- file_accessed(filp);
+ file_accessed(filp);
}
int file_read_actor(read_descriptor_t *desc, struct page *page,
@@ -1200,42 +1313,41 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
mapping = filp->f_mapping;
inode = mapping->host;
- retval = 0;
if (!count)
goto out; /* skip atime */
size = i_size_read(inode);
if (pos < size) {
- retval = generic_file_direct_IO(READ, iocb,
- iov, pos, nr_segs);
+ retval = filemap_write_and_wait(mapping);
+ if (!retval) {
+ retval = mapping->a_ops->direct_IO(READ, iocb,
+ iov, pos, nr_segs);
+ }
if (retval > 0)
*ppos = pos + retval;
- }
- if (likely(retval != 0)) {
- file_accessed(filp);
- goto out;
+ if (retval) {
+ file_accessed(filp);
+ goto out;
+ }
}
}
- retval = 0;
- if (count) {
- for (seg = 0; seg < nr_segs; seg++) {
- read_descriptor_t desc;
+ for (seg = 0; seg < nr_segs; seg++) {
+ read_descriptor_t desc;
- desc.written = 0;
- desc.arg.buf = iov[seg].iov_base;
- desc.count = iov[seg].iov_len;
- if (desc.count == 0)
- continue;
- desc.error = 0;
- do_generic_file_read(filp,ppos,&desc,file_read_actor);
- retval += desc.written;
- if (desc.error) {
- retval = retval ?: desc.error;
- break;
- }
- if (desc.count > 0)
- break;
+ desc.written = 0;
+ desc.arg.buf = iov[seg].iov_base;
+ desc.count = iov[seg].iov_len;
+ if (desc.count == 0)
+ continue;
+ desc.error = 0;
+ do_generic_file_read(filp, ppos, &desc, file_read_actor);
+ retval += desc.written;
+ if (desc.error) {
+ retval = retval ?: desc.error;
+ break;
}
+ if (desc.count > 0)
+ break;
}
out:
return retval;
@@ -1669,8 +1781,9 @@ static int __remove_suid(struct dentry *dentry, int kill)
return notify_change(dentry, &newattrs);
}
-int remove_suid(struct dentry *dentry)
+int file_remove_suid(struct file *file)
{
+ struct dentry *dentry = file->f_path.dentry;
int killsuid = should_remove_suid(dentry);
int killpriv = security_inode_need_killpriv(dentry);
int error = 0;
@@ -1684,7 +1797,7 @@ int remove_suid(struct dentry *dentry)
return error;
}
-EXPORT_SYMBOL(remove_suid);
+EXPORT_SYMBOL(file_remove_suid);
static size_t __iovec_copy_from_user_inatomic(char *vaddr,
const struct iovec *iov, size_t base, size_t bytes)
@@ -1779,7 +1892,7 @@ void iov_iter_advance(struct iov_iter *i, size_t bytes)
* The !iov->iov_len check ensures we skip over unlikely
* zero-length segments (without overruning the iovec).
*/
- while (bytes || unlikely(!iov->iov_len && i->count)) {
+ while (bytes || unlikely(i->count && !iov->iov_len)) {
int copy;
copy = min(bytes, iov->iov_len - base);
@@ -2004,11 +2117,62 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
ssize_t written;
+ size_t write_len;
+ pgoff_t end;
if (count != ocount)
*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
- written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
+ /*
+ * Unmap all mmappings of the file up-front.
+ *
+ * This will cause any pte dirty bits to be propagated into the
+ * pageframes for the subsequent filemap_write_and_wait().
+ */
+ write_len = iov_length(iov, *nr_segs);
+ end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
+ if (mapping_mapped(mapping))
+ unmap_mapping_range(mapping, pos, write_len, 0);
+
+ written = filemap_write_and_wait(mapping);
+ if (written)
+ goto out;
+
+ /*
+ * After a write we want buffered reads to be sure to go to disk to get
+ * the new data. We invalidate clean cached page from the region we're
+ * about to write. We do this *before* the write so that we can return
+ * without clobbering -EIOCBQUEUED from ->direct_IO().
+ */
+ if (mapping->nrpages) {
+ written = invalidate_inode_pages2_range(mapping,
+ pos >> PAGE_CACHE_SHIFT, end);
+ /*
+ * If a page can not be invalidated, return 0 to fall back
+ * to buffered write.
+ */
+ if (written) {
+ if (written == -EBUSY)
+ return 0;
+ goto out;
+ }
+ }
+
+ written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
+
+ /*
+ * Finally, try again to invalidate clean pages which might have been
+ * cached by non-direct readahead, or faulted in by get_user_pages()
+ * if the source of the write was an mmap'ed region of the file
+ * we're writing. Either one is a pretty crazy thing to do,
+ * so we don't support it 100%. If this invalidation
+ * fails, tough, the write still worked...
+ */
+ if (mapping->nrpages) {
+ invalidate_inode_pages2_range(mapping,
+ pos >> PAGE_CACHE_SHIFT, end);
+ }
+
if (written > 0) {
loff_t end = pos + written;
if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
@@ -2024,6 +2188,7 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
* i_mutex is held, which protects generic_osync_inode() from
* livelocking. AIO O_DIRECT ops attempt to sync metadata here.
*/
+out:
if ((written >= 0 || written == -EIOCBQUEUED) &&
((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
@@ -2395,7 +2560,7 @@ __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
if (count == 0)
goto out;
- err = remove_suid(file->f_path.dentry);
+ err = file_remove_suid(file);
if (err)
goto out;
@@ -2511,66 +2676,6 @@ ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
}
EXPORT_SYMBOL(generic_file_aio_write);
-/*
- * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
- * went wrong during pagecache shootdown.
- */
-static ssize_t
-generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
- loff_t offset, unsigned long nr_segs)
-{
- struct file *file = iocb->ki_filp;
- struct address_space *mapping = file->f_mapping;
- ssize_t retval;
- size_t write_len;
- pgoff_t end = 0; /* silence gcc */
-
- /*
- * If it's a write, unmap all mmappings of the file up-front. This
- * will cause any pte dirty bits to be propagated into the pageframes
- * for the subsequent filemap_write_and_wait().
- */
- if (rw == WRITE) {
- write_len = iov_length(iov, nr_segs);
- end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
- if (mapping_mapped(mapping))
- unmap_mapping_range(mapping, offset, write_len, 0);
- }
-
- retval = filemap_write_and_wait(mapping);
- if (retval)
- goto out;
-
- /*
- * After a write we want buffered reads to be sure to go to disk to get
- * the new data. We invalidate clean cached page from the region we're
- * about to write. We do this *before* the write so that we can return
- * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
- */
- if (rw == WRITE && mapping->nrpages) {
- retval = invalidate_inode_pages2_range(mapping,
- offset >> PAGE_CACHE_SHIFT, end);
- if (retval)
- goto out;
- }
-
- retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
-
- /*
- * Finally, try again to invalidate clean pages which might have been
- * cached by non-direct readahead, or faulted in by get_user_pages()
- * if the source of the write was an mmap'ed region of the file
- * we're writing. Either one is a pretty crazy thing to do,
- * so we don't support it 100%. If this invalidation
- * fails, tough, the write still worked...
- */
- if (rw == WRITE && mapping->nrpages) {
- invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
- }
-out:
- return retval;
-}
-
/**
* try_to_release_page() - release old fs-specific metadata on a page
*
@@ -2582,9 +2687,8 @@ out:
* Otherwise return zero.
*
* The @gfp_mask argument specifies whether I/O may be performed to release
- * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
+ * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
*
- * NOTE: @gfp_mask may go away, and this function may become non-blocking.
*/
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c
index 3e744abcce9d..b5167dfb2f2d 100644
--- a/mm/filemap_xip.c
+++ b/mm/filemap_xip.c
@@ -13,7 +13,10 @@
#include <linux/module.h>
#include <linux/uio.h>
#include <linux/rmap.h>
+#include <linux/mmu_notifier.h>
#include <linux/sched.h>
+#include <linux/seqlock.h>
+#include <linux/mutex.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
@@ -21,22 +24,18 @@
* We do use our own empty page to avoid interference with other users
* of ZERO_PAGE(), such as /dev/zero
*/
+static DEFINE_MUTEX(xip_sparse_mutex);
+static seqcount_t xip_sparse_seq = SEQCNT_ZERO;
static struct page *__xip_sparse_page;
+/* called under xip_sparse_mutex */
static struct page *xip_sparse_page(void)
{
if (!__xip_sparse_page) {
struct page *page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
- if (page) {
- static DEFINE_SPINLOCK(xip_alloc_lock);
- spin_lock(&xip_alloc_lock);
- if (!__xip_sparse_page)
- __xip_sparse_page = page;
- else
- __free_page(page);
- spin_unlock(&xip_alloc_lock);
- }
+ if (page)
+ __xip_sparse_page = page;
}
return __xip_sparse_page;
}
@@ -173,22 +172,27 @@ __xip_unmap (struct address_space * mapping,
pte_t pteval;
spinlock_t *ptl;
struct page *page;
+ unsigned count;
+ int locked = 0;
+
+ count = read_seqcount_begin(&xip_sparse_seq);
page = __xip_sparse_page;
if (!page)
return;
+retry:
spin_lock(&mapping->i_mmap_lock);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
mm = vma->vm_mm;
address = vma->vm_start +
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
BUG_ON(address < vma->vm_start || address >= vma->vm_end);
- pte = page_check_address(page, mm, address, &ptl);
+ pte = page_check_address(page, mm, address, &ptl, 1);
if (pte) {
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pte));
- pteval = ptep_clear_flush(vma, address, pte);
+ pteval = ptep_clear_flush_notify(vma, address, pte);
page_remove_rmap(page, vma);
dec_mm_counter(mm, file_rss);
BUG_ON(pte_dirty(pteval));
@@ -197,6 +201,14 @@ __xip_unmap (struct address_space * mapping,
}
}
spin_unlock(&mapping->i_mmap_lock);
+
+ if (locked) {
+ mutex_unlock(&xip_sparse_mutex);
+ } else if (read_seqcount_retry(&xip_sparse_seq, count)) {
+ mutex_lock(&xip_sparse_mutex);
+ locked = 1;
+ goto retry;
+ }
}
/*
@@ -217,7 +229,7 @@ static int xip_file_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
int error;
/* XXX: are VM_FAULT_ codes OK? */
-
+again:
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
if (vmf->pgoff >= size)
return VM_FAULT_SIGBUS;
@@ -236,8 +248,10 @@ static int xip_file_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
int err;
/* maybe shared writable, allocate new block */
+ mutex_lock(&xip_sparse_mutex);
error = mapping->a_ops->get_xip_mem(mapping, vmf->pgoff, 1,
&xip_mem, &xip_pfn);
+ mutex_unlock(&xip_sparse_mutex);
if (error)
return VM_FAULT_SIGBUS;
/* unmap sparse mappings at pgoff from all other vmas */
@@ -251,14 +265,34 @@ found:
BUG_ON(err);
return VM_FAULT_NOPAGE;
} else {
+ int err, ret = VM_FAULT_OOM;
+
+ mutex_lock(&xip_sparse_mutex);
+ write_seqcount_begin(&xip_sparse_seq);
+ error = mapping->a_ops->get_xip_mem(mapping, vmf->pgoff, 0,
+ &xip_mem, &xip_pfn);
+ if (unlikely(!error)) {
+ write_seqcount_end(&xip_sparse_seq);
+ mutex_unlock(&xip_sparse_mutex);
+ goto again;
+ }
+ if (error != -ENODATA)
+ goto out;
/* not shared and writable, use xip_sparse_page() */
page = xip_sparse_page();
if (!page)
- return VM_FAULT_OOM;
+ goto out;
+ err = vm_insert_page(vma, (unsigned long)vmf->virtual_address,
+ page);
+ if (err == -ENOMEM)
+ goto out;
- page_cache_get(page);
- vmf->page = page;
- return 0;
+ ret = VM_FAULT_NOPAGE;
+out:
+ write_seqcount_end(&xip_sparse_seq);
+ mutex_unlock(&xip_sparse_mutex);
+
+ return ret;
}
}
@@ -307,8 +341,10 @@ __xip_file_write(struct file *filp, const char __user *buf,
&xip_mem, &xip_pfn);
if (status == -ENODATA) {
/* we allocate a new page unmap it */
+ mutex_lock(&xip_sparse_mutex);
status = a_ops->get_xip_mem(mapping, index, 1,
&xip_mem, &xip_pfn);
+ mutex_unlock(&xip_sparse_mutex);
if (!status)
/* unmap page at pgoff from all other vmas */
__xip_unmap(mapping, index);
@@ -380,7 +416,7 @@ xip_file_write(struct file *filp, const char __user *buf, size_t len,
if (count == 0)
goto out_backing;
- ret = remove_suid(filp->f_path.dentry);
+ ret = file_remove_suid(filp);
if (ret)
goto out_backing;
diff --git a/mm/fremap.c b/mm/fremap.c
index 07a9c82ce1a3..7d12ca70ef7b 100644
--- a/mm/fremap.c
+++ b/mm/fremap.c
@@ -15,11 +15,14 @@
#include <linux/rmap.h>
#include <linux/module.h>
#include <linux/syscalls.h>
+#include <linux/mmu_notifier.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
+#include "internal.h"
+
static void zap_pte(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
@@ -214,13 +217,31 @@ asmlinkage long sys_remap_file_pages(unsigned long start, unsigned long size,
spin_unlock(&mapping->i_mmap_lock);
}
+ if (vma->vm_flags & VM_LOCKED) {
+ /*
+ * drop PG_Mlocked flag for over-mapped range
+ */
+ unsigned int saved_flags = vma->vm_flags;
+ munlock_vma_pages_range(vma, start, start + size);
+ vma->vm_flags = saved_flags;
+ }
+
+ mmu_notifier_invalidate_range_start(mm, start, start + size);
err = populate_range(mm, vma, start, size, pgoff);
+ mmu_notifier_invalidate_range_end(mm, start, start + size);
if (!err && !(flags & MAP_NONBLOCK)) {
- if (unlikely(has_write_lock)) {
- downgrade_write(&mm->mmap_sem);
- has_write_lock = 0;
+ if (vma->vm_flags & VM_LOCKED) {
+ /*
+ * might be mapping previously unmapped range of file
+ */
+ mlock_vma_pages_range(vma, start, start + size);
+ } else {
+ if (unlikely(has_write_lock)) {
+ downgrade_write(&mm->mmap_sem);
+ has_write_lock = 0;
+ }
+ make_pages_present(start, start+size);
}
- make_pages_present(start, start+size);
}
/*
@@ -237,4 +258,3 @@ out:
return err;
}
-
diff --git a/mm/highmem.c b/mm/highmem.c
index 7da4a7b6af11..b36b83b920ff 100644
--- a/mm/highmem.c
+++ b/mm/highmem.c
@@ -40,6 +40,7 @@
#ifdef CONFIG_HIGHMEM
unsigned long totalhigh_pages __read_mostly;
+EXPORT_SYMBOL(totalhigh_pages);
unsigned int nr_free_highpages (void)
{
@@ -69,6 +70,7 @@ static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
static void flush_all_zero_pkmaps(void)
{
int i;
+ int need_flush = 0;
flush_cache_kmaps();
@@ -100,8 +102,10 @@ static void flush_all_zero_pkmaps(void)
&pkmap_page_table[i]);
set_page_address(page, NULL);
+ need_flush = 1;
}
- flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
+ if (need_flush)
+ flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
}
/**
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index ab171274ef21..421aee99b84a 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -7,45 +7,360 @@
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
+#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
+#include <linux/mmu_notifier.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
+#include <linux/bootmem.h>
+#include <linux/sysfs.h>
#include <asm/page.h>
#include <asm/pgtable.h>
+#include <asm/io.h>
#include <linux/hugetlb.h>
#include "internal.h"
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
-static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
-static unsigned long surplus_huge_pages;
-static unsigned long nr_overcommit_huge_pages;
-unsigned long max_huge_pages;
-unsigned long sysctl_overcommit_huge_pages;
-static struct list_head hugepage_freelists[MAX_NUMNODES];
-static unsigned int nr_huge_pages_node[MAX_NUMNODES];
-static unsigned int free_huge_pages_node[MAX_NUMNODES];
-static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
-static int hugetlb_next_nid;
+
+static int max_hstate;
+unsigned int default_hstate_idx;
+struct hstate hstates[HUGE_MAX_HSTATE];
+
+__initdata LIST_HEAD(huge_boot_pages);
+
+/* for command line parsing */
+static struct hstate * __initdata parsed_hstate;
+static unsigned long __initdata default_hstate_max_huge_pages;
+static unsigned long __initdata default_hstate_size;
+
+#define for_each_hstate(h) \
+ for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
/*
* Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
*/
static DEFINE_SPINLOCK(hugetlb_lock);
-static void clear_huge_page(struct page *page, unsigned long addr)
+/*
+ * Region tracking -- allows tracking of reservations and instantiated pages
+ * across the pages in a mapping.
+ *
+ * The region data structures are protected by a combination of the mmap_sem
+ * and the hugetlb_instantion_mutex. To access or modify a region the caller
+ * must either hold the mmap_sem for write, or the mmap_sem for read and
+ * the hugetlb_instantiation mutex:
+ *
+ * down_write(&mm->mmap_sem);
+ * or
+ * down_read(&mm->mmap_sem);
+ * mutex_lock(&hugetlb_instantiation_mutex);
+ */
+struct file_region {
+ struct list_head link;
+ long from;
+ long to;
+};
+
+static long region_add(struct list_head *head, long f, long t)
+{
+ struct file_region *rg, *nrg, *trg;
+
+ /* Locate the region we are either in or before. */
+ list_for_each_entry(rg, head, link)
+ if (f <= rg->to)
+ break;
+
+ /* Round our left edge to the current segment if it encloses us. */
+ if (f > rg->from)
+ f = rg->from;
+
+ /* Check for and consume any regions we now overlap with. */
+ nrg = rg;
+ list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
+ if (&rg->link == head)
+ break;
+ if (rg->from > t)
+ break;
+
+ /* If this area reaches higher then extend our area to
+ * include it completely. If this is not the first area
+ * which we intend to reuse, free it. */
+ if (rg->to > t)
+ t = rg->to;
+ if (rg != nrg) {
+ list_del(&rg->link);
+ kfree(rg);
+ }
+ }
+ nrg->from = f;
+ nrg->to = t;
+ return 0;
+}
+
+static long region_chg(struct list_head *head, long f, long t)
+{
+ struct file_region *rg, *nrg;
+ long chg = 0;
+
+ /* Locate the region we are before or in. */
+ list_for_each_entry(rg, head, link)
+ if (f <= rg->to)
+ break;
+
+ /* If we are below the current region then a new region is required.
+ * Subtle, allocate a new region at the position but make it zero
+ * size such that we can guarantee to record the reservation. */
+ if (&rg->link == head || t < rg->from) {
+ nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
+ if (!nrg)
+ return -ENOMEM;
+ nrg->from = f;
+ nrg->to = f;
+ INIT_LIST_HEAD(&nrg->link);
+ list_add(&nrg->link, rg->link.prev);
+
+ return t - f;
+ }
+
+ /* Round our left edge to the current segment if it encloses us. */
+ if (f > rg->from)
+ f = rg->from;
+ chg = t - f;
+
+ /* Check for and consume any regions we now overlap with. */
+ list_for_each_entry(rg, rg->link.prev, link) {
+ if (&rg->link == head)
+ break;
+ if (rg->from > t)
+ return chg;
+
+ /* We overlap with this area, if it extends futher than
+ * us then we must extend ourselves. Account for its
+ * existing reservation. */
+ if (rg->to > t) {
+ chg += rg->to - t;
+ t = rg->to;
+ }
+ chg -= rg->to - rg->from;
+ }
+ return chg;
+}
+
+static long region_truncate(struct list_head *head, long end)
+{
+ struct file_region *rg, *trg;
+ long chg = 0;
+
+ /* Locate the region we are either in or before. */
+ list_for_each_entry(rg, head, link)
+ if (end <= rg->to)
+ break;
+ if (&rg->link == head)
+ return 0;
+
+ /* If we are in the middle of a region then adjust it. */
+ if (end > rg->from) {
+ chg = rg->to - end;
+ rg->to = end;
+ rg = list_entry(rg->link.next, typeof(*rg), link);
+ }
+
+ /* Drop any remaining regions. */
+ list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
+ if (&rg->link == head)
+ break;
+ chg += rg->to - rg->from;
+ list_del(&rg->link);
+ kfree(rg);
+ }
+ return chg;
+}
+
+static long region_count(struct list_head *head, long f, long t)
+{
+ struct file_region *rg;
+ long chg = 0;
+
+ /* Locate each segment we overlap with, and count that overlap. */
+ list_for_each_entry(rg, head, link) {
+ int seg_from;
+ int seg_to;
+
+ if (rg->to <= f)
+ continue;
+ if (rg->from >= t)
+ break;
+
+ seg_from = max(rg->from, f);
+ seg_to = min(rg->to, t);
+
+ chg += seg_to - seg_from;
+ }
+
+ return chg;
+}
+
+/*
+ * Convert the address within this vma to the page offset within
+ * the mapping, in pagecache page units; huge pages here.
+ */
+static pgoff_t vma_hugecache_offset(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
+{
+ return ((address - vma->vm_start) >> huge_page_shift(h)) +
+ (vma->vm_pgoff >> huge_page_order(h));
+}
+
+/*
+ * Flags for MAP_PRIVATE reservations. These are stored in the bottom
+ * bits of the reservation map pointer, which are always clear due to
+ * alignment.
+ */
+#define HPAGE_RESV_OWNER (1UL << 0)
+#define HPAGE_RESV_UNMAPPED (1UL << 1)
+#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
+
+/*
+ * These helpers are used to track how many pages are reserved for
+ * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
+ * is guaranteed to have their future faults succeed.
+ *
+ * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
+ * the reserve counters are updated with the hugetlb_lock held. It is safe
+ * to reset the VMA at fork() time as it is not in use yet and there is no
+ * chance of the global counters getting corrupted as a result of the values.
+ *
+ * The private mapping reservation is represented in a subtly different
+ * manner to a shared mapping. A shared mapping has a region map associated
+ * with the underlying file, this region map represents the backing file
+ * pages which have ever had a reservation assigned which this persists even
+ * after the page is instantiated. A private mapping has a region map
+ * associated with the original mmap which is attached to all VMAs which
+ * reference it, this region map represents those offsets which have consumed
+ * reservation ie. where pages have been instantiated.
+ */
+static unsigned long get_vma_private_data(struct vm_area_struct *vma)
+{
+ return (unsigned long)vma->vm_private_data;
+}
+
+static void set_vma_private_data(struct vm_area_struct *vma,
+ unsigned long value)
+{
+ vma->vm_private_data = (void *)value;
+}
+
+struct resv_map {
+ struct kref refs;
+ struct list_head regions;
+};
+
+static struct resv_map *resv_map_alloc(void)
+{
+ struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
+ if (!resv_map)
+ return NULL;
+
+ kref_init(&resv_map->refs);
+ INIT_LIST_HEAD(&resv_map->regions);
+
+ return resv_map;
+}
+
+static void resv_map_release(struct kref *ref)
+{
+ struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
+
+ /* Clear out any active regions before we release the map. */
+ region_truncate(&resv_map->regions, 0);
+ kfree(resv_map);
+}
+
+static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
+{
+ VM_BUG_ON(!is_vm_hugetlb_page(vma));
+ if (!(vma->vm_flags & VM_SHARED))
+ return (struct resv_map *)(get_vma_private_data(vma) &
+ ~HPAGE_RESV_MASK);
+ return NULL;
+}
+
+static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
+{
+ VM_BUG_ON(!is_vm_hugetlb_page(vma));
+ VM_BUG_ON(vma->vm_flags & VM_SHARED);
+
+ set_vma_private_data(vma, (get_vma_private_data(vma) &
+ HPAGE_RESV_MASK) | (unsigned long)map);
+}
+
+static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
+{
+ VM_BUG_ON(!is_vm_hugetlb_page(vma));
+ VM_BUG_ON(vma->vm_flags & VM_SHARED);
+
+ set_vma_private_data(vma, get_vma_private_data(vma) | flags);
+}
+
+static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
+{
+ VM_BUG_ON(!is_vm_hugetlb_page(vma));
+
+ return (get_vma_private_data(vma) & flag) != 0;
+}
+
+/* Decrement the reserved pages in the hugepage pool by one */
+static void decrement_hugepage_resv_vma(struct hstate *h,
+ struct vm_area_struct *vma)
+{
+ if (vma->vm_flags & VM_NORESERVE)
+ return;
+
+ if (vma->vm_flags & VM_SHARED) {
+ /* Shared mappings always use reserves */
+ h->resv_huge_pages--;
+ } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ /*
+ * Only the process that called mmap() has reserves for
+ * private mappings.
+ */
+ h->resv_huge_pages--;
+ }
+}
+
+/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
+void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
+{
+ VM_BUG_ON(!is_vm_hugetlb_page(vma));
+ if (!(vma->vm_flags & VM_SHARED))
+ vma->vm_private_data = (void *)0;
+}
+
+/* Returns true if the VMA has associated reserve pages */
+static int vma_has_reserves(struct vm_area_struct *vma)
+{
+ if (vma->vm_flags & VM_SHARED)
+ return 1;
+ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+ return 1;
+ return 0;
+}
+
+static void clear_huge_page(struct page *page,
+ unsigned long addr, unsigned long sz)
{
int i;
might_sleep();
- for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
+ for (i = 0; i < sz/PAGE_SIZE; i++) {
cond_resched();
clear_user_highpage(page + i, addr + i * PAGE_SIZE);
}
@@ -55,42 +370,44 @@ static void copy_huge_page(struct page *dst, struct page *src,
unsigned long addr, struct vm_area_struct *vma)
{
int i;
+ struct hstate *h = hstate_vma(vma);
might_sleep();
- for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
+ for (i = 0; i < pages_per_huge_page(h); i++) {
cond_resched();
copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
}
}
-static void enqueue_huge_page(struct page *page)
+static void enqueue_huge_page(struct hstate *h, struct page *page)
{
int nid = page_to_nid(page);
- list_add(&page->lru, &hugepage_freelists[nid]);
- free_huge_pages++;
- free_huge_pages_node[nid]++;
+ list_add(&page->lru, &h->hugepage_freelists[nid]);
+ h->free_huge_pages++;
+ h->free_huge_pages_node[nid]++;
}
-static struct page *dequeue_huge_page(void)
+static struct page *dequeue_huge_page(struct hstate *h)
{
int nid;
struct page *page = NULL;
for (nid = 0; nid < MAX_NUMNODES; ++nid) {
- if (!list_empty(&hugepage_freelists[nid])) {
- page = list_entry(hugepage_freelists[nid].next,
+ if (!list_empty(&h->hugepage_freelists[nid])) {
+ page = list_entry(h->hugepage_freelists[nid].next,
struct page, lru);
list_del(&page->lru);
- free_huge_pages--;
- free_huge_pages_node[nid]--;
+ h->free_huge_pages--;
+ h->free_huge_pages_node[nid]--;
break;
}
}
return page;
}
-static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
- unsigned long address)
+static struct page *dequeue_huge_page_vma(struct hstate *h,
+ struct vm_area_struct *vma,
+ unsigned long address, int avoid_reserve)
{
int nid;
struct page *page = NULL;
@@ -101,18 +418,33 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
struct zone *zone;
struct zoneref *z;
+ /*
+ * A child process with MAP_PRIVATE mappings created by their parent
+ * have no page reserves. This check ensures that reservations are
+ * not "stolen". The child may still get SIGKILLed
+ */
+ if (!vma_has_reserves(vma) &&
+ h->free_huge_pages - h->resv_huge_pages == 0)
+ return NULL;
+
+ /* If reserves cannot be used, ensure enough pages are in the pool */
+ if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
+ return NULL;
+
for_each_zone_zonelist_nodemask(zone, z, zonelist,
MAX_NR_ZONES - 1, nodemask) {
nid = zone_to_nid(zone);
if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
- !list_empty(&hugepage_freelists[nid])) {
- page = list_entry(hugepage_freelists[nid].next,
+ !list_empty(&h->hugepage_freelists[nid])) {
+ page = list_entry(h->hugepage_freelists[nid].next,
struct page, lru);
list_del(&page->lru);
- free_huge_pages--;
- free_huge_pages_node[nid]--;
- if (vma && vma->vm_flags & VM_MAYSHARE)
- resv_huge_pages--;
+ h->free_huge_pages--;
+ h->free_huge_pages_node[nid]--;
+
+ if (!avoid_reserve)
+ decrement_hugepage_resv_vma(h, vma);
+
break;
}
}
@@ -120,12 +452,13 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
return page;
}
-static void update_and_free_page(struct page *page)
+static void update_and_free_page(struct hstate *h, struct page *page)
{
int i;
- nr_huge_pages--;
- nr_huge_pages_node[page_to_nid(page)]--;
- for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
+
+ h->nr_huge_pages--;
+ h->nr_huge_pages_node[page_to_nid(page)]--;
+ for (i = 0; i < pages_per_huge_page(h); i++) {
page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
1 << PG_private | 1<< PG_writeback);
@@ -133,11 +466,27 @@ static void update_and_free_page(struct page *page)
set_compound_page_dtor(page, NULL);
set_page_refcounted(page);
arch_release_hugepage(page);
- __free_pages(page, HUGETLB_PAGE_ORDER);
+ __free_pages(page, huge_page_order(h));
+}
+
+struct hstate *size_to_hstate(unsigned long size)
+{
+ struct hstate *h;
+
+ for_each_hstate(h) {
+ if (huge_page_size(h) == size)
+ return h;
+ }
+ return NULL;
}
static void free_huge_page(struct page *page)
{
+ /*
+ * Can't pass hstate in here because it is called from the
+ * compound page destructor.
+ */
+ struct hstate *h = page_hstate(page);
int nid = page_to_nid(page);
struct address_space *mapping;
@@ -147,12 +496,12 @@ static void free_huge_page(struct page *page)
INIT_LIST_HEAD(&page->lru);
spin_lock(&hugetlb_lock);
- if (surplus_huge_pages_node[nid]) {
- update_and_free_page(page);
- surplus_huge_pages--;
- surplus_huge_pages_node[nid]--;
+ if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
+ update_and_free_page(h, page);
+ h->surplus_huge_pages--;
+ h->surplus_huge_pages_node[nid]--;
} else {
- enqueue_huge_page(page);
+ enqueue_huge_page(h, page);
}
spin_unlock(&hugetlb_lock);
if (mapping)
@@ -164,7 +513,7 @@ static void free_huge_page(struct page *page)
* balanced by operating on them in a round-robin fashion.
* Returns 1 if an adjustment was made.
*/
-static int adjust_pool_surplus(int delta)
+static int adjust_pool_surplus(struct hstate *h, int delta)
{
static int prev_nid;
int nid = prev_nid;
@@ -177,15 +526,15 @@ static int adjust_pool_surplus(int delta)
nid = first_node(node_online_map);
/* To shrink on this node, there must be a surplus page */
- if (delta < 0 && !surplus_huge_pages_node[nid])
+ if (delta < 0 && !h->surplus_huge_pages_node[nid])
continue;
/* Surplus cannot exceed the total number of pages */
- if (delta > 0 && surplus_huge_pages_node[nid] >=
- nr_huge_pages_node[nid])
+ if (delta > 0 && h->surplus_huge_pages_node[nid] >=
+ h->nr_huge_pages_node[nid])
continue;
- surplus_huge_pages += delta;
- surplus_huge_pages_node[nid] += delta;
+ h->surplus_huge_pages += delta;
+ h->surplus_huge_pages_node[nid] += delta;
ret = 1;
break;
} while (nid != prev_nid);
@@ -194,59 +543,74 @@ static int adjust_pool_surplus(int delta)
return ret;
}
-static struct page *alloc_fresh_huge_page_node(int nid)
+static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
+{
+ set_compound_page_dtor(page, free_huge_page);
+ spin_lock(&hugetlb_lock);
+ h->nr_huge_pages++;
+ h->nr_huge_pages_node[nid]++;
+ spin_unlock(&hugetlb_lock);
+ put_page(page); /* free it into the hugepage allocator */
+}
+
+static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
+ if (h->order >= MAX_ORDER)
+ return NULL;
+
page = alloc_pages_node(nid,
htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN,
- HUGETLB_PAGE_ORDER);
+ huge_page_order(h));
if (page) {
if (arch_prepare_hugepage(page)) {
- __free_pages(page, HUGETLB_PAGE_ORDER);
+ __free_pages(page, huge_page_order(h));
return NULL;
}
- set_compound_page_dtor(page, free_huge_page);
- spin_lock(&hugetlb_lock);
- nr_huge_pages++;
- nr_huge_pages_node[nid]++;
- spin_unlock(&hugetlb_lock);
- put_page(page); /* free it into the hugepage allocator */
+ prep_new_huge_page(h, page, nid);
}
return page;
}
-static int alloc_fresh_huge_page(void)
+/*
+ * Use a helper variable to find the next node and then
+ * copy it back to hugetlb_next_nid afterwards:
+ * otherwise there's a window in which a racer might
+ * pass invalid nid MAX_NUMNODES to alloc_pages_node.
+ * But we don't need to use a spin_lock here: it really
+ * doesn't matter if occasionally a racer chooses the
+ * same nid as we do. Move nid forward in the mask even
+ * if we just successfully allocated a hugepage so that
+ * the next caller gets hugepages on the next node.
+ */
+static int hstate_next_node(struct hstate *h)
+{
+ int next_nid;
+ next_nid = next_node(h->hugetlb_next_nid, node_online_map);
+ if (next_nid == MAX_NUMNODES)
+ next_nid = first_node(node_online_map);
+ h->hugetlb_next_nid = next_nid;
+ return next_nid;
+}
+
+static int alloc_fresh_huge_page(struct hstate *h)
{
struct page *page;
int start_nid;
int next_nid;
int ret = 0;
- start_nid = hugetlb_next_nid;
+ start_nid = h->hugetlb_next_nid;
do {
- page = alloc_fresh_huge_page_node(hugetlb_next_nid);
+ page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
if (page)
ret = 1;
- /*
- * Use a helper variable to find the next node and then
- * copy it back to hugetlb_next_nid afterwards:
- * otherwise there's a window in which a racer might
- * pass invalid nid MAX_NUMNODES to alloc_pages_node.
- * But we don't need to use a spin_lock here: it really
- * doesn't matter if occasionally a racer chooses the
- * same nid as we do. Move nid forward in the mask even
- * if we just successfully allocated a hugepage so that
- * the next caller gets hugepages on the next node.
- */
- next_nid = next_node(hugetlb_next_nid, node_online_map);
- if (next_nid == MAX_NUMNODES)
- next_nid = first_node(node_online_map);
- hugetlb_next_nid = next_nid;
- } while (!page && hugetlb_next_nid != start_nid);
+ next_nid = hstate_next_node(h);
+ } while (!page && h->hugetlb_next_nid != start_nid);
if (ret)
count_vm_event(HTLB_BUDDY_PGALLOC);
@@ -256,12 +620,15 @@ static int alloc_fresh_huge_page(void)
return ret;
}
-static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
- unsigned long address)
+static struct page *alloc_buddy_huge_page(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
{
struct page *page;
unsigned int nid;
+ if (h->order >= MAX_ORDER)
+ return NULL;
+
/*
* Assume we will successfully allocate the surplus page to
* prevent racing processes from causing the surplus to exceed
@@ -286,18 +653,23 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
* per-node value is checked there.
*/
spin_lock(&hugetlb_lock);
- if (surplus_huge_pages >= nr_overcommit_huge_pages) {
+ if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
spin_unlock(&hugetlb_lock);
return NULL;
} else {
- nr_huge_pages++;
- surplus_huge_pages++;
+ h->nr_huge_pages++;
+ h->surplus_huge_pages++;
}
spin_unlock(&hugetlb_lock);
page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
__GFP_REPEAT|__GFP_NOWARN,
- HUGETLB_PAGE_ORDER);
+ huge_page_order(h));
+
+ if (page && arch_prepare_hugepage(page)) {
+ __free_pages(page, huge_page_order(h));
+ return NULL;
+ }
spin_lock(&hugetlb_lock);
if (page) {
@@ -312,12 +684,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
/*
* We incremented the global counters already
*/
- nr_huge_pages_node[nid]++;
- surplus_huge_pages_node[nid]++;
+ h->nr_huge_pages_node[nid]++;
+ h->surplus_huge_pages_node[nid]++;
__count_vm_event(HTLB_BUDDY_PGALLOC);
} else {
- nr_huge_pages--;
- surplus_huge_pages--;
+ h->nr_huge_pages--;
+ h->surplus_huge_pages--;
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
}
spin_unlock(&hugetlb_lock);
@@ -329,16 +701,16 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
* Increase the hugetlb pool such that it can accomodate a reservation
* of size 'delta'.
*/
-static int gather_surplus_pages(int delta)
+static int gather_surplus_pages(struct hstate *h, int delta)
{
struct list_head surplus_list;
struct page *page, *tmp;
int ret, i;
int needed, allocated;
- needed = (resv_huge_pages + delta) - free_huge_pages;
+ needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
if (needed <= 0) {
- resv_huge_pages += delta;
+ h->resv_huge_pages += delta;
return 0;
}
@@ -349,7 +721,7 @@ static int gather_surplus_pages(int delta)
retry:
spin_unlock(&hugetlb_lock);
for (i = 0; i < needed; i++) {
- page = alloc_buddy_huge_page(NULL, 0);
+ page = alloc_buddy_huge_page(h, NULL, 0);
if (!page) {
/*
* We were not able to allocate enough pages to
@@ -370,7 +742,8 @@ retry:
* because either resv_huge_pages or free_huge_pages may have changed.
*/
spin_lock(&hugetlb_lock);
- needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
+ needed = (h->resv_huge_pages + delta) -
+ (h->free_huge_pages + allocated);
if (needed > 0)
goto retry;
@@ -383,7 +756,7 @@ retry:
* before they are reserved.
*/
needed += allocated;
- resv_huge_pages += delta;
+ h->resv_huge_pages += delta;
ret = 0;
free:
/* Free the needed pages to the hugetlb pool */
@@ -391,7 +764,7 @@ free:
if ((--needed) < 0)
break;
list_del(&page->lru);
- enqueue_huge_page(page);
+ enqueue_huge_page(h, page);
}
/* Free unnecessary surplus pages to the buddy allocator */
@@ -419,7 +792,8 @@ free:
* allocated to satisfy the reservation must be explicitly freed if they were
* never used.
*/
-static void return_unused_surplus_pages(unsigned long unused_resv_pages)
+static void return_unused_surplus_pages(struct hstate *h,
+ unsigned long unused_resv_pages)
{
static int nid = -1;
struct page *page;
@@ -434,157 +808,269 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages)
unsigned long remaining_iterations = num_online_nodes();
/* Uncommit the reservation */
- resv_huge_pages -= unused_resv_pages;
+ h->resv_huge_pages -= unused_resv_pages;
- nr_pages = min(unused_resv_pages, surplus_huge_pages);
+ /* Cannot return gigantic pages currently */
+ if (h->order >= MAX_ORDER)
+ return;
+
+ nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
while (remaining_iterations-- && nr_pages) {
nid = next_node(nid, node_online_map);
if (nid == MAX_NUMNODES)
nid = first_node(node_online_map);
- if (!surplus_huge_pages_node[nid])
+ if (!h->surplus_huge_pages_node[nid])
continue;
- if (!list_empty(&hugepage_freelists[nid])) {
- page = list_entry(hugepage_freelists[nid].next,
+ if (!list_empty(&h->hugepage_freelists[nid])) {
+ page = list_entry(h->hugepage_freelists[nid].next,
struct page, lru);
list_del(&page->lru);
- update_and_free_page(page);
- free_huge_pages--;
- free_huge_pages_node[nid]--;
- surplus_huge_pages--;
- surplus_huge_pages_node[nid]--;
+ update_and_free_page(h, page);
+ h->free_huge_pages--;
+ h->free_huge_pages_node[nid]--;
+ h->surplus_huge_pages--;
+ h->surplus_huge_pages_node[nid]--;
nr_pages--;
remaining_iterations = num_online_nodes();
}
}
}
+/*
+ * Determine if the huge page at addr within the vma has an associated
+ * reservation. Where it does not we will need to logically increase
+ * reservation and actually increase quota before an allocation can occur.
+ * Where any new reservation would be required the reservation change is
+ * prepared, but not committed. Once the page has been quota'd allocated
+ * an instantiated the change should be committed via vma_commit_reservation.
+ * No action is required on failure.
+ */
+static int vma_needs_reservation(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ struct inode *inode = mapping->host;
+
+ if (vma->vm_flags & VM_SHARED) {
+ pgoff_t idx = vma_hugecache_offset(h, vma, addr);
+ return region_chg(&inode->i_mapping->private_list,
+ idx, idx + 1);
-static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
- unsigned long addr)
+ } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ return 1;
+
+ } else {
+ int err;
+ pgoff_t idx = vma_hugecache_offset(h, vma, addr);
+ struct resv_map *reservations = vma_resv_map(vma);
+
+ err = region_chg(&reservations->regions, idx, idx + 1);
+ if (err < 0)
+ return err;
+ return 0;
+ }
+}
+static void vma_commit_reservation(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
{
- struct page *page;
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ struct inode *inode = mapping->host;
- spin_lock(&hugetlb_lock);
- page = dequeue_huge_page_vma(vma, addr);
- spin_unlock(&hugetlb_lock);
- return page ? page : ERR_PTR(-VM_FAULT_OOM);
+ if (vma->vm_flags & VM_SHARED) {
+ pgoff_t idx = vma_hugecache_offset(h, vma, addr);
+ region_add(&inode->i_mapping->private_list, idx, idx + 1);
+
+ } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ pgoff_t idx = vma_hugecache_offset(h, vma, addr);
+ struct resv_map *reservations = vma_resv_map(vma);
+
+ /* Mark this page used in the map. */
+ region_add(&reservations->regions, idx, idx + 1);
+ }
}
-static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
- unsigned long addr)
+static struct page *alloc_huge_page(struct vm_area_struct *vma,
+ unsigned long addr, int avoid_reserve)
{
- struct page *page = NULL;
+ struct hstate *h = hstate_vma(vma);
+ struct page *page;
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ struct inode *inode = mapping->host;
+ unsigned int chg;
- if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
- return ERR_PTR(-VM_FAULT_SIGBUS);
+ /*
+ * Processes that did not create the mapping will have no reserves and
+ * will not have accounted against quota. Check that the quota can be
+ * made before satisfying the allocation
+ * MAP_NORESERVE mappings may also need pages and quota allocated
+ * if no reserve mapping overlaps.
+ */
+ chg = vma_needs_reservation(h, vma, addr);
+ if (chg < 0)
+ return ERR_PTR(chg);
+ if (chg)
+ if (hugetlb_get_quota(inode->i_mapping, chg))
+ return ERR_PTR(-ENOSPC);
spin_lock(&hugetlb_lock);
- if (free_huge_pages > resv_huge_pages)
- page = dequeue_huge_page_vma(vma, addr);
+ page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
spin_unlock(&hugetlb_lock);
+
if (!page) {
- page = alloc_buddy_huge_page(vma, addr);
+ page = alloc_buddy_huge_page(h, vma, addr);
if (!page) {
- hugetlb_put_quota(vma->vm_file->f_mapping, 1);
+ hugetlb_put_quota(inode->i_mapping, chg);
return ERR_PTR(-VM_FAULT_OOM);
}
}
+
+ set_page_refcounted(page);
+ set_page_private(page, (unsigned long) mapping);
+
+ vma_commit_reservation(h, vma, addr);
+
return page;
}
-static struct page *alloc_huge_page(struct vm_area_struct *vma,
- unsigned long addr)
+__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
{
- struct page *page;
- struct address_space *mapping = vma->vm_file->f_mapping;
+ struct huge_bootmem_page *m;
+ int nr_nodes = nodes_weight(node_online_map);
- if (vma->vm_flags & VM_MAYSHARE)
- page = alloc_huge_page_shared(vma, addr);
- else
- page = alloc_huge_page_private(vma, addr);
+ while (nr_nodes) {
+ void *addr;
+
+ addr = __alloc_bootmem_node_nopanic(
+ NODE_DATA(h->hugetlb_next_nid),
+ huge_page_size(h), huge_page_size(h), 0);
- if (!IS_ERR(page)) {
- set_page_refcounted(page);
- set_page_private(page, (unsigned long) mapping);
+ if (addr) {
+ /*
+ * Use the beginning of the huge page to store the
+ * huge_bootmem_page struct (until gather_bootmem
+ * puts them into the mem_map).
+ */
+ m = addr;
+ if (m)
+ goto found;
+ }
+ hstate_next_node(h);
+ nr_nodes--;
}
- return page;
+ return 0;
+
+found:
+ BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
+ /* Put them into a private list first because mem_map is not up yet */
+ list_add(&m->list, &huge_boot_pages);
+ m->hstate = h;
+ return 1;
}
-static int __init hugetlb_init(void)
+/* Put bootmem huge pages into the standard lists after mem_map is up */
+static void __init gather_bootmem_prealloc(void)
{
- unsigned long i;
-
- if (HPAGE_SHIFT == 0)
- return 0;
-
- for (i = 0; i < MAX_NUMNODES; ++i)
- INIT_LIST_HEAD(&hugepage_freelists[i]);
+ struct huge_bootmem_page *m;
+
+ list_for_each_entry(m, &huge_boot_pages, list) {
+ struct page *page = virt_to_page(m);
+ struct hstate *h = m->hstate;
+ __ClearPageReserved(page);
+ WARN_ON(page_count(page) != 1);
+ prep_compound_page(page, h->order);
+ prep_new_huge_page(h, page, page_to_nid(page));
+ }
+}
- hugetlb_next_nid = first_node(node_online_map);
+static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
+{
+ unsigned long i;
- for (i = 0; i < max_huge_pages; ++i) {
- if (!alloc_fresh_huge_page())
+ for (i = 0; i < h->max_huge_pages; ++i) {
+ if (h->order >= MAX_ORDER) {
+ if (!alloc_bootmem_huge_page(h))
+ break;
+ } else if (!alloc_fresh_huge_page(h))
break;
}
- max_huge_pages = free_huge_pages = nr_huge_pages = i;
- printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
- return 0;
+ h->max_huge_pages = i;
}
-module_init(hugetlb_init);
-static int __init hugetlb_setup(char *s)
+static void __init hugetlb_init_hstates(void)
{
- if (sscanf(s, "%lu", &max_huge_pages) <= 0)
- max_huge_pages = 0;
- return 1;
+ struct hstate *h;
+
+ for_each_hstate(h) {
+ /* oversize hugepages were init'ed in early boot */
+ if (h->order < MAX_ORDER)
+ hugetlb_hstate_alloc_pages(h);
+ }
}
-__setup("hugepages=", hugetlb_setup);
-static unsigned int cpuset_mems_nr(unsigned int *array)
+static char * __init memfmt(char *buf, unsigned long n)
{
- int node;
- unsigned int nr = 0;
-
- for_each_node_mask(node, cpuset_current_mems_allowed)
- nr += array[node];
+ if (n >= (1UL << 30))
+ sprintf(buf, "%lu GB", n >> 30);
+ else if (n >= (1UL << 20))
+ sprintf(buf, "%lu MB", n >> 20);
+ else
+ sprintf(buf, "%lu KB", n >> 10);
+ return buf;
+}
- return nr;
+static void __init report_hugepages(void)
+{
+ struct hstate *h;
+
+ for_each_hstate(h) {
+ char buf[32];
+ printk(KERN_INFO "HugeTLB registered %s page size, "
+ "pre-allocated %ld pages\n",
+ memfmt(buf, huge_page_size(h)),
+ h->free_huge_pages);
+ }
}
-#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
-static void try_to_free_low(unsigned long count)
+static void try_to_free_low(struct hstate *h, unsigned long count)
{
int i;
+ if (h->order >= MAX_ORDER)
+ return;
+
for (i = 0; i < MAX_NUMNODES; ++i) {
struct page *page, *next;
- list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
- if (count >= nr_huge_pages)
+ struct list_head *freel = &h->hugepage_freelists[i];
+ list_for_each_entry_safe(page, next, freel, lru) {
+ if (count >= h->nr_huge_pages)
return;
if (PageHighMem(page))
continue;
list_del(&page->lru);
- update_and_free_page(page);
- free_huge_pages--;
- free_huge_pages_node[page_to_nid(page)]--;
+ update_and_free_page(h, page);
+ h->free_huge_pages--;
+ h->free_huge_pages_node[page_to_nid(page)]--;
}
}
}
#else
-static inline void try_to_free_low(unsigned long count)
+static inline void try_to_free_low(struct hstate *h, unsigned long count)
{
}
#endif
-#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
-static unsigned long set_max_huge_pages(unsigned long count)
+#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
+static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
{
unsigned long min_count, ret;
+ if (h->order >= MAX_ORDER)
+ return h->max_huge_pages;
+
/*
* Increase the pool size
* First take pages out of surplus state. Then make up the
@@ -597,20 +1083,19 @@ static unsigned long set_max_huge_pages(unsigned long count)
* within all the constraints specified by the sysctls.
*/
spin_lock(&hugetlb_lock);
- while (surplus_huge_pages && count > persistent_huge_pages) {
- if (!adjust_pool_surplus(-1))
+ while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
+ if (!adjust_pool_surplus(h, -1))
break;
}
- while (count > persistent_huge_pages) {
- int ret;
+ while (count > persistent_huge_pages(h)) {
/*
* If this allocation races such that we no longer need the
* page, free_huge_page will handle it by freeing the page
* and reducing the surplus.
*/
spin_unlock(&hugetlb_lock);
- ret = alloc_fresh_huge_page();
+ ret = alloc_fresh_huge_page(h);
spin_lock(&hugetlb_lock);
if (!ret)
goto out;
@@ -632,31 +1117,305 @@ static unsigned long set_max_huge_pages(unsigned long count)
* and won't grow the pool anywhere else. Not until one of the
* sysctls are changed, or the surplus pages go out of use.
*/
- min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
+ min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
min_count = max(count, min_count);
- try_to_free_low(min_count);
- while (min_count < persistent_huge_pages) {
- struct page *page = dequeue_huge_page();
+ try_to_free_low(h, min_count);
+ while (min_count < persistent_huge_pages(h)) {
+ struct page *page = dequeue_huge_page(h);
if (!page)
break;
- update_and_free_page(page);
+ update_and_free_page(h, page);
}
- while (count < persistent_huge_pages) {
- if (!adjust_pool_surplus(1))
+ while (count < persistent_huge_pages(h)) {
+ if (!adjust_pool_surplus(h, 1))
break;
}
out:
- ret = persistent_huge_pages;
+ ret = persistent_huge_pages(h);
spin_unlock(&hugetlb_lock);
return ret;
}
+#define HSTATE_ATTR_RO(_name) \
+ static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
+
+#define HSTATE_ATTR(_name) \
+ static struct kobj_attribute _name##_attr = \
+ __ATTR(_name, 0644, _name##_show, _name##_store)
+
+static struct kobject *hugepages_kobj;
+static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
+
+static struct hstate *kobj_to_hstate(struct kobject *kobj)
+{
+ int i;
+ for (i = 0; i < HUGE_MAX_HSTATE; i++)
+ if (hstate_kobjs[i] == kobj)
+ return &hstates[i];
+ BUG();
+ return NULL;
+}
+
+static ssize_t nr_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h = kobj_to_hstate(kobj);
+ return sprintf(buf, "%lu\n", h->nr_huge_pages);
+}
+static ssize_t nr_hugepages_store(struct kobject *kobj,
+ struct kobj_attribute *attr, const char *buf, size_t count)
+{
+ int err;
+ unsigned long input;
+ struct hstate *h = kobj_to_hstate(kobj);
+
+ err = strict_strtoul(buf, 10, &input);
+ if (err)
+ return 0;
+
+ h->max_huge_pages = set_max_huge_pages(h, input);
+
+ return count;
+}
+HSTATE_ATTR(nr_hugepages);
+
+static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h = kobj_to_hstate(kobj);
+ return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
+}
+static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
+ struct kobj_attribute *attr, const char *buf, size_t count)
+{
+ int err;
+ unsigned long input;
+ struct hstate *h = kobj_to_hstate(kobj);
+
+ err = strict_strtoul(buf, 10, &input);
+ if (err)
+ return 0;
+
+ spin_lock(&hugetlb_lock);
+ h->nr_overcommit_huge_pages = input;
+ spin_unlock(&hugetlb_lock);
+
+ return count;
+}
+HSTATE_ATTR(nr_overcommit_hugepages);
+
+static ssize_t free_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h = kobj_to_hstate(kobj);
+ return sprintf(buf, "%lu\n", h->free_huge_pages);
+}
+HSTATE_ATTR_RO(free_hugepages);
+
+static ssize_t resv_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h = kobj_to_hstate(kobj);
+ return sprintf(buf, "%lu\n", h->resv_huge_pages);
+}
+HSTATE_ATTR_RO(resv_hugepages);
+
+static ssize_t surplus_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h = kobj_to_hstate(kobj);
+ return sprintf(buf, "%lu\n", h->surplus_huge_pages);
+}
+HSTATE_ATTR_RO(surplus_hugepages);
+
+static struct attribute *hstate_attrs[] = {
+ &nr_hugepages_attr.attr,
+ &nr_overcommit_hugepages_attr.attr,
+ &free_hugepages_attr.attr,
+ &resv_hugepages_attr.attr,
+ &surplus_hugepages_attr.attr,
+ NULL,
+};
+
+static struct attribute_group hstate_attr_group = {
+ .attrs = hstate_attrs,
+};
+
+static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
+{
+ int retval;
+
+ hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
+ hugepages_kobj);
+ if (!hstate_kobjs[h - hstates])
+ return -ENOMEM;
+
+ retval = sysfs_create_group(hstate_kobjs[h - hstates],
+ &hstate_attr_group);
+ if (retval)
+ kobject_put(hstate_kobjs[h - hstates]);
+
+ return retval;
+}
+
+static void __init hugetlb_sysfs_init(void)
+{
+ struct hstate *h;
+ int err;
+
+ hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
+ if (!hugepages_kobj)
+ return;
+
+ for_each_hstate(h) {
+ err = hugetlb_sysfs_add_hstate(h);
+ if (err)
+ printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
+ h->name);
+ }
+}
+
+static void __exit hugetlb_exit(void)
+{
+ struct hstate *h;
+
+ for_each_hstate(h) {
+ kobject_put(hstate_kobjs[h - hstates]);
+ }
+
+ kobject_put(hugepages_kobj);
+}
+module_exit(hugetlb_exit);
+
+static int __init hugetlb_init(void)
+{
+ /* Some platform decide whether they support huge pages at boot
+ * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
+ * there is no such support
+ */
+ if (HPAGE_SHIFT == 0)
+ return 0;
+
+ if (!size_to_hstate(default_hstate_size)) {
+ default_hstate_size = HPAGE_SIZE;
+ if (!size_to_hstate(default_hstate_size))
+ hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
+ }
+ default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
+ if (default_hstate_max_huge_pages)
+ default_hstate.max_huge_pages = default_hstate_max_huge_pages;
+
+ hugetlb_init_hstates();
+
+ gather_bootmem_prealloc();
+
+ report_hugepages();
+
+ hugetlb_sysfs_init();
+
+ return 0;
+}
+module_init(hugetlb_init);
+
+/* Should be called on processing a hugepagesz=... option */
+void __init hugetlb_add_hstate(unsigned order)
+{
+ struct hstate *h;
+ unsigned long i;
+
+ if (size_to_hstate(PAGE_SIZE << order)) {
+ printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
+ return;
+ }
+ BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
+ BUG_ON(order == 0);
+ h = &hstates[max_hstate++];
+ h->order = order;
+ h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
+ h->nr_huge_pages = 0;
+ h->free_huge_pages = 0;
+ for (i = 0; i < MAX_NUMNODES; ++i)
+ INIT_LIST_HEAD(&h->hugepage_freelists[i]);
+ h->hugetlb_next_nid = first_node(node_online_map);
+ snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
+ huge_page_size(h)/1024);
+
+ parsed_hstate = h;
+}
+
+static int __init hugetlb_nrpages_setup(char *s)
+{
+ unsigned long *mhp;
+ static unsigned long *last_mhp;
+
+ /*
+ * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
+ * so this hugepages= parameter goes to the "default hstate".
+ */
+ if (!max_hstate)
+ mhp = &default_hstate_max_huge_pages;
+ else
+ mhp = &parsed_hstate->max_huge_pages;
+
+ if (mhp == last_mhp) {
+ printk(KERN_WARNING "hugepages= specified twice without "
+ "interleaving hugepagesz=, ignoring\n");
+ return 1;
+ }
+
+ if (sscanf(s, "%lu", mhp) <= 0)
+ *mhp = 0;
+
+ /*
+ * Global state is always initialized later in hugetlb_init.
+ * But we need to allocate >= MAX_ORDER hstates here early to still
+ * use the bootmem allocator.
+ */
+ if (max_hstate && parsed_hstate->order >= MAX_ORDER)
+ hugetlb_hstate_alloc_pages(parsed_hstate);
+
+ last_mhp = mhp;
+
+ return 1;
+}
+__setup("hugepages=", hugetlb_nrpages_setup);
+
+static int __init hugetlb_default_setup(char *s)
+{
+ default_hstate_size = memparse(s, &s);
+ return 1;
+}
+__setup("default_hugepagesz=", hugetlb_default_setup);
+
+static unsigned int cpuset_mems_nr(unsigned int *array)
+{
+ int node;
+ unsigned int nr = 0;
+
+ for_each_node_mask(node, cpuset_current_mems_allowed)
+ nr += array[node];
+
+ return nr;
+}
+
+#ifdef CONFIG_SYSCTL
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
struct file *file, void __user *buffer,
size_t *length, loff_t *ppos)
{
+ struct hstate *h = &default_hstate;
+ unsigned long tmp;
+
+ if (!write)
+ tmp = h->max_huge_pages;
+
+ table->data = &tmp;
+ table->maxlen = sizeof(unsigned long);
proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
- max_huge_pages = set_max_huge_pages(max_huge_pages);
+
+ if (write)
+ h->max_huge_pages = set_max_huge_pages(h, tmp);
+
return 0;
}
@@ -676,45 +1435,141 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write,
struct file *file, void __user *buffer,
size_t *length, loff_t *ppos)
{
+ struct hstate *h = &default_hstate;
+ unsigned long tmp;
+
+ if (!write)
+ tmp = h->nr_overcommit_huge_pages;
+
+ table->data = &tmp;
+ table->maxlen = sizeof(unsigned long);
proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
- spin_lock(&hugetlb_lock);
- nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
- spin_unlock(&hugetlb_lock);
+
+ if (write) {
+ spin_lock(&hugetlb_lock);
+ h->nr_overcommit_huge_pages = tmp;
+ spin_unlock(&hugetlb_lock);
+ }
+
return 0;
}
#endif /* CONFIG_SYSCTL */
-int hugetlb_report_meminfo(char *buf)
+void hugetlb_report_meminfo(struct seq_file *m)
{
- return sprintf(buf,
- "HugePages_Total: %5lu\n"
- "HugePages_Free: %5lu\n"
- "HugePages_Rsvd: %5lu\n"
- "HugePages_Surp: %5lu\n"
- "Hugepagesize: %5lu kB\n",
- nr_huge_pages,
- free_huge_pages,
- resv_huge_pages,
- surplus_huge_pages,
- HPAGE_SIZE/1024);
+ struct hstate *h = &default_hstate;
+ seq_printf(m,
+ "HugePages_Total: %5lu\n"
+ "HugePages_Free: %5lu\n"
+ "HugePages_Rsvd: %5lu\n"
+ "HugePages_Surp: %5lu\n"
+ "Hugepagesize: %8lu kB\n",
+ h->nr_huge_pages,
+ h->free_huge_pages,
+ h->resv_huge_pages,
+ h->surplus_huge_pages,
+ 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}
int hugetlb_report_node_meminfo(int nid, char *buf)
{
+ struct hstate *h = &default_hstate;
return sprintf(buf,
"Node %d HugePages_Total: %5u\n"
"Node %d HugePages_Free: %5u\n"
"Node %d HugePages_Surp: %5u\n",
- nid, nr_huge_pages_node[nid],
- nid, free_huge_pages_node[nid],
- nid, surplus_huge_pages_node[nid]);
+ nid, h->nr_huge_pages_node[nid],
+ nid, h->free_huge_pages_node[nid],
+ nid, h->surplus_huge_pages_node[nid]);
}
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
- return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
+ struct hstate *h = &default_hstate;
+ return h->nr_huge_pages * pages_per_huge_page(h);
+}
+
+static int hugetlb_acct_memory(struct hstate *h, long delta)
+{
+ int ret = -ENOMEM;
+
+ spin_lock(&hugetlb_lock);
+ /*
+ * When cpuset is configured, it breaks the strict hugetlb page
+ * reservation as the accounting is done on a global variable. Such
+ * reservation is completely rubbish in the presence of cpuset because
+ * the reservation is not checked against page availability for the
+ * current cpuset. Application can still potentially OOM'ed by kernel
+ * with lack of free htlb page in cpuset that the task is in.
+ * Attempt to enforce strict accounting with cpuset is almost
+ * impossible (or too ugly) because cpuset is too fluid that
+ * task or memory node can be dynamically moved between cpusets.
+ *
+ * The change of semantics for shared hugetlb mapping with cpuset is
+ * undesirable. However, in order to preserve some of the semantics,
+ * we fall back to check against current free page availability as
+ * a best attempt and hopefully to minimize the impact of changing
+ * semantics that cpuset has.
+ */
+ if (delta > 0) {
+ if (gather_surplus_pages(h, delta) < 0)
+ goto out;
+
+ if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
+ return_unused_surplus_pages(h, delta);
+ goto out;
+ }
+ }
+
+ ret = 0;
+ if (delta < 0)
+ return_unused_surplus_pages(h, (unsigned long) -delta);
+
+out:
+ spin_unlock(&hugetlb_lock);
+ return ret;
+}
+
+static void hugetlb_vm_op_open(struct vm_area_struct *vma)
+{
+ struct resv_map *reservations = vma_resv_map(vma);
+
+ /*
+ * This new VMA should share its siblings reservation map if present.
+ * The VMA will only ever have a valid reservation map pointer where
+ * it is being copied for another still existing VMA. As that VMA
+ * has a reference to the reservation map it cannot dissappear until
+ * after this open call completes. It is therefore safe to take a
+ * new reference here without additional locking.
+ */
+ if (reservations)
+ kref_get(&reservations->refs);
+}
+
+static void hugetlb_vm_op_close(struct vm_area_struct *vma)
+{
+ struct hstate *h = hstate_vma(vma);
+ struct resv_map *reservations = vma_resv_map(vma);
+ unsigned long reserve;
+ unsigned long start;
+ unsigned long end;
+
+ if (reservations) {
+ start = vma_hugecache_offset(h, vma, vma->vm_start);
+ end = vma_hugecache_offset(h, vma, vma->vm_end);
+
+ reserve = (end - start) -
+ region_count(&reservations->regions, start, end);
+
+ kref_put(&reservations->refs, resv_map_release);
+
+ if (reserve) {
+ hugetlb_acct_memory(h, -reserve);
+ hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
+ }
+ }
}
/*
@@ -731,6 +1586,8 @@ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
struct vm_operations_struct hugetlb_vm_ops = {
.fault = hugetlb_vm_op_fault,
+ .open = hugetlb_vm_op_open,
+ .close = hugetlb_vm_op_close,
};
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
@@ -769,14 +1626,16 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct page *ptepage;
unsigned long addr;
int cow;
+ struct hstate *h = hstate_vma(vma);
+ unsigned long sz = huge_page_size(h);
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
- for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
+ for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
src_pte = huge_pte_offset(src, addr);
if (!src_pte)
continue;
- dst_pte = huge_pte_alloc(dst, addr);
+ dst_pte = huge_pte_alloc(dst, addr, sz);
if (!dst_pte)
goto nomem;
@@ -804,7 +1663,7 @@ nomem:
}
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end)
+ unsigned long end, struct page *ref_page)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long address;
@@ -812,6 +1671,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
pte_t pte;
struct page *page;
struct page *tmp;
+ struct hstate *h = hstate_vma(vma);
+ unsigned long sz = huge_page_size(h);
+
/*
* A page gathering list, protected by per file i_mmap_lock. The
* lock is used to avoid list corruption from multiple unmapping
@@ -820,11 +1682,12 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
LIST_HEAD(page_list);
WARN_ON(!is_vm_hugetlb_page(vma));
- BUG_ON(start & ~HPAGE_MASK);
- BUG_ON(end & ~HPAGE_MASK);
+ BUG_ON(start & ~huge_page_mask(h));
+ BUG_ON(end & ~huge_page_mask(h));
+ mmu_notifier_invalidate_range_start(mm, start, end);
spin_lock(&mm->page_table_lock);
- for (address = start; address < end; address += HPAGE_SIZE) {
+ for (address = start; address < end; address += sz) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
@@ -832,6 +1695,27 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
if (huge_pmd_unshare(mm, &address, ptep))
continue;
+ /*
+ * If a reference page is supplied, it is because a specific
+ * page is being unmapped, not a range. Ensure the page we
+ * are about to unmap is the actual page of interest.
+ */
+ if (ref_page) {
+ pte = huge_ptep_get(ptep);
+ if (huge_pte_none(pte))
+ continue;
+ page = pte_page(pte);
+ if (page != ref_page)
+ continue;
+
+ /*
+ * Mark the VMA as having unmapped its page so that
+ * future faults in this VMA will fail rather than
+ * looking like data was lost
+ */
+ set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
+ }
+
pte = huge_ptep_get_and_clear(mm, address, ptep);
if (huge_pte_none(pte))
continue;
@@ -843,6 +1727,7 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
}
spin_unlock(&mm->page_table_lock);
flush_tlb_range(vma, start, end);
+ mmu_notifier_invalidate_range_end(mm, start, end);
list_for_each_entry_safe(page, tmp, &page_list, lru) {
list_del(&page->lru);
put_page(page);
@@ -850,31 +1735,69 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end)
+ unsigned long end, struct page *ref_page)
{
+ spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
+ __unmap_hugepage_range(vma, start, end, ref_page);
+ spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
+}
+
+/*
+ * This is called when the original mapper is failing to COW a MAP_PRIVATE
+ * mappping it owns the reserve page for. The intention is to unmap the page
+ * from other VMAs and let the children be SIGKILLed if they are faulting the
+ * same region.
+ */
+static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
+ struct page *page, unsigned long address)
+{
+ struct vm_area_struct *iter_vma;
+ struct address_space *mapping;
+ struct prio_tree_iter iter;
+ pgoff_t pgoff;
+
/*
- * It is undesirable to test vma->vm_file as it should be non-null
- * for valid hugetlb area. However, vm_file will be NULL in the error
- * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
- * do_mmap_pgoff() nullifies vma->vm_file before calling this function
- * to clean up. Since no pte has actually been setup, it is safe to
- * do nothing in this case.
+ * vm_pgoff is in PAGE_SIZE units, hence the different calculation
+ * from page cache lookup which is in HPAGE_SIZE units.
*/
- if (vma->vm_file) {
- spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
- __unmap_hugepage_range(vma, start, end);
- spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
+ address = address & huge_page_mask(hstate_vma(vma));
+ pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
+ + (vma->vm_pgoff >> PAGE_SHIFT);
+ mapping = (struct address_space *)page_private(page);
+
+ vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
+ /* Do not unmap the current VMA */
+ if (iter_vma == vma)
+ continue;
+
+ /*
+ * Unmap the page from other VMAs without their own reserves.
+ * They get marked to be SIGKILLed if they fault in these
+ * areas. This is because a future no-page fault on this VMA
+ * could insert a zeroed page instead of the data existing
+ * from the time of fork. This would look like data corruption
+ */
+ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
+ unmap_hugepage_range(iter_vma,
+ address, address + HPAGE_SIZE,
+ page);
}
+
+ return 1;
}
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *ptep, pte_t pte)
+ unsigned long address, pte_t *ptep, pte_t pte,
+ struct page *pagecache_page)
{
+ struct hstate *h = hstate_vma(vma);
struct page *old_page, *new_page;
int avoidcopy;
+ int outside_reserve = 0;
old_page = pte_page(pte);
+retry_avoidcopy:
/* If no-one else is actually using this page, avoid the copy
* and just make the page writable */
avoidcopy = (page_count(old_page) == 1);
@@ -883,11 +1806,43 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
return 0;
}
+ /*
+ * If the process that created a MAP_PRIVATE mapping is about to
+ * perform a COW due to a shared page count, attempt to satisfy
+ * the allocation without using the existing reserves. The pagecache
+ * page is used to determine if the reserve at this address was
+ * consumed or not. If reserves were used, a partial faulted mapping
+ * at the time of fork() could consume its reserves on COW instead
+ * of the full address range.
+ */
+ if (!(vma->vm_flags & VM_SHARED) &&
+ is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
+ old_page != pagecache_page)
+ outside_reserve = 1;
+
page_cache_get(old_page);
- new_page = alloc_huge_page(vma, address);
+ new_page = alloc_huge_page(vma, address, outside_reserve);
if (IS_ERR(new_page)) {
page_cache_release(old_page);
+
+ /*
+ * If a process owning a MAP_PRIVATE mapping fails to COW,
+ * it is due to references held by a child and an insufficient
+ * huge page pool. To guarantee the original mappers
+ * reliability, unmap the page from child processes. The child
+ * may get SIGKILLed if it later faults.
+ */
+ if (outside_reserve) {
+ BUG_ON(huge_pte_none(pte));
+ if (unmap_ref_private(mm, vma, old_page, address)) {
+ BUG_ON(page_count(old_page) != 1);
+ BUG_ON(huge_pte_none(pte));
+ goto retry_avoidcopy;
+ }
+ WARN_ON_ONCE(1);
+ }
+
return -PTR_ERR(new_page);
}
@@ -896,7 +1851,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
__SetPageUptodate(new_page);
spin_lock(&mm->page_table_lock);
- ptep = huge_pte_offset(mm, address & HPAGE_MASK);
+ ptep = huge_pte_offset(mm, address & huge_page_mask(h));
if (likely(pte_same(huge_ptep_get(ptep), pte))) {
/* Break COW */
huge_ptep_clear_flush(vma, address, ptep);
@@ -910,19 +1865,44 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
return 0;
}
+/* Return the pagecache page at a given address within a VMA */
+static struct page *hugetlbfs_pagecache_page(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
+{
+ struct address_space *mapping;
+ pgoff_t idx;
+
+ mapping = vma->vm_file->f_mapping;
+ idx = vma_hugecache_offset(h, vma, address);
+
+ return find_lock_page(mapping, idx);
+}
+
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, int write_access)
{
+ struct hstate *h = hstate_vma(vma);
int ret = VM_FAULT_SIGBUS;
- unsigned long idx;
+ pgoff_t idx;
unsigned long size;
struct page *page;
struct address_space *mapping;
pte_t new_pte;
+ /*
+ * Currently, we are forced to kill the process in the event the
+ * original mapper has unmapped pages from the child due to a failed
+ * COW. Warn that such a situation has occured as it may not be obvious
+ */
+ if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
+ printk(KERN_WARNING
+ "PID %d killed due to inadequate hugepage pool\n",
+ current->pid);
+ return ret;
+ }
+
mapping = vma->vm_file->f_mapping;
- idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
- + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
+ idx = vma_hugecache_offset(h, vma, address);
/*
* Use page lock to guard against racing truncation
@@ -931,15 +1911,15 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
retry:
page = find_lock_page(mapping, idx);
if (!page) {
- size = i_size_read(mapping->host) >> HPAGE_SHIFT;
+ size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto out;
- page = alloc_huge_page(vma, address);
+ page = alloc_huge_page(vma, address, 0);
if (IS_ERR(page)) {
ret = -PTR_ERR(page);
goto out;
}
- clear_huge_page(page, address);
+ clear_huge_page(page, address, huge_page_size(h));
__SetPageUptodate(page);
if (vma->vm_flags & VM_SHARED) {
@@ -955,14 +1935,26 @@ retry:
}
spin_lock(&inode->i_lock);
- inode->i_blocks += BLOCKS_PER_HUGEPAGE;
+ inode->i_blocks += blocks_per_huge_page(h);
spin_unlock(&inode->i_lock);
} else
lock_page(page);
}
+ /*
+ * If we are going to COW a private mapping later, we examine the
+ * pending reservations for this page now. This will ensure that
+ * any allocations necessary to record that reservation occur outside
+ * the spinlock.
+ */
+ if (write_access && !(vma->vm_flags & VM_SHARED))
+ if (vma_needs_reservation(h, vma, address) < 0) {
+ ret = VM_FAULT_OOM;
+ goto backout_unlocked;
+ }
+
spin_lock(&mm->page_table_lock);
- size = i_size_read(mapping->host) >> HPAGE_SHIFT;
+ size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto backout;
@@ -976,7 +1968,7 @@ retry:
if (write_access && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
- ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
+ ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
}
spin_unlock(&mm->page_table_lock);
@@ -986,6 +1978,7 @@ out:
backout:
spin_unlock(&mm->page_table_lock);
+backout_unlocked:
unlock_page(page);
put_page(page);
goto out;
@@ -997,9 +1990,11 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
pte_t *ptep;
pte_t entry;
int ret;
+ struct page *pagecache_page = NULL;
static DEFINE_MUTEX(hugetlb_instantiation_mutex);
+ struct hstate *h = hstate_vma(vma);
- ptep = huge_pte_alloc(mm, address);
+ ptep = huge_pte_alloc(mm, address, huge_page_size(h));
if (!ptep)
return VM_FAULT_OOM;
@@ -1012,23 +2007,79 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
entry = huge_ptep_get(ptep);
if (huge_pte_none(entry)) {
ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
- mutex_unlock(&hugetlb_instantiation_mutex);
- return ret;
+ goto out_mutex;
}
ret = 0;
+ /*
+ * If we are going to COW the mapping later, we examine the pending
+ * reservations for this page now. This will ensure that any
+ * allocations necessary to record that reservation occur outside the
+ * spinlock. For private mappings, we also lookup the pagecache
+ * page now as it is used to determine if a reservation has been
+ * consumed.
+ */
+ if (write_access && !pte_write(entry)) {
+ if (vma_needs_reservation(h, vma, address) < 0) {
+ ret = VM_FAULT_OOM;
+ goto out_mutex;
+ }
+
+ if (!(vma->vm_flags & VM_SHARED))
+ pagecache_page = hugetlbfs_pagecache_page(h,
+ vma, address);
+ }
+
spin_lock(&mm->page_table_lock);
/* Check for a racing update before calling hugetlb_cow */
- if (likely(pte_same(entry, huge_ptep_get(ptep))))
- if (write_access && !pte_write(entry))
- ret = hugetlb_cow(mm, vma, address, ptep, entry);
+ if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
+ goto out_page_table_lock;
+
+
+ if (write_access) {
+ if (!pte_write(entry)) {
+ ret = hugetlb_cow(mm, vma, address, ptep, entry,
+ pagecache_page);
+ goto out_page_table_lock;
+ }
+ entry = pte_mkdirty(entry);
+ }
+ entry = pte_mkyoung(entry);
+ if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
+ update_mmu_cache(vma, address, entry);
+
+out_page_table_lock:
spin_unlock(&mm->page_table_lock);
+
+ if (pagecache_page) {
+ unlock_page(pagecache_page);
+ put_page(pagecache_page);
+ }
+
+out_mutex:
mutex_unlock(&hugetlb_instantiation_mutex);
return ret;
}
+/* Can be overriden by architectures */
+__attribute__((weak)) struct page *
+follow_huge_pud(struct mm_struct *mm, unsigned long address,
+ pud_t *pud, int write)
+{
+ BUG();
+ return NULL;
+}
+
+static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
+{
+ if (!ptep || write || shared)
+ return 0;
+ else
+ return huge_pte_none(huge_ptep_get(ptep));
+}
+
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page **pages, struct vm_area_struct **vmas,
unsigned long *position, int *length, int i,
@@ -1037,6 +2088,9 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long pfn_offset;
unsigned long vaddr = *position;
int remainder = *length;
+ struct hstate *h = hstate_vma(vma);
+ int zeropage_ok = 0;
+ int shared = vma->vm_flags & VM_SHARED;
spin_lock(&mm->page_table_lock);
while (vaddr < vma->vm_end && remainder) {
@@ -1048,9 +2102,12 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
* each hugepage. We have to make * sure we get the
* first, for the page indexing below to work.
*/
- pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
+ pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
+ if (huge_zeropage_ok(pte, write, shared))
+ zeropage_ok = 1;
- if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
+ if (!pte ||
+ (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
(write && !pte_write(huge_ptep_get(pte)))) {
int ret;
@@ -1066,12 +2123,15 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
break;
}
- pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
+ pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
page = pte_page(huge_ptep_get(pte));
same_page:
if (pages) {
- get_page(page);
- pages[i] = page + pfn_offset;
+ if (zeropage_ok)
+ pages[i] = ZERO_PAGE(0);
+ else
+ pages[i] = page + pfn_offset;
+ get_page(pages[i]);
}
if (vmas)
@@ -1082,7 +2142,7 @@ same_page:
--remainder;
++i;
if (vaddr < vma->vm_end && remainder &&
- pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
+ pfn_offset < pages_per_huge_page(h)) {
/*
* We use pfn_offset to avoid touching the pageframes
* of this compound page.
@@ -1104,13 +2164,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long start = address;
pte_t *ptep;
pte_t pte;
+ struct hstate *h = hstate_vma(vma);
BUG_ON(address >= end);
flush_cache_range(vma, address, end);
spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
spin_lock(&mm->page_table_lock);
- for (; address < end; address += HPAGE_SIZE) {
+ for (; address < end; address += huge_page_size(h)) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
@@ -1128,195 +2189,59 @@ void hugetlb_change_protection(struct vm_area_struct *vma,
flush_tlb_range(vma, start, end);
}
-struct file_region {
- struct list_head link;
- long from;
- long to;
-};
-
-static long region_add(struct list_head *head, long f, long t)
-{
- struct file_region *rg, *nrg, *trg;
-
- /* Locate the region we are either in or before. */
- list_for_each_entry(rg, head, link)
- if (f <= rg->to)
- break;
-
- /* Round our left edge to the current segment if it encloses us. */
- if (f > rg->from)
- f = rg->from;
-
- /* Check for and consume any regions we now overlap with. */
- nrg = rg;
- list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
- if (&rg->link == head)
- break;
- if (rg->from > t)
- break;
-
- /* If this area reaches higher then extend our area to
- * include it completely. If this is not the first area
- * which we intend to reuse, free it. */
- if (rg->to > t)
- t = rg->to;
- if (rg != nrg) {
- list_del(&rg->link);
- kfree(rg);
- }
- }
- nrg->from = f;
- nrg->to = t;
- return 0;
-}
-
-static long region_chg(struct list_head *head, long f, long t)
-{
- struct file_region *rg, *nrg;
- long chg = 0;
-
- /* Locate the region we are before or in. */
- list_for_each_entry(rg, head, link)
- if (f <= rg->to)
- break;
-
- /* If we are below the current region then a new region is required.
- * Subtle, allocate a new region at the position but make it zero
- * size such that we can guarantee to record the reservation. */
- if (&rg->link == head || t < rg->from) {
- nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
- if (!nrg)
- return -ENOMEM;
- nrg->from = f;
- nrg->to = f;
- INIT_LIST_HEAD(&nrg->link);
- list_add(&nrg->link, rg->link.prev);
-
- return t - f;
- }
-
- /* Round our left edge to the current segment if it encloses us. */
- if (f > rg->from)
- f = rg->from;
- chg = t - f;
-
- /* Check for and consume any regions we now overlap with. */
- list_for_each_entry(rg, rg->link.prev, link) {
- if (&rg->link == head)
- break;
- if (rg->from > t)
- return chg;
-
- /* We overlap with this area, if it extends futher than
- * us then we must extend ourselves. Account for its
- * existing reservation. */
- if (rg->to > t) {
- chg += rg->to - t;
- t = rg->to;
- }
- chg -= rg->to - rg->from;
- }
- return chg;
-}
-
-static long region_truncate(struct list_head *head, long end)
+int hugetlb_reserve_pages(struct inode *inode,
+ long from, long to,
+ struct vm_area_struct *vma)
{
- struct file_region *rg, *trg;
- long chg = 0;
+ long ret, chg;
+ struct hstate *h = hstate_inode(inode);
- /* Locate the region we are either in or before. */
- list_for_each_entry(rg, head, link)
- if (end <= rg->to)
- break;
- if (&rg->link == head)
+ if (vma && vma->vm_flags & VM_NORESERVE)
return 0;
- /* If we are in the middle of a region then adjust it. */
- if (end > rg->from) {
- chg = rg->to - end;
- rg->to = end;
- rg = list_entry(rg->link.next, typeof(*rg), link);
- }
-
- /* Drop any remaining regions. */
- list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
- if (&rg->link == head)
- break;
- chg += rg->to - rg->from;
- list_del(&rg->link);
- kfree(rg);
- }
- return chg;
-}
-
-static int hugetlb_acct_memory(long delta)
-{
- int ret = -ENOMEM;
-
- spin_lock(&hugetlb_lock);
/*
- * When cpuset is configured, it breaks the strict hugetlb page
- * reservation as the accounting is done on a global variable. Such
- * reservation is completely rubbish in the presence of cpuset because
- * the reservation is not checked against page availability for the
- * current cpuset. Application can still potentially OOM'ed by kernel
- * with lack of free htlb page in cpuset that the task is in.
- * Attempt to enforce strict accounting with cpuset is almost
- * impossible (or too ugly) because cpuset is too fluid that
- * task or memory node can be dynamically moved between cpusets.
- *
- * The change of semantics for shared hugetlb mapping with cpuset is
- * undesirable. However, in order to preserve some of the semantics,
- * we fall back to check against current free page availability as
- * a best attempt and hopefully to minimize the impact of changing
- * semantics that cpuset has.
+ * Shared mappings base their reservation on the number of pages that
+ * are already allocated on behalf of the file. Private mappings need
+ * to reserve the full area even if read-only as mprotect() may be
+ * called to make the mapping read-write. Assume !vma is a shm mapping
*/
- if (delta > 0) {
- if (gather_surplus_pages(delta) < 0)
- goto out;
-
- if (delta > cpuset_mems_nr(free_huge_pages_node)) {
- return_unused_surplus_pages(delta);
- goto out;
- }
- }
+ if (!vma || vma->vm_flags & VM_SHARED)
+ chg = region_chg(&inode->i_mapping->private_list, from, to);
+ else {
+ struct resv_map *resv_map = resv_map_alloc();
+ if (!resv_map)
+ return -ENOMEM;
- ret = 0;
- if (delta < 0)
- return_unused_surplus_pages((unsigned long) -delta);
+ chg = to - from;
-out:
- spin_unlock(&hugetlb_lock);
- return ret;
-}
-
-int hugetlb_reserve_pages(struct inode *inode, long from, long to)
-{
- long ret, chg;
+ set_vma_resv_map(vma, resv_map);
+ set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
+ }
- chg = region_chg(&inode->i_mapping->private_list, from, to);
if (chg < 0)
return chg;
if (hugetlb_get_quota(inode->i_mapping, chg))
return -ENOSPC;
- ret = hugetlb_acct_memory(chg);
+ ret = hugetlb_acct_memory(h, chg);
if (ret < 0) {
hugetlb_put_quota(inode->i_mapping, chg);
return ret;
}
- region_add(&inode->i_mapping->private_list, from, to);
+ if (!vma || vma->vm_flags & VM_SHARED)
+ region_add(&inode->i_mapping->private_list, from, to);
return 0;
}
void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
+ struct hstate *h = hstate_inode(inode);
long chg = region_truncate(&inode->i_mapping->private_list, offset);
spin_lock(&inode->i_lock);
- inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
+ inode->i_blocks -= blocks_per_huge_page(h);
spin_unlock(&inode->i_lock);
hugetlb_put_quota(inode->i_mapping, (chg - freed));
- hugetlb_acct_memory(-(chg - freed));
+ hugetlb_acct_memory(h, -(chg - freed));
}
diff --git a/mm/internal.h b/mm/internal.h
index 0034e947e4bc..e4e728bdf324 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -13,6 +13,11 @@
#include <linux/mm.h>
+void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
+ unsigned long floor, unsigned long ceiling);
+
+extern void prep_compound_page(struct page *page, unsigned long order);
+
static inline void set_page_count(struct page *page, int v)
{
atomic_set(&page->_count, v);
@@ -34,6 +39,15 @@ static inline void __put_page(struct page *page)
atomic_dec(&page->_count);
}
+/*
+ * in mm/vmscan.c:
+ */
+extern int isolate_lru_page(struct page *page);
+extern void putback_lru_page(struct page *page);
+
+/*
+ * in mm/page_alloc.c
+ */
extern void __free_pages_bootmem(struct page *page, unsigned int order);
/*
@@ -47,6 +61,120 @@ static inline unsigned long page_order(struct page *page)
return page_private(page);
}
+extern long mlock_vma_pages_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end);
+extern void munlock_vma_pages_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end);
+static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
+{
+ munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
+}
+
+#ifdef CONFIG_UNEVICTABLE_LRU
+/*
+ * unevictable_migrate_page() called only from migrate_page_copy() to
+ * migrate unevictable flag to new page.
+ * Note that the old page has been isolated from the LRU lists at this
+ * point so we don't need to worry about LRU statistics.
+ */
+static inline void unevictable_migrate_page(struct page *new, struct page *old)
+{
+ if (TestClearPageUnevictable(old))
+ SetPageUnevictable(new);
+}
+#else
+static inline void unevictable_migrate_page(struct page *new, struct page *old)
+{
+}
+#endif
+
+#ifdef CONFIG_UNEVICTABLE_LRU
+/*
+ * Called only in fault path via page_evictable() for a new page
+ * to determine if it's being mapped into a LOCKED vma.
+ * If so, mark page as mlocked.
+ */
+static inline int is_mlocked_vma(struct vm_area_struct *vma, struct page *page)
+{
+ VM_BUG_ON(PageLRU(page));
+
+ if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
+ return 0;
+
+ if (!TestSetPageMlocked(page)) {
+ inc_zone_page_state(page, NR_MLOCK);
+ count_vm_event(UNEVICTABLE_PGMLOCKED);
+ }
+ return 1;
+}
+
+/*
+ * must be called with vma's mmap_sem held for read, and page locked.
+ */
+extern void mlock_vma_page(struct page *page);
+
+/*
+ * Clear the page's PageMlocked(). This can be useful in a situation where
+ * we want to unconditionally remove a page from the pagecache -- e.g.,
+ * on truncation or freeing.
+ *
+ * It is legal to call this function for any page, mlocked or not.
+ * If called for a page that is still mapped by mlocked vmas, all we do
+ * is revert to lazy LRU behaviour -- semantics are not broken.
+ */
+extern void __clear_page_mlock(struct page *page);
+static inline void clear_page_mlock(struct page *page)
+{
+ if (unlikely(TestClearPageMlocked(page)))
+ __clear_page_mlock(page);
+}
+
+/*
+ * mlock_migrate_page - called only from migrate_page_copy() to
+ * migrate the Mlocked page flag; update statistics.
+ */
+static inline void mlock_migrate_page(struct page *newpage, struct page *page)
+{
+ if (TestClearPageMlocked(page)) {
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __dec_zone_page_state(page, NR_MLOCK);
+ SetPageMlocked(newpage);
+ __inc_zone_page_state(newpage, NR_MLOCK);
+ local_irq_restore(flags);
+ }
+}
+
+/*
+ * free_page_mlock() -- clean up attempts to free and mlocked() page.
+ * Page should not be on lru, so no need to fix that up.
+ * free_pages_check() will verify...
+ */
+static inline void free_page_mlock(struct page *page)
+{
+ if (unlikely(TestClearPageMlocked(page))) {
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __dec_zone_page_state(page, NR_MLOCK);
+ __count_vm_event(UNEVICTABLE_MLOCKFREED);
+ local_irq_restore(flags);
+ }
+}
+
+#else /* CONFIG_UNEVICTABLE_LRU */
+static inline int is_mlocked_vma(struct vm_area_struct *v, struct page *p)
+{
+ return 0;
+}
+static inline void clear_page_mlock(struct page *page) { }
+static inline void mlock_vma_page(struct page *page) { }
+static inline void mlock_migrate_page(struct page *new, struct page *old) { }
+static inline void free_page_mlock(struct page *page) { }
+
+#endif /* CONFIG_UNEVICTABLE_LRU */
+
/*
* FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
* so all functions starting at paging_init should be marked __init
@@ -59,4 +187,68 @@ static inline unsigned long page_order(struct page *page)
#define __paginginit __init
#endif
+/* Memory initialisation debug and verification */
+enum mminit_level {
+ MMINIT_WARNING,
+ MMINIT_VERIFY,
+ MMINIT_TRACE
+};
+
+#ifdef CONFIG_DEBUG_MEMORY_INIT
+
+extern int mminit_loglevel;
+
+#define mminit_dprintk(level, prefix, fmt, arg...) \
+do { \
+ if (level < mminit_loglevel) { \
+ printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \
+ printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \
+ } \
+} while (0)
+
+extern void mminit_verify_pageflags_layout(void);
+extern void mminit_verify_page_links(struct page *page,
+ enum zone_type zone, unsigned long nid, unsigned long pfn);
+extern void mminit_verify_zonelist(void);
+
+#else
+
+static inline void mminit_dprintk(enum mminit_level level,
+ const char *prefix, const char *fmt, ...)
+{
+}
+
+static inline void mminit_verify_pageflags_layout(void)
+{
+}
+
+static inline void mminit_verify_page_links(struct page *page,
+ enum zone_type zone, unsigned long nid, unsigned long pfn)
+{
+}
+
+static inline void mminit_verify_zonelist(void)
+{
+}
+#endif /* CONFIG_DEBUG_MEMORY_INIT */
+
+/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
+#if defined(CONFIG_SPARSEMEM)
+extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
+ unsigned long *end_pfn);
+#else
+static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
+ unsigned long *end_pfn)
+{
+}
+#endif /* CONFIG_SPARSEMEM */
+
+#define GUP_FLAGS_WRITE 0x1
+#define GUP_FLAGS_FORCE 0x2
+#define GUP_FLAGS_IGNORE_VMA_PERMISSIONS 0x4
+
+int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, int len, int flags,
+ struct page **pages, struct vm_area_struct **vmas);
+
#endif
diff --git a/mm/madvise.c b/mm/madvise.c
index 23a0ec3e0ea0..f9349c18a1b5 100644
--- a/mm/madvise.c
+++ b/mm/madvise.c
@@ -132,10 +132,10 @@ static long madvise_willneed(struct vm_area_struct * vma,
* Application no longer needs these pages. If the pages are dirty,
* it's OK to just throw them away. The app will be more careful about
* data it wants to keep. Be sure to free swap resources too. The
- * zap_page_range call sets things up for refill_inactive to actually free
+ * zap_page_range call sets things up for shrink_active_list to actually free
* these pages later if no one else has touched them in the meantime,
* although we could add these pages to a global reuse list for
- * refill_inactive to pick up before reclaiming other pages.
+ * shrink_active_list to pick up before reclaiming other pages.
*
* NB: This interface discards data rather than pushes it out to swap,
* as some implementations do. This has performance implications for
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index e46451e1d9b7..866dcc7eeb0c 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -32,12 +32,13 @@
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
+#include <linux/mm_inline.h>
+#include <linux/page_cgroup.h>
#include <asm/uaccess.h>
-struct cgroup_subsys mem_cgroup_subsys;
-static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
-static struct kmem_cache *page_cgroup_cache;
+struct cgroup_subsys mem_cgroup_subsys __read_mostly;
+#define MEM_CGROUP_RECLAIM_RETRIES 5
/*
* Statistics for memory cgroup.
@@ -65,11 +66,10 @@ struct mem_cgroup_stat {
/*
* For accounting under irq disable, no need for increment preempt count.
*/
-static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
+static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
enum mem_cgroup_stat_index idx, int val)
{
- int cpu = smp_processor_id();
- stat->cpustat[cpu].count[idx] += val;
+ stat->count[idx] += val;
}
static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
@@ -85,22 +85,13 @@ static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
/*
* per-zone information in memory controller.
*/
-
-enum mem_cgroup_zstat_index {
- MEM_CGROUP_ZSTAT_ACTIVE,
- MEM_CGROUP_ZSTAT_INACTIVE,
-
- NR_MEM_CGROUP_ZSTAT,
-};
-
struct mem_cgroup_per_zone {
/*
* spin_lock to protect the per cgroup LRU
*/
spinlock_t lru_lock;
- struct list_head active_list;
- struct list_head inactive_list;
- unsigned long count[NR_MEM_CGROUP_ZSTAT];
+ struct list_head lists[NR_LRU_LISTS];
+ unsigned long count[NR_LRU_LISTS];
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
@@ -144,69 +135,52 @@ struct mem_cgroup {
};
static struct mem_cgroup init_mem_cgroup;
-/*
- * We use the lower bit of the page->page_cgroup pointer as a bit spin
- * lock. We need to ensure that page->page_cgroup is at least two
- * byte aligned (based on comments from Nick Piggin). But since
- * bit_spin_lock doesn't actually set that lock bit in a non-debug
- * uniprocessor kernel, we should avoid setting it here too.
- */
-#define PAGE_CGROUP_LOCK_BIT 0x0
-#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
-#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
-#else
-#define PAGE_CGROUP_LOCK 0x0
-#endif
-
-/*
- * A page_cgroup page is associated with every page descriptor. The
- * page_cgroup helps us identify information about the cgroup
- */
-struct page_cgroup {
- struct list_head lru; /* per cgroup LRU list */
- struct page *page;
- struct mem_cgroup *mem_cgroup;
- int ref_cnt; /* cached, mapped, migrating */
- int flags;
-};
-#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
-#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
-
-static int page_cgroup_nid(struct page_cgroup *pc)
-{
- return page_to_nid(pc->page);
-}
-
-static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
-{
- return page_zonenum(pc->page);
-}
-
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
MEM_CGROUP_CHARGE_TYPE_MAPPED,
+ MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
+ MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
+ NR_CHARGE_TYPE,
+};
+
+/* only for here (for easy reading.) */
+#define PCGF_CACHE (1UL << PCG_CACHE)
+#define PCGF_USED (1UL << PCG_USED)
+#define PCGF_ACTIVE (1UL << PCG_ACTIVE)
+#define PCGF_LOCK (1UL << PCG_LOCK)
+#define PCGF_FILE (1UL << PCG_FILE)
+static const unsigned long
+pcg_default_flags[NR_CHARGE_TYPE] = {
+ PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
+ PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
+ PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
+ 0, /* FORCE */
};
/*
* Always modified under lru lock. Then, not necessary to preempt_disable()
*/
-static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
- bool charge)
+static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
+ struct page_cgroup *pc,
+ bool charge)
{
int val = (charge)? 1 : -1;
struct mem_cgroup_stat *stat = &mem->stat;
+ struct mem_cgroup_stat_cpu *cpustat;
VM_BUG_ON(!irqs_disabled());
- if (flags & PAGE_CGROUP_FLAG_CACHE)
- __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
+
+ cpustat = &stat->cpustat[smp_processor_id()];
+ if (PageCgroupCache(pc))
+ __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
else
- __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
+ __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
if (charge)
- __mem_cgroup_stat_add_safe(stat,
+ __mem_cgroup_stat_add_safe(cpustat,
MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
else
- __mem_cgroup_stat_add_safe(stat,
+ __mem_cgroup_stat_add_safe(cpustat,
MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
}
@@ -227,7 +201,7 @@ page_cgroup_zoneinfo(struct page_cgroup *pc)
}
static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
- enum mem_cgroup_zstat_index idx)
+ enum lru_list idx)
{
int nid, zid;
struct mem_cgroup_per_zone *mz;
@@ -250,89 +224,89 @@ static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
+ /*
+ * mm_update_next_owner() may clear mm->owner to NULL
+ * if it races with swapoff, page migration, etc.
+ * So this can be called with p == NULL.
+ */
+ if (unlikely(!p))
+ return NULL;
+
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
struct mem_cgroup, css);
}
-static inline int page_cgroup_locked(struct page *page)
-{
- return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
-}
-
-static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
-{
- VM_BUG_ON(!page_cgroup_locked(page));
- page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
-}
-
-struct page_cgroup *page_get_page_cgroup(struct page *page)
-{
- return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
-}
-
-static void lock_page_cgroup(struct page *page)
-{
- bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
-}
-
-static int try_lock_page_cgroup(struct page *page)
-{
- return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
-}
-
-static void unlock_page_cgroup(struct page *page)
-{
- bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
-}
-
static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
struct page_cgroup *pc)
{
- int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
+ int lru = LRU_BASE;
+
+ if (PageCgroupUnevictable(pc))
+ lru = LRU_UNEVICTABLE;
+ else {
+ if (PageCgroupActive(pc))
+ lru += LRU_ACTIVE;
+ if (PageCgroupFile(pc))
+ lru += LRU_FILE;
+ }
- if (from)
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
- else
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
+ MEM_CGROUP_ZSTAT(mz, lru) -= 1;
- mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
- list_del_init(&pc->lru);
+ mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
+ list_del(&pc->lru);
}
static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
struct page_cgroup *pc)
{
- int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
-
- if (!to) {
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
- list_add(&pc->lru, &mz->inactive_list);
- } else {
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
- list_add(&pc->lru, &mz->active_list);
+ int lru = LRU_BASE;
+
+ if (PageCgroupUnevictable(pc))
+ lru = LRU_UNEVICTABLE;
+ else {
+ if (PageCgroupActive(pc))
+ lru += LRU_ACTIVE;
+ if (PageCgroupFile(pc))
+ lru += LRU_FILE;
}
- mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
+
+ MEM_CGROUP_ZSTAT(mz, lru) += 1;
+ list_add(&pc->lru, &mz->lists[lru]);
+
+ mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
}
-static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
+static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
{
- int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
+ int active = PageCgroupActive(pc);
+ int file = PageCgroupFile(pc);
+ int unevictable = PageCgroupUnevictable(pc);
+ enum lru_list from = unevictable ? LRU_UNEVICTABLE :
+ (LRU_FILE * !!file + !!active);
- if (from)
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
- else
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
+ if (lru == from)
+ return;
- if (active) {
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
- pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
- list_move(&pc->lru, &mz->active_list);
+ MEM_CGROUP_ZSTAT(mz, from) -= 1;
+ /*
+ * However this is done under mz->lru_lock, another flags, which
+ * are not related to LRU, will be modified from out-of-lock.
+ * We have to use atomic set/clear flags.
+ */
+ if (is_unevictable_lru(lru)) {
+ ClearPageCgroupActive(pc);
+ SetPageCgroupUnevictable(pc);
} else {
- MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
- pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
- list_move(&pc->lru, &mz->inactive_list);
+ if (is_active_lru(lru))
+ SetPageCgroupActive(pc);
+ else
+ ClearPageCgroupActive(pc);
+ ClearPageCgroupUnevictable(pc);
}
+
+ MEM_CGROUP_ZSTAT(mz, lru) += 1;
+ list_move(&pc->lru, &mz->lists[lru]);
}
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
@@ -348,12 +322,15 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
/*
* This routine assumes that the appropriate zone's lru lock is already held
*/
-void mem_cgroup_move_lists(struct page *page, bool active)
+void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
unsigned long flags;
+ if (mem_cgroup_subsys.disabled)
+ return;
+
/*
* We cannot lock_page_cgroup while holding zone's lru_lock,
* because other holders of lock_page_cgroup can be interrupted
@@ -361,17 +338,16 @@ void mem_cgroup_move_lists(struct page *page, bool active)
* safely get to page_cgroup without it, so just try_lock it:
* mem_cgroup_isolate_pages allows for page left on wrong list.
*/
- if (!try_lock_page_cgroup(page))
+ pc = lookup_page_cgroup(page);
+ if (!trylock_page_cgroup(pc))
return;
-
- pc = page_get_page_cgroup(page);
- if (pc) {
+ if (pc && PageCgroupUsed(pc)) {
mz = page_cgroup_zoneinfo(pc);
spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_move_lists(pc, active);
+ __mem_cgroup_move_lists(pc, lru);
spin_unlock_irqrestore(&mz->lru_lock, flags);
}
- unlock_page_cgroup(page);
+ unlock_page_cgroup(pc);
}
/*
@@ -392,21 +368,6 @@ int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
}
/*
- * This function is called from vmscan.c. In page reclaiming loop. balance
- * between active and inactive list is calculated. For memory controller
- * page reclaiming, we should use using mem_cgroup's imbalance rather than
- * zone's global lru imbalance.
- */
-long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
-{
- unsigned long active, inactive;
- /* active and inactive are the number of pages. 'long' is ok.*/
- active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
- inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
- return (long) (active / (inactive + 1));
-}
-
-/*
* prev_priority control...this will be used in memory reclaim path.
*/
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
@@ -433,28 +394,17 @@ void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
* (see include/linux/mmzone.h)
*/
-long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
- struct zone *zone, int priority)
+long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
+ int priority, enum lru_list lru)
{
- long nr_active;
+ long nr_pages;
int nid = zone->zone_pgdat->node_id;
int zid = zone_idx(zone);
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
- nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
- return (nr_active >> priority);
-}
+ nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
-long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
- struct zone *zone, int priority)
-{
- long nr_inactive;
- int nid = zone->zone_pgdat->node_id;
- int zid = zone_idx(zone);
- struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
-
- nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
- return (nr_inactive >> priority);
+ return (nr_pages >> priority);
}
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
@@ -462,7 +412,7 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
unsigned long *scanned, int order,
int mode, struct zone *z,
struct mem_cgroup *mem_cont,
- int active)
+ int active, int file)
{
unsigned long nr_taken = 0;
struct page *page;
@@ -473,38 +423,38 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
int nid = z->zone_pgdat->node_id;
int zid = zone_idx(z);
struct mem_cgroup_per_zone *mz;
+ int lru = LRU_FILE * !!file + !!active;
BUG_ON(!mem_cont);
mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
- if (active)
- src = &mz->active_list;
- else
- src = &mz->inactive_list;
-
+ src = &mz->lists[lru];
spin_lock(&mz->lru_lock);
scan = 0;
list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
if (scan >= nr_to_scan)
break;
+ if (unlikely(!PageCgroupUsed(pc)))
+ continue;
page = pc->page;
if (unlikely(!PageLRU(page)))
continue;
- if (PageActive(page) && !active) {
- __mem_cgroup_move_lists(pc, true);
- continue;
- }
- if (!PageActive(page) && active) {
- __mem_cgroup_move_lists(pc, false);
+ /*
+ * TODO: play better with lumpy reclaim, grabbing anything.
+ */
+ if (PageUnevictable(page) ||
+ (PageActive(page) && !active) ||
+ (!PageActive(page) && active)) {
+ __mem_cgroup_move_lists(pc, page_lru(page));
continue;
}
scan++;
list_move(&pc->lru, &pc_list);
- if (__isolate_lru_page(page, mode) == 0) {
+ if (__isolate_lru_page(page, mode, file) == 0) {
list_move(&page->lru, dst);
nr_taken++;
}
@@ -524,63 +474,45 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
* < 0 if the cgroup is over its limit
*/
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask, enum charge_type ctype)
+ gfp_t gfp_mask, enum charge_type ctype,
+ struct mem_cgroup *memcg)
{
struct mem_cgroup *mem;
struct page_cgroup *pc;
- unsigned long flags;
unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct mem_cgroup_per_zone *mz;
+ unsigned long flags;
- if (mem_cgroup_subsys.disabled)
+ pc = lookup_page_cgroup(page);
+ /* can happen at boot */
+ if (unlikely(!pc))
return 0;
-
- /*
- * Should page_cgroup's go to their own slab?
- * One could optimize the performance of the charging routine
- * by saving a bit in the page_flags and using it as a lock
- * to see if the cgroup page already has a page_cgroup associated
- * with it
- */
-retry:
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- /*
- * The page_cgroup exists and
- * the page has already been accounted.
- */
- if (pc) {
- VM_BUG_ON(pc->page != page);
- VM_BUG_ON(pc->ref_cnt <= 0);
-
- pc->ref_cnt++;
- unlock_page_cgroup(page);
- goto done;
- }
- unlock_page_cgroup(page);
-
- pc = kmem_cache_zalloc(page_cgroup_cache, gfp_mask);
- if (pc == NULL)
- goto err;
-
+ prefetchw(pc);
/*
* We always charge the cgroup the mm_struct belongs to.
* The mm_struct's mem_cgroup changes on task migration if the
* thread group leader migrates. It's possible that mm is not
* set, if so charge the init_mm (happens for pagecache usage).
*/
- if (!mm)
- mm = &init_mm;
- rcu_read_lock();
- mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
- /*
- * For every charge from the cgroup, increment reference count
- */
- css_get(&mem->css);
- rcu_read_unlock();
+ if (likely(!memcg)) {
+ rcu_read_lock();
+ mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
+ if (unlikely(!mem)) {
+ rcu_read_unlock();
+ return 0;
+ }
+ /*
+ * For every charge from the cgroup, increment reference count
+ */
+ css_get(&mem->css);
+ rcu_read_unlock();
+ } else {
+ mem = memcg;
+ css_get(&memcg->css);
+ }
- while (res_counter_charge(&mem->res, PAGE_SIZE)) {
+ while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
if (!(gfp_mask & __GFP_WAIT))
goto out;
@@ -603,63 +535,104 @@ retry:
}
}
- pc->ref_cnt = 1;
- pc->mem_cgroup = mem;
- pc->page = page;
- pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
- if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
- pc->flags = PAGE_CGROUP_FLAG_CACHE;
-
- lock_page_cgroup(page);
- if (page_get_page_cgroup(page)) {
- unlock_page_cgroup(page);
- /*
- * Another charge has been added to this page already.
- * We take lock_page_cgroup(page) again and read
- * page->cgroup, increment refcnt.... just retry is OK.
- */
+
+ lock_page_cgroup(pc);
+ if (unlikely(PageCgroupUsed(pc))) {
+ unlock_page_cgroup(pc);
res_counter_uncharge(&mem->res, PAGE_SIZE);
css_put(&mem->css);
- kmem_cache_free(page_cgroup_cache, pc);
- goto retry;
+
+ goto done;
}
- page_assign_page_cgroup(page, pc);
+ pc->mem_cgroup = mem;
+ /*
+ * If a page is accounted as a page cache, insert to inactive list.
+ * If anon, insert to active list.
+ */
+ pc->flags = pcg_default_flags[ctype];
mz = page_cgroup_zoneinfo(pc);
+
spin_lock_irqsave(&mz->lru_lock, flags);
__mem_cgroup_add_list(mz, pc);
spin_unlock_irqrestore(&mz->lru_lock, flags);
+ unlock_page_cgroup(pc);
- unlock_page_cgroup(page);
done:
return 0;
out:
css_put(&mem->css);
- kmem_cache_free(page_cgroup_cache, pc);
-err:
return -ENOMEM;
}
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
{
+ if (mem_cgroup_subsys.disabled)
+ return 0;
+ if (PageCompound(page))
+ return 0;
+ /*
+ * If already mapped, we don't have to account.
+ * If page cache, page->mapping has address_space.
+ * But page->mapping may have out-of-use anon_vma pointer,
+ * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
+ * is NULL.
+ */
+ if (page_mapped(page) || (page->mapping && !PageAnon(page)))
+ return 0;
+ if (unlikely(!mm))
+ mm = &init_mm;
return mem_cgroup_charge_common(page, mm, gfp_mask,
- MEM_CGROUP_CHARGE_TYPE_MAPPED);
+ MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
}
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
- if (!mm)
+ if (mem_cgroup_subsys.disabled)
+ return 0;
+ if (PageCompound(page))
+ return 0;
+ /*
+ * Corner case handling. This is called from add_to_page_cache()
+ * in usual. But some FS (shmem) precharges this page before calling it
+ * and call add_to_page_cache() with GFP_NOWAIT.
+ *
+ * For GFP_NOWAIT case, the page may be pre-charged before calling
+ * add_to_page_cache(). (See shmem.c) check it here and avoid to call
+ * charge twice. (It works but has to pay a bit larger cost.)
+ */
+ if (!(gfp_mask & __GFP_WAIT)) {
+ struct page_cgroup *pc;
+
+
+ pc = lookup_page_cgroup(page);
+ if (!pc)
+ return 0;
+ lock_page_cgroup(pc);
+ if (PageCgroupUsed(pc)) {
+ unlock_page_cgroup(pc);
+ return 0;
+ }
+ unlock_page_cgroup(pc);
+ }
+
+ if (unlikely(!mm))
mm = &init_mm;
- return mem_cgroup_charge_common(page, mm, gfp_mask,
- MEM_CGROUP_CHARGE_TYPE_CACHE);
+
+ if (page_is_file_cache(page))
+ return mem_cgroup_charge_common(page, mm, gfp_mask,
+ MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
+ else
+ return mem_cgroup_charge_common(page, mm, gfp_mask,
+ MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
}
/*
- * Uncharging is always a welcome operation, we never complain, simply
- * uncharge.
+ * uncharge if !page_mapped(page)
*/
-void mem_cgroup_uncharge_page(struct page *page)
+static void
+__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
{
struct page_cgroup *pc;
struct mem_cgroup *mem;
@@ -672,106 +645,172 @@ void mem_cgroup_uncharge_page(struct page *page)
/*
* Check if our page_cgroup is valid
*/
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- if (!pc)
- goto unlock;
+ pc = lookup_page_cgroup(page);
+ if (unlikely(!pc || !PageCgroupUsed(pc)))
+ return;
- VM_BUG_ON(pc->page != page);
- VM_BUG_ON(pc->ref_cnt <= 0);
+ lock_page_cgroup(pc);
+ if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
+ || !PageCgroupUsed(pc)) {
+ /* This happens at race in zap_pte_range() and do_swap_page()*/
+ unlock_page_cgroup(pc);
+ return;
+ }
+ ClearPageCgroupUsed(pc);
+ mem = pc->mem_cgroup;
- if (--(pc->ref_cnt) == 0) {
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_remove_list(mz, pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ mz = page_cgroup_zoneinfo(pc);
+ spin_lock_irqsave(&mz->lru_lock, flags);
+ __mem_cgroup_remove_list(mz, pc);
+ spin_unlock_irqrestore(&mz->lru_lock, flags);
+ unlock_page_cgroup(pc);
- page_assign_page_cgroup(page, NULL);
- unlock_page_cgroup(page);
+ res_counter_uncharge(&mem->res, PAGE_SIZE);
+ css_put(&mem->css);
- mem = pc->mem_cgroup;
- res_counter_uncharge(&mem->res, PAGE_SIZE);
- css_put(&mem->css);
+ return;
+}
- kmem_cache_free(page_cgroup_cache, pc);
+void mem_cgroup_uncharge_page(struct page *page)
+{
+ /* early check. */
+ if (page_mapped(page))
return;
- }
+ if (page->mapping && !PageAnon(page))
+ return;
+ __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
+}
-unlock:
- unlock_page_cgroup(page);
+void mem_cgroup_uncharge_cache_page(struct page *page)
+{
+ VM_BUG_ON(page_mapped(page));
+ VM_BUG_ON(page->mapping);
+ __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}
/*
- * Returns non-zero if a page (under migration) has valid page_cgroup member.
- * Refcnt of page_cgroup is incremented.
+ * Before starting migration, account against new page.
*/
-int mem_cgroup_prepare_migration(struct page *page)
+int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
{
struct page_cgroup *pc;
+ struct mem_cgroup *mem = NULL;
+ enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
+ int ret = 0;
if (mem_cgroup_subsys.disabled)
return 0;
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- if (pc)
- pc->ref_cnt++;
- unlock_page_cgroup(page);
- return pc != NULL;
+ pc = lookup_page_cgroup(page);
+ lock_page_cgroup(pc);
+ if (PageCgroupUsed(pc)) {
+ mem = pc->mem_cgroup;
+ css_get(&mem->css);
+ if (PageCgroupCache(pc)) {
+ if (page_is_file_cache(page))
+ ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
+ else
+ ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
+ }
+ }
+ unlock_page_cgroup(pc);
+ if (mem) {
+ ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
+ ctype, mem);
+ css_put(&mem->css);
+ }
+ return ret;
}
-void mem_cgroup_end_migration(struct page *page)
+/* remove redundant charge if migration failed*/
+void mem_cgroup_end_migration(struct page *newpage)
{
- mem_cgroup_uncharge_page(page);
+ /*
+ * At success, page->mapping is not NULL.
+ * special rollback care is necessary when
+ * 1. at migration failure. (newpage->mapping is cleared in this case)
+ * 2. the newpage was moved but not remapped again because the task
+ * exits and the newpage is obsolete. In this case, the new page
+ * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
+ * always for avoiding mess. The page_cgroup will be removed if
+ * unnecessary. File cache pages is still on radix-tree. Don't
+ * care it.
+ */
+ if (!newpage->mapping)
+ __mem_cgroup_uncharge_common(newpage,
+ MEM_CGROUP_CHARGE_TYPE_FORCE);
+ else if (PageAnon(newpage))
+ mem_cgroup_uncharge_page(newpage);
}
/*
- * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
- * And no race with uncharge() routines because page_cgroup for *page*
- * has extra one reference by mem_cgroup_prepare_migration.
+ * A call to try to shrink memory usage under specified resource controller.
+ * This is typically used for page reclaiming for shmem for reducing side
+ * effect of page allocation from shmem, which is used by some mem_cgroup.
*/
-void mem_cgroup_page_migration(struct page *page, struct page *newpage)
+int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
{
- struct page_cgroup *pc;
- struct mem_cgroup_per_zone *mz;
- unsigned long flags;
+ struct mem_cgroup *mem;
+ int progress = 0;
+ int retry = MEM_CGROUP_RECLAIM_RETRIES;
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- if (!pc) {
- unlock_page_cgroup(page);
- return;
+ if (mem_cgroup_subsys.disabled)
+ return 0;
+ if (!mm)
+ return 0;
+
+ rcu_read_lock();
+ mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
+ if (unlikely(!mem)) {
+ rcu_read_unlock();
+ return 0;
}
+ css_get(&mem->css);
+ rcu_read_unlock();
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_remove_list(mz, pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ do {
+ progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
+ progress += res_counter_check_under_limit(&mem->res);
+ } while (!progress && --retry);
- page_assign_page_cgroup(page, NULL);
- unlock_page_cgroup(page);
+ css_put(&mem->css);
+ if (!retry)
+ return -ENOMEM;
+ return 0;
+}
- pc->page = newpage;
- lock_page_cgroup(newpage);
- page_assign_page_cgroup(newpage, pc);
+int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val)
+{
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_add_list(mz, pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
+ int progress;
+ int ret = 0;
- unlock_page_cgroup(newpage);
+ while (res_counter_set_limit(&memcg->res, val)) {
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+ if (!retry_count) {
+ ret = -EBUSY;
+ break;
+ }
+ progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
+ if (!progress)
+ retry_count--;
+ }
+ return ret;
}
+
/*
* This routine traverse page_cgroup in given list and drop them all.
- * This routine ignores page_cgroup->ref_cnt.
* *And* this routine doesn't reclaim page itself, just removes page_cgroup.
*/
#define FORCE_UNCHARGE_BATCH (128)
static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
- int active)
+ enum lru_list lru)
{
struct page_cgroup *pc;
struct page *page;
@@ -779,22 +818,31 @@ static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
unsigned long flags;
struct list_head *list;
- if (active)
- list = &mz->active_list;
- else
- list = &mz->inactive_list;
+ list = &mz->lists[lru];
spin_lock_irqsave(&mz->lru_lock, flags);
while (!list_empty(list)) {
pc = list_entry(list->prev, struct page_cgroup, lru);
page = pc->page;
+ if (!PageCgroupUsed(pc))
+ break;
get_page(page);
spin_unlock_irqrestore(&mz->lru_lock, flags);
- mem_cgroup_uncharge_page(page);
- put_page(page);
- if (--count <= 0) {
- count = FORCE_UNCHARGE_BATCH;
- cond_resched();
+ /*
+ * Check if this page is on LRU. !LRU page can be found
+ * if it's under page migration.
+ */
+ if (PageLRU(page)) {
+ __mem_cgroup_uncharge_common(page,
+ MEM_CGROUP_CHARGE_TYPE_FORCE);
+ put_page(page);
+ if (--count <= 0) {
+ count = FORCE_UNCHARGE_BATCH;
+ cond_resched();
+ }
+ } else {
+ spin_lock_irqsave(&mz->lru_lock, flags);
+ break;
}
spin_lock_irqsave(&mz->lru_lock, flags);
}
@@ -810,9 +858,6 @@ static int mem_cgroup_force_empty(struct mem_cgroup *mem)
int ret = -EBUSY;
int node, zid;
- if (mem_cgroup_subsys.disabled)
- return 0;
-
css_get(&mem->css);
/*
* page reclaim code (kswapd etc..) will move pages between
@@ -822,15 +867,17 @@ static int mem_cgroup_force_empty(struct mem_cgroup *mem)
while (mem->res.usage > 0) {
if (atomic_read(&mem->css.cgroup->count) > 0)
goto out;
+ /* This is for making all *used* pages to be on LRU. */
+ lru_add_drain_all();
for_each_node_state(node, N_POSSIBLE)
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
struct mem_cgroup_per_zone *mz;
+ enum lru_list l;
mz = mem_cgroup_zoneinfo(mem, node, zid);
- /* drop all page_cgroup in active_list */
- mem_cgroup_force_empty_list(mem, mz, 1);
- /* drop all page_cgroup in inactive_list */
- mem_cgroup_force_empty_list(mem, mz, 0);
+ for_each_lru(l)
+ mem_cgroup_force_empty_list(mem, mz, l);
}
+ cond_resched();
}
ret = 0;
out:
@@ -838,32 +885,34 @@ out:
return ret;
}
-static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
-{
- *tmp = memparse(buf, &buf);
- if (*buf != '\0')
- return -EINVAL;
-
- /*
- * Round up the value to the closest page size
- */
- *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
- return 0;
-}
-
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
{
return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
cft->private);
}
-
-static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
- struct file *file, const char __user *userbuf,
- size_t nbytes, loff_t *ppos)
+/*
+ * The user of this function is...
+ * RES_LIMIT.
+ */
+static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
+ const char *buffer)
{
- return res_counter_write(&mem_cgroup_from_cont(cont)->res,
- cft->private, userbuf, nbytes, ppos,
- mem_cgroup_write_strategy);
+ struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
+ unsigned long long val;
+ int ret;
+
+ switch (cft->private) {
+ case RES_LIMIT:
+ /* This function does all necessary parse...reuse it */
+ ret = res_counter_memparse_write_strategy(buffer, &val);
+ if (!ret)
+ ret = mem_cgroup_resize_limit(memcg, val);
+ break;
+ default:
+ ret = -EINVAL; /* should be BUG() ? */
+ break;
+ }
+ return ret;
}
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
@@ -913,14 +962,27 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
}
/* showing # of active pages */
{
- unsigned long active, inactive;
-
- inactive = mem_cgroup_get_all_zonestat(mem_cont,
- MEM_CGROUP_ZSTAT_INACTIVE);
- active = mem_cgroup_get_all_zonestat(mem_cont,
- MEM_CGROUP_ZSTAT_ACTIVE);
- cb->fill(cb, "active", (active) * PAGE_SIZE);
- cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
+ unsigned long active_anon, inactive_anon;
+ unsigned long active_file, inactive_file;
+ unsigned long unevictable;
+
+ inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
+ LRU_INACTIVE_ANON);
+ active_anon = mem_cgroup_get_all_zonestat(mem_cont,
+ LRU_ACTIVE_ANON);
+ inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
+ LRU_INACTIVE_FILE);
+ active_file = mem_cgroup_get_all_zonestat(mem_cont,
+ LRU_ACTIVE_FILE);
+ unevictable = mem_cgroup_get_all_zonestat(mem_cont,
+ LRU_UNEVICTABLE);
+
+ cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
+ cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
+ cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
+ cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
+ cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
+
}
return 0;
}
@@ -940,7 +1002,7 @@ static struct cftype mem_cgroup_files[] = {
{
.name = "limit_in_bytes",
.private = RES_LIMIT,
- .write = mem_cgroup_write,
+ .write_string = mem_cgroup_write,
.read_u64 = mem_cgroup_read,
},
{
@@ -963,6 +1025,7 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
struct mem_cgroup_per_node *pn;
struct mem_cgroup_per_zone *mz;
+ enum lru_list l;
int zone, tmp = node;
/*
* This routine is called against possible nodes.
@@ -983,9 +1046,9 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = &pn->zoneinfo[zone];
- INIT_LIST_HEAD(&mz->active_list);
- INIT_LIST_HEAD(&mz->inactive_list);
spin_lock_init(&mz->lru_lock);
+ for_each_lru(l)
+ INIT_LIST_HEAD(&mz->lists[l]);
}
return 0;
}
@@ -1026,7 +1089,6 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
if (unlikely((cont->parent) == NULL)) {
mem = &init_mem_cgroup;
- page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
} else {
mem = mem_cgroup_alloc();
if (!mem)
@@ -1070,8 +1132,6 @@ static void mem_cgroup_destroy(struct cgroup_subsys *ss,
static int mem_cgroup_populate(struct cgroup_subsys *ss,
struct cgroup *cont)
{
- if (mem_cgroup_subsys.disabled)
- return 0;
return cgroup_add_files(cont, ss, mem_cgroup_files,
ARRAY_SIZE(mem_cgroup_files));
}
@@ -1084,9 +1144,6 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss,
struct mm_struct *mm;
struct mem_cgroup *mem, *old_mem;
- if (mem_cgroup_subsys.disabled)
- return;
-
mm = get_task_mm(p);
if (mm == NULL)
return;
@@ -1094,9 +1151,6 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss,
mem = mem_cgroup_from_cont(cont);
old_mem = mem_cgroup_from_cont(old_cont);
- if (mem == old_mem)
- goto out;
-
/*
* Only thread group leaders are allowed to migrate, the mm_struct is
* in effect owned by the leader
diff --git a/mm/memory.c b/mm/memory.c
index 2302d228fe04..164951c47305 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -51,6 +51,7 @@
#include <linux/init.h>
#include <linux/writeback.h>
#include <linux/memcontrol.h>
+#include <linux/mmu_notifier.h>
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
@@ -61,6 +62,8 @@
#include <linux/swapops.h>
#include <linux/elf.h>
+#include "internal.h"
+
#ifndef CONFIG_NEED_MULTIPLE_NODES
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
@@ -211,7 +214,7 @@ static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
*
* Must be called with pagetable lock held.
*/
-void free_pgd_range(struct mmu_gather **tlb,
+void free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
@@ -262,16 +265,16 @@ void free_pgd_range(struct mmu_gather **tlb,
return;
start = addr;
- pgd = pgd_offset((*tlb)->mm, addr);
+ pgd = pgd_offset(tlb->mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
- free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
+ free_pud_range(tlb, pgd, addr, next, floor, ceiling);
} while (pgd++, addr = next, addr != end);
}
-void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
+void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
unsigned long floor, unsigned long ceiling)
{
while (vma) {
@@ -372,7 +375,8 @@ static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
*
* The calling function must still handle the error.
*/
-void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
+static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
+ unsigned long vaddr)
{
printk(KERN_ERR "Bad pte = %08llx, process = %s, "
"vm_flags = %lx, vaddr = %lx\n",
@@ -649,6 +653,7 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
unsigned long next;
unsigned long addr = vma->vm_start;
unsigned long end = vma->vm_end;
+ int ret;
/*
* Don't copy ptes where a page fault will fill them correctly.
@@ -664,17 +669,33 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
if (is_vm_hugetlb_page(vma))
return copy_hugetlb_page_range(dst_mm, src_mm, vma);
+ /*
+ * We need to invalidate the secondary MMU mappings only when
+ * there could be a permission downgrade on the ptes of the
+ * parent mm. And a permission downgrade will only happen if
+ * is_cow_mapping() returns true.
+ */
+ if (is_cow_mapping(vma->vm_flags))
+ mmu_notifier_invalidate_range_start(src_mm, addr, end);
+
+ ret = 0;
dst_pgd = pgd_offset(dst_mm, addr);
src_pgd = pgd_offset(src_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(src_pgd))
continue;
- if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
- vma, addr, next))
- return -ENOMEM;
+ if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
+ vma, addr, next))) {
+ ret = -ENOMEM;
+ break;
+ }
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
- return 0;
+
+ if (is_cow_mapping(vma->vm_flags))
+ mmu_notifier_invalidate_range_end(src_mm,
+ vma->vm_start, end);
+ return ret;
}
static unsigned long zap_pte_range(struct mmu_gather *tlb,
@@ -878,7 +899,9 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp,
unsigned long start = start_addr;
spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
int fullmm = (*tlbp)->fullmm;
+ struct mm_struct *mm = vma->vm_mm;
+ mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
unsigned long end;
@@ -899,9 +922,23 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp,
}
if (unlikely(is_vm_hugetlb_page(vma))) {
- unmap_hugepage_range(vma, start, end);
- zap_work -= (end - start) /
- (HPAGE_SIZE / PAGE_SIZE);
+ /*
+ * It is undesirable to test vma->vm_file as it
+ * should be non-null for valid hugetlb area.
+ * However, vm_file will be NULL in the error
+ * cleanup path of do_mmap_pgoff. When
+ * hugetlbfs ->mmap method fails,
+ * do_mmap_pgoff() nullifies vma->vm_file
+ * before calling this function to clean up.
+ * Since no pte has actually been setup, it is
+ * safe to do nothing in this case.
+ */
+ if (vma->vm_file) {
+ unmap_hugepage_range(vma, start, end, NULL);
+ zap_work -= (end - start) /
+ pages_per_huge_page(hstate_vma(vma));
+ }
+
start = end;
} else
start = unmap_page_range(*tlbp, vma,
@@ -929,6 +966,7 @@ unsigned long unmap_vmas(struct mmu_gather **tlbp,
}
}
out:
+ mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
return start; /* which is now the end (or restart) address */
}
@@ -956,6 +994,29 @@ unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
return end;
}
+/**
+ * zap_vma_ptes - remove ptes mapping the vma
+ * @vma: vm_area_struct holding ptes to be zapped
+ * @address: starting address of pages to zap
+ * @size: number of bytes to zap
+ *
+ * This function only unmaps ptes assigned to VM_PFNMAP vmas.
+ *
+ * The entire address range must be fully contained within the vma.
+ *
+ * Returns 0 if successful.
+ */
+int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
+ unsigned long size)
+{
+ if (address < vma->vm_start || address + size > vma->vm_end ||
+ !(vma->vm_flags & VM_PFNMAP))
+ return -1;
+ zap_page_range(vma, address, size, NULL);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(zap_vma_ptes);
+
/*
* Do a quick page-table lookup for a single page.
*/
@@ -982,19 +1043,24 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
goto no_page_table;
pud = pud_offset(pgd, address);
- if (pud_none(*pud) || unlikely(pud_bad(*pud)))
+ if (pud_none(*pud))
goto no_page_table;
-
+ if (pud_huge(*pud)) {
+ BUG_ON(flags & FOLL_GET);
+ page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
+ goto out;
+ }
+ if (unlikely(pud_bad(*pud)))
+ goto no_page_table;
+
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd))
goto no_page_table;
-
if (pmd_huge(*pmd)) {
BUG_ON(flags & FOLL_GET);
page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
goto out;
}
-
if (unlikely(pmd_bad(*pmd)))
goto no_page_table;
@@ -1058,19 +1124,22 @@ static inline int use_zero_page(struct vm_area_struct *vma)
if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
return 0;
/*
- * And if we have a fault or a nopfn routine, it's not an
- * anonymous region.
+ * And if we have a fault routine, it's not an anonymous region.
*/
- return !vma->vm_ops ||
- (!vma->vm_ops->fault && !vma->vm_ops->nopfn);
+ return !vma->vm_ops || !vma->vm_ops->fault;
}
-int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, int len, int write, int force,
+
+
+int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, int len, int flags,
struct page **pages, struct vm_area_struct **vmas)
{
int i;
- unsigned int vm_flags;
+ unsigned int vm_flags = 0;
+ int write = !!(flags & GUP_FLAGS_WRITE);
+ int force = !!(flags & GUP_FLAGS_FORCE);
+ int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
if (len <= 0)
return 0;
@@ -1094,7 +1163,9 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
- if (write) /* user gate pages are read-only */
+
+ /* user gate pages are read-only */
+ if (!ignore && write)
return i ? : -EFAULT;
if (pg > TASK_SIZE)
pgd = pgd_offset_k(pg);
@@ -1126,8 +1197,9 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
continue;
}
- if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
- || !(vm_flags & vma->vm_flags))
+ if (!vma ||
+ (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
+ (!ignore && !(vm_flags & vma->vm_flags)))
return i ? : -EFAULT;
if (is_vm_hugetlb_page(vma)) {
@@ -1202,6 +1274,23 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
} while (len);
return i;
}
+
+int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, int len, int write, int force,
+ struct page **pages, struct vm_area_struct **vmas)
+{
+ int flags = 0;
+
+ if (write)
+ flags |= GUP_FLAGS_WRITE;
+ if (force)
+ flags |= GUP_FLAGS_FORCE;
+
+ return __get_user_pages(tsk, mm,
+ start, len, flags,
+ pages, vmas);
+}
+
EXPORT_SYMBOL(get_user_pages);
pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
@@ -1232,18 +1321,14 @@ static int insert_page(struct vm_area_struct *vma, unsigned long addr,
pte_t *pte;
spinlock_t *ptl;
- retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
- if (retval)
- goto out;
-
retval = -EINVAL;
if (PageAnon(page))
- goto out_uncharge;
+ goto out;
retval = -ENOMEM;
flush_dcache_page(page);
pte = get_locked_pte(mm, addr, &ptl);
if (!pte)
- goto out_uncharge;
+ goto out;
retval = -EBUSY;
if (!pte_none(*pte))
goto out_unlock;
@@ -1259,8 +1344,6 @@ static int insert_page(struct vm_area_struct *vma, unsigned long addr,
return retval;
out_unlock:
pte_unmap_unlock(pte, ptl);
-out_uncharge:
- mem_cgroup_uncharge_page(page);
out:
return retval;
}
@@ -1338,6 +1421,11 @@ out:
*
* This function should only be called from a vm_ops->fault handler, and
* in that case the handler should return NULL.
+ *
+ * vma cannot be a COW mapping.
+ *
+ * As this is called only for pages that do not currently exist, we
+ * do not need to flush old virtual caches or the TLB.
*/
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn)
@@ -1548,6 +1636,8 @@ static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long next;
int err;
+ BUG_ON(pud_huge(*pud));
+
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return -ENOMEM;
@@ -1589,10 +1679,11 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
{
pgd_t *pgd;
unsigned long next;
- unsigned long end = addr + size;
+ unsigned long start = addr, end = addr + size;
int err;
BUG_ON(addr >= end);
+ mmu_notifier_invalidate_range_start(mm, start, end);
pgd = pgd_offset(mm, addr);
do {
next = pgd_addr_end(addr, end);
@@ -1600,6 +1691,7 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
if (err)
break;
} while (pgd++, addr = next, addr != end);
+ mmu_notifier_invalidate_range_end(mm, start, end);
return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);
@@ -1716,7 +1808,7 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
* not dirty accountable.
*/
if (PageAnon(old_page)) {
- if (!TestSetPageLocked(old_page)) {
+ if (trylock_page(old_page)) {
reuse = can_share_swap_page(old_page);
unlock_page(old_page);
}
@@ -1785,6 +1877,15 @@ gotten:
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
if (!new_page)
goto oom;
+ /*
+ * Don't let another task, with possibly unlocked vma,
+ * keep the mlocked page.
+ */
+ if (vma->vm_flags & VM_LOCKED) {
+ lock_page(old_page); /* for LRU manipulation */
+ clear_page_mlock(old_page);
+ unlock_page(old_page);
+ }
cow_user_page(new_page, old_page, address, vma);
__SetPageUptodate(new_page);
@@ -1812,12 +1913,14 @@ gotten:
* seen in the presence of one thread doing SMC and another
* thread doing COW.
*/
- ptep_clear_flush(vma, address, page_table);
- set_pte_at(mm, address, page_table, entry);
- update_mmu_cache(vma, address, entry);
- lru_cache_add_active(new_page);
+ ptep_clear_flush_notify(vma, address, page_table);
+ SetPageSwapBacked(new_page);
+ lru_cache_add_active_or_unevictable(new_page, vma);
page_add_new_anon_rmap(new_page, vma, address);
+//TODO: is this safe? do_anonymous_page() does it this way.
+ set_pte_at(mm, address, page_table, entry);
+ update_mmu_cache(vma, address, entry);
if (old_page) {
/*
* Only after switching the pte to the new page may
@@ -2215,16 +2318,17 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
count_vm_event(PGMAJFAULT);
}
+ mark_page_accessed(page);
+
+ lock_page(page);
+ delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
+
if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
- delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
ret = VM_FAULT_OOM;
+ unlock_page(page);
goto out;
}
- mark_page_accessed(page);
- lock_page(page);
- delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
-
/*
* Back out if somebody else already faulted in this pte.
*/
@@ -2251,7 +2355,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
page_add_anon_rmap(page, vma, address);
swap_free(entry);
- if (vm_swap_full())
+ if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
remove_exclusive_swap_page(page);
unlock_page(page);
@@ -2309,7 +2413,8 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (!pte_none(*page_table))
goto release;
inc_mm_counter(mm, anon_rss);
- lru_cache_add_active(page);
+ SetPageSwapBacked(page);
+ lru_cache_add_active_or_unevictable(page, vma);
page_add_new_anon_rmap(page, vma, address);
set_pte_at(mm, address, page_table, entry);
@@ -2350,6 +2455,7 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page;
pte_t entry;
int anon = 0;
+ int charged = 0;
struct page *dirty_page = NULL;
struct vm_fault vmf;
int ret;
@@ -2390,6 +2496,18 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
ret = VM_FAULT_OOM;
goto out;
}
+ if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
+ ret = VM_FAULT_OOM;
+ page_cache_release(page);
+ goto out;
+ }
+ charged = 1;
+ /*
+ * Don't let another task, with possibly unlocked vma,
+ * keep the mlocked page.
+ */
+ if (vma->vm_flags & VM_LOCKED)
+ clear_page_mlock(vmf.page);
copy_user_highpage(page, vmf.page, address, vma);
__SetPageUptodate(page);
} else {
@@ -2424,11 +2542,6 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
}
- if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
- ret = VM_FAULT_OOM;
- goto out;
- }
-
page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
/*
@@ -2447,11 +2560,11 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
entry = mk_pte(page, vma->vm_page_prot);
if (flags & FAULT_FLAG_WRITE)
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- set_pte_at(mm, address, page_table, entry);
if (anon) {
- inc_mm_counter(mm, anon_rss);
- lru_cache_add_active(page);
- page_add_new_anon_rmap(page, vma, address);
+ inc_mm_counter(mm, anon_rss);
+ SetPageSwapBacked(page);
+ lru_cache_add_active_or_unevictable(page, vma);
+ page_add_new_anon_rmap(page, vma, address);
} else {
inc_mm_counter(mm, file_rss);
page_add_file_rmap(page);
@@ -2460,11 +2573,14 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
get_page(dirty_page);
}
}
+//TODO: is this safe? do_anonymous_page() does it this way.
+ set_pte_at(mm, address, page_table, entry);
/* no need to invalidate: a not-present page won't be cached */
update_mmu_cache(vma, address, entry);
} else {
- mem_cgroup_uncharge_page(page);
+ if (charged)
+ mem_cgroup_uncharge_page(page);
if (anon)
page_cache_release(page);
else
@@ -2501,59 +2617,6 @@ static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
}
-
-/*
- * do_no_pfn() tries to create a new page mapping for a page without
- * a struct_page backing it
- *
- * As this is called only for pages that do not currently exist, we
- * do not need to flush old virtual caches or the TLB.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
- *
- * It is expected that the ->nopfn handler always returns the same pfn
- * for a given virtual mapping.
- *
- * Mark this `noinline' to prevent it from bloating the main pagefault code.
- */
-static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- int write_access)
-{
- spinlock_t *ptl;
- pte_t entry;
- unsigned long pfn;
-
- pte_unmap(page_table);
- BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
- BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
-
- pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
-
- BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
-
- if (unlikely(pfn == NOPFN_OOM))
- return VM_FAULT_OOM;
- else if (unlikely(pfn == NOPFN_SIGBUS))
- return VM_FAULT_SIGBUS;
- else if (unlikely(pfn == NOPFN_REFAULT))
- return 0;
-
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
-
- /* Only go through if we didn't race with anybody else... */
- if (pte_none(*page_table)) {
- entry = pfn_pte(pfn, vma->vm_page_prot);
- if (write_access)
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- set_pte_at(mm, address, page_table, entry);
- }
- pte_unmap_unlock(page_table, ptl);
- return 0;
-}
-
/*
* Fault of a previously existing named mapping. Repopulate the pte
* from the encoded file_pte if possible. This enables swappable
@@ -2614,9 +2677,6 @@ static inline int handle_pte_fault(struct mm_struct *mm,
if (likely(vma->vm_ops->fault))
return do_linear_fault(mm, vma, address,
pte, pmd, write_access, entry);
- if (unlikely(vma->vm_ops->nopfn))
- return do_no_pfn(mm, vma, address, pte,
- pmd, write_access);
}
return do_anonymous_page(mm, vma, address,
pte, pmd, write_access);
@@ -2748,7 +2808,7 @@ int make_pages_present(unsigned long addr, unsigned long end)
vma = find_vma(current->mm, addr);
if (!vma)
- return -1;
+ return -ENOMEM;
write = (vma->vm_flags & VM_WRITE) != 0;
BUG_ON(addr >= end);
BUG_ON(end > vma->vm_end);
@@ -2757,7 +2817,7 @@ int make_pages_present(unsigned long addr, unsigned long end)
len, write, 0, NULL, NULL);
if (ret < 0)
return ret;
- return ret == len ? 0 : -1;
+ return ret == len ? 0 : -EFAULT;
}
#if !defined(__HAVE_ARCH_GATE_AREA)
@@ -2804,6 +2864,86 @@ int in_gate_area_no_task(unsigned long addr)
#endif /* __HAVE_ARCH_GATE_AREA */
+#ifdef CONFIG_HAVE_IOREMAP_PROT
+static resource_size_t follow_phys(struct vm_area_struct *vma,
+ unsigned long address, unsigned int flags,
+ unsigned long *prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *ptep, pte;
+ spinlock_t *ptl;
+ resource_size_t phys_addr = 0;
+ struct mm_struct *mm = vma->vm_mm;
+
+ VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
+
+ pgd = pgd_offset(mm, address);
+ if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
+ goto no_page_table;
+
+ pud = pud_offset(pgd, address);
+ if (pud_none(*pud) || unlikely(pud_bad(*pud)))
+ goto no_page_table;
+
+ pmd = pmd_offset(pud, address);
+ if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
+ goto no_page_table;
+
+ /* We cannot handle huge page PFN maps. Luckily they don't exist. */
+ if (pmd_huge(*pmd))
+ goto no_page_table;
+
+ ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (!ptep)
+ goto out;
+
+ pte = *ptep;
+ if (!pte_present(pte))
+ goto unlock;
+ if ((flags & FOLL_WRITE) && !pte_write(pte))
+ goto unlock;
+ phys_addr = pte_pfn(pte);
+ phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
+
+ *prot = pgprot_val(pte_pgprot(pte));
+
+unlock:
+ pte_unmap_unlock(ptep, ptl);
+out:
+ return phys_addr;
+no_page_table:
+ return 0;
+}
+
+int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
+ void *buf, int len, int write)
+{
+ resource_size_t phys_addr;
+ unsigned long prot = 0;
+ void *maddr;
+ int offset = addr & (PAGE_SIZE-1);
+
+ if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
+ return -EINVAL;
+
+ phys_addr = follow_phys(vma, addr, write, &prot);
+
+ if (!phys_addr)
+ return -EINVAL;
+
+ maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
+ if (write)
+ memcpy_toio(maddr + offset, buf, len);
+ else
+ memcpy_fromio(buf, maddr + offset, len);
+ iounmap(maddr);
+
+ return len;
+}
+#endif
+
/*
* Access another process' address space.
* Source/target buffer must be kernel space,
@@ -2813,7 +2953,6 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in
{
struct mm_struct *mm;
struct vm_area_struct *vma;
- struct page *page;
void *old_buf = buf;
mm = get_task_mm(tsk);
@@ -2825,28 +2964,44 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in
while (len) {
int bytes, ret, offset;
void *maddr;
+ struct page *page = NULL;
ret = get_user_pages(tsk, mm, addr, 1,
write, 1, &page, &vma);
- if (ret <= 0)
- break;
-
- bytes = len;
- offset = addr & (PAGE_SIZE-1);
- if (bytes > PAGE_SIZE-offset)
- bytes = PAGE_SIZE-offset;
-
- maddr = kmap(page);
- if (write) {
- copy_to_user_page(vma, page, addr,
- maddr + offset, buf, bytes);
- set_page_dirty_lock(page);
+ if (ret <= 0) {
+ /*
+ * Check if this is a VM_IO | VM_PFNMAP VMA, which
+ * we can access using slightly different code.
+ */
+#ifdef CONFIG_HAVE_IOREMAP_PROT
+ vma = find_vma(mm, addr);
+ if (!vma)
+ break;
+ if (vma->vm_ops && vma->vm_ops->access)
+ ret = vma->vm_ops->access(vma, addr, buf,
+ len, write);
+ if (ret <= 0)
+#endif
+ break;
+ bytes = ret;
} else {
- copy_from_user_page(vma, page, addr,
- buf, maddr + offset, bytes);
+ bytes = len;
+ offset = addr & (PAGE_SIZE-1);
+ if (bytes > PAGE_SIZE-offset)
+ bytes = PAGE_SIZE-offset;
+
+ maddr = kmap(page);
+ if (write) {
+ copy_to_user_page(vma, page, addr,
+ maddr + offset, buf, bytes);
+ set_page_dirty_lock(page);
+ } else {
+ copy_from_user_page(vma, page, addr,
+ buf, maddr + offset, bytes);
+ }
+ kunmap(page);
+ page_cache_release(page);
}
- kunmap(page);
- page_cache_release(page);
len -= bytes;
buf += bytes;
addr += bytes;
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index 833f854eabe5..6837a1014372 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -26,6 +26,7 @@
#include <linux/delay.h>
#include <linux/migrate.h>
#include <linux/page-isolation.h>
+#include <linux/pfn.h>
#include <asm/tlbflush.h>
@@ -62,9 +63,9 @@ static void release_memory_resource(struct resource *res)
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
#ifndef CONFIG_SPARSEMEM_VMEMMAP
-static void get_page_bootmem(unsigned long info, struct page *page, int magic)
+static void get_page_bootmem(unsigned long info, struct page *page, int type)
{
- atomic_set(&page->_mapcount, magic);
+ atomic_set(&page->_mapcount, type);
SetPagePrivate(page);
set_page_private(page, info);
atomic_inc(&page->_count);
@@ -72,10 +73,10 @@ static void get_page_bootmem(unsigned long info, struct page *page, int magic)
void put_page_bootmem(struct page *page)
{
- int magic;
+ int type;
- magic = atomic_read(&page->_mapcount);
- BUG_ON(magic >= -1);
+ type = atomic_read(&page->_mapcount);
+ BUG_ON(type >= -1);
if (atomic_dec_return(&page->_count) == 1) {
ClearPagePrivate(page);
@@ -86,7 +87,7 @@ void put_page_bootmem(struct page *page)
}
-void register_page_bootmem_info_section(unsigned long start_pfn)
+static void register_page_bootmem_info_section(unsigned long start_pfn)
{
unsigned long *usemap, mapsize, section_nr, i;
struct mem_section *ms;
@@ -119,7 +120,7 @@ void register_page_bootmem_info_section(unsigned long start_pfn)
mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
for (i = 0; i < mapsize; i++, page++)
- get_page_bootmem(section_nr, page, MIX_INFO);
+ get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
}
@@ -323,11 +324,11 @@ int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
BUG_ON(nr_pages % PAGES_PER_SECTION);
- release_mem_region(phys_start_pfn << PAGE_SHIFT, nr_pages * PAGE_SIZE);
-
sections_to_remove = nr_pages / PAGES_PER_SECTION;
for (i = 0; i < sections_to_remove; i++) {
unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
+ release_mem_region(pfn << PAGE_SHIFT,
+ PAGES_PER_SECTION << PAGE_SHIFT);
ret = __remove_section(zone, __pfn_to_section(pfn));
if (ret)
break;
@@ -429,7 +430,9 @@ int online_pages(unsigned long pfn, unsigned long nr_pages)
if (need_zonelists_rebuild)
build_all_zonelists();
- vm_total_pages = nr_free_pagecache_pages();
+ else
+ vm_total_pages = nr_free_pagecache_pages();
+
writeback_set_ratelimit();
if (onlined_pages)
@@ -455,7 +458,7 @@ static pg_data_t *hotadd_new_pgdat(int nid, u64 start)
/* we can use NODE_DATA(nid) from here */
/* init node's zones as empty zones, we don't have any present pages.*/
- free_area_init_node(nid, pgdat, zones_size, start_pfn, zholes_size);
+ free_area_init_node(nid, zones_size, start_pfn, zholes_size);
return pgdat;
}
@@ -521,6 +524,66 @@ EXPORT_SYMBOL_GPL(add_memory);
#ifdef CONFIG_MEMORY_HOTREMOVE
/*
+ * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
+ * set and the size of the free page is given by page_order(). Using this,
+ * the function determines if the pageblock contains only free pages.
+ * Due to buddy contraints, a free page at least the size of a pageblock will
+ * be located at the start of the pageblock
+ */
+static inline int pageblock_free(struct page *page)
+{
+ return PageBuddy(page) && page_order(page) >= pageblock_order;
+}
+
+/* Return the start of the next active pageblock after a given page */
+static struct page *next_active_pageblock(struct page *page)
+{
+ int pageblocks_stride;
+
+ /* Ensure the starting page is pageblock-aligned */
+ BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
+
+ /* Move forward by at least 1 * pageblock_nr_pages */
+ pageblocks_stride = 1;
+
+ /* If the entire pageblock is free, move to the end of free page */
+ if (pageblock_free(page))
+ pageblocks_stride += page_order(page) - pageblock_order;
+
+ return page + (pageblocks_stride * pageblock_nr_pages);
+}
+
+/* Checks if this range of memory is likely to be hot-removable. */
+int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
+{
+ int type;
+ struct page *page = pfn_to_page(start_pfn);
+ struct page *end_page = page + nr_pages;
+
+ /* Check the starting page of each pageblock within the range */
+ for (; page < end_page; page = next_active_pageblock(page)) {
+ type = get_pageblock_migratetype(page);
+
+ /*
+ * A pageblock containing MOVABLE or free pages is considered
+ * removable
+ */
+ if (type != MIGRATE_MOVABLE && !pageblock_free(page))
+ return 0;
+
+ /*
+ * A pageblock starting with a PageReserved page is not
+ * considered removable.
+ */
+ if (PageReserved(page))
+ return 0;
+ }
+
+ /* All pageblocks in the memory block are likely to be hot-removable */
+ return 1;
+}
+
+/*
* Confirm all pages in a range [start, end) is belongs to the same zone.
*/
static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
@@ -595,8 +658,9 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
* We can skip free pages. And we can only deal with pages on
* LRU.
*/
- ret = isolate_lru_page(page, &source);
+ ret = isolate_lru_page(page);
if (!ret) { /* Success */
+ list_add_tail(&page->lru, &source);
move_pages--;
} else {
/* Becasue we don't have big zone->lock. we should
@@ -787,10 +851,19 @@ failed_removal:
return ret;
}
+
+int remove_memory(u64 start, u64 size)
+{
+ unsigned long start_pfn, end_pfn;
+
+ start_pfn = PFN_DOWN(start);
+ end_pfn = start_pfn + PFN_DOWN(size);
+ return offline_pages(start_pfn, end_pfn, 120 * HZ);
+}
#else
int remove_memory(u64 start, u64 size)
{
return -EINVAL;
}
-EXPORT_SYMBOL_GPL(remove_memory);
#endif /* CONFIG_MEMORY_HOTREMOVE */
+EXPORT_SYMBOL_GPL(remove_memory);
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index c94e58b192c3..36f42573a335 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -93,6 +93,8 @@
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
+#include "internal.h"
+
/* Internal flags */
#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
@@ -762,8 +764,11 @@ static void migrate_page_add(struct page *page, struct list_head *pagelist,
/*
* Avoid migrating a page that is shared with others.
*/
- if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
- isolate_lru_page(page, pagelist);
+ if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
+ if (!isolate_lru_page(page)) {
+ list_add_tail(&page->lru, pagelist);
+ }
+ }
}
static struct page *new_node_page(struct page *page, unsigned long node, int **x)
@@ -803,7 +808,6 @@ static int migrate_to_node(struct mm_struct *mm, int source, int dest,
int do_migrate_pages(struct mm_struct *mm,
const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
{
- LIST_HEAD(pagelist);
int busy = 0;
int err = 0;
nodemask_t tmp;
@@ -1481,7 +1485,7 @@ struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
zl = node_zonelist(interleave_nid(*mpol, vma, addr,
- HPAGE_SHIFT), gfp_flags);
+ huge_page_shift(hstate_vma(vma))), gfp_flags);
} else {
zl = policy_zonelist(gfp_flags, *mpol);
if ((*mpol)->mode == MPOL_BIND)
@@ -2198,7 +2202,7 @@ static void gather_stats(struct page *page, void *private, int pte_dirty)
if (PageSwapCache(page))
md->swapcache++;
- if (PageActive(page))
+ if (PageActive(page) || PageUnevictable(page))
md->active++;
if (PageWriteback(page))
@@ -2220,9 +2224,12 @@ static void check_huge_range(struct vm_area_struct *vma,
{
unsigned long addr;
struct page *page;
+ struct hstate *h = hstate_vma(vma);
+ unsigned long sz = huge_page_size(h);
- for (addr = start; addr < end; addr += HPAGE_SIZE) {
- pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
+ for (addr = start; addr < end; addr += sz) {
+ pte_t *ptep = huge_pte_offset(vma->vm_mm,
+ addr & huge_page_mask(h));
pte_t pte;
if (!ptep)
diff --git a/mm/migrate.c b/mm/migrate.c
index 55bd355d170d..6602941bfab0 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -30,42 +30,13 @@
#include <linux/vmalloc.h>
#include <linux/security.h>
#include <linux/memcontrol.h>
+#include <linux/syscalls.h>
#include "internal.h"
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
/*
- * Isolate one page from the LRU lists. If successful put it onto
- * the indicated list with elevated page count.
- *
- * Result:
- * -EBUSY: page not on LRU list
- * 0: page removed from LRU list and added to the specified list.
- */
-int isolate_lru_page(struct page *page, struct list_head *pagelist)
-{
- int ret = -EBUSY;
-
- if (PageLRU(page)) {
- struct zone *zone = page_zone(page);
-
- spin_lock_irq(&zone->lru_lock);
- if (PageLRU(page) && get_page_unless_zero(page)) {
- ret = 0;
- ClearPageLRU(page);
- if (PageActive(page))
- del_page_from_active_list(zone, page);
- else
- del_page_from_inactive_list(zone, page);
- list_add_tail(&page->lru, pagelist);
- }
- spin_unlock_irq(&zone->lru_lock);
- }
- return ret;
-}
-
-/*
* migrate_prep() needs to be called before we start compiling a list of pages
* to be migrated using isolate_lru_page().
*/
@@ -82,23 +53,9 @@ int migrate_prep(void)
return 0;
}
-static inline void move_to_lru(struct page *page)
-{
- if (PageActive(page)) {
- /*
- * lru_cache_add_active checks that
- * the PG_active bit is off.
- */
- ClearPageActive(page);
- lru_cache_add_active(page);
- } else {
- lru_cache_add(page);
- }
- put_page(page);
-}
-
/*
- * Add isolated pages on the list back to the LRU.
+ * Add isolated pages on the list back to the LRU under page lock
+ * to avoid leaking evictable pages back onto unevictable list.
*
* returns the number of pages put back.
*/
@@ -110,7 +67,7 @@ int putback_lru_pages(struct list_head *l)
list_for_each_entry_safe(page, page2, l, lru) {
list_del(&page->lru);
- move_to_lru(page);
+ putback_lru_page(page);
count++;
}
return count;
@@ -284,7 +241,15 @@ void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
page = migration_entry_to_page(entry);
- get_page(page);
+ /*
+ * Once radix-tree replacement of page migration started, page_count
+ * *must* be zero. And, we don't want to call wait_on_page_locked()
+ * against a page without get_page().
+ * So, we use get_page_unless_zero(), here. Even failed, page fault
+ * will occur again.
+ */
+ if (!get_page_unless_zero(page))
+ goto out;
pte_unmap_unlock(ptep, ptl);
wait_on_page_locked(page);
put_page(page);
@@ -304,6 +269,7 @@ out:
static int migrate_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page)
{
+ int expected_count;
void **pslot;
if (!mapping) {
@@ -313,14 +279,20 @@ static int migrate_page_move_mapping(struct address_space *mapping,
return 0;
}
- write_lock_irq(&mapping->tree_lock);
+ spin_lock_irq(&mapping->tree_lock);
pslot = radix_tree_lookup_slot(&mapping->page_tree,
page_index(page));
- if (page_count(page) != 2 + !!PagePrivate(page) ||
+ expected_count = 2 + !!PagePrivate(page);
+ if (page_count(page) != expected_count ||
(struct page *)radix_tree_deref_slot(pslot) != page) {
- write_unlock_irq(&mapping->tree_lock);
+ spin_unlock_irq(&mapping->tree_lock);
+ return -EAGAIN;
+ }
+
+ if (!page_freeze_refs(page, expected_count)) {
+ spin_unlock_irq(&mapping->tree_lock);
return -EAGAIN;
}
@@ -337,6 +309,7 @@ static int migrate_page_move_mapping(struct address_space *mapping,
radix_tree_replace_slot(pslot, newpage);
+ page_unfreeze_refs(page, expected_count);
/*
* Drop cache reference from old page.
* We know this isn't the last reference.
@@ -356,7 +329,7 @@ static int migrate_page_move_mapping(struct address_space *mapping,
__dec_zone_page_state(page, NR_FILE_PAGES);
__inc_zone_page_state(newpage, NR_FILE_PAGES);
- write_unlock_irq(&mapping->tree_lock);
+ spin_unlock_irq(&mapping->tree_lock);
return 0;
}
@@ -366,6 +339,8 @@ static int migrate_page_move_mapping(struct address_space *mapping,
*/
static void migrate_page_copy(struct page *newpage, struct page *page)
{
+ int anon;
+
copy_highpage(newpage, page);
if (PageError(page))
@@ -374,8 +349,11 @@ static void migrate_page_copy(struct page *newpage, struct page *page)
SetPageReferenced(newpage);
if (PageUptodate(page))
SetPageUptodate(newpage);
- if (PageActive(page))
+ if (TestClearPageActive(page)) {
+ VM_BUG_ON(PageUnevictable(page));
SetPageActive(newpage);
+ } else
+ unevictable_migrate_page(newpage, page);
if (PageChecked(page))
SetPageChecked(newpage);
if (PageMappedToDisk(page))
@@ -393,14 +371,20 @@ static void migrate_page_copy(struct page *newpage, struct page *page)
__set_page_dirty_nobuffers(newpage);
}
+ mlock_migrate_page(newpage, page);
+
#ifdef CONFIG_SWAP
ClearPageSwapCache(page);
#endif
- ClearPageActive(page);
ClearPagePrivate(page);
set_page_private(page, 0);
+ /* page->mapping contains a flag for PageAnon() */
+ anon = PageAnon(page);
page->mapping = NULL;
+ if (!anon) /* This page was removed from radix-tree. */
+ mem_cgroup_uncharge_cache_page(page);
+
/*
* If any waiters have accumulated on the new page then
* wake them up.
@@ -575,6 +559,10 @@ static int fallback_migrate_page(struct address_space *mapping,
*
* The new page will have replaced the old page if this function
* is successful.
+ *
+ * Return value:
+ * < 0 - error code
+ * == 0 - success
*/
static int move_to_new_page(struct page *newpage, struct page *page)
{
@@ -586,12 +574,14 @@ static int move_to_new_page(struct page *newpage, struct page *page)
* establishing additional references. We are the only one
* holding a reference to the new page at this point.
*/
- if (TestSetPageLocked(newpage))
+ if (!trylock_page(newpage))
BUG();
/* Prepare mapping for the new page.*/
newpage->index = page->index;
newpage->mapping = page->mapping;
+ if (PageSwapBacked(page))
+ SetPageSwapBacked(newpage);
mapping = page_mapping(page);
if (!mapping)
@@ -610,7 +600,6 @@ static int move_to_new_page(struct page *newpage, struct page *page)
rc = fallback_migrate_page(mapping, newpage, page);
if (!rc) {
- mem_cgroup_page_migration(page, newpage);
remove_migration_ptes(page, newpage);
} else
newpage->mapping = NULL;
@@ -636,12 +625,21 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
if (!newpage)
return -ENOMEM;
- if (page_count(page) == 1)
+ if (page_count(page) == 1) {
/* page was freed from under us. So we are done. */
goto move_newpage;
+ }
+
+ charge = mem_cgroup_prepare_migration(page, newpage);
+ if (charge == -ENOMEM) {
+ rc = -ENOMEM;
+ goto move_newpage;
+ }
+ /* prepare cgroup just returns 0 or -ENOMEM */
+ BUG_ON(charge);
rc = -EAGAIN;
- if (TestSetPageLocked(page)) {
+ if (!trylock_page(page)) {
if (!force)
goto move_newpage;
lock_page(page);
@@ -691,25 +689,19 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
goto rcu_unlock;
}
- charge = mem_cgroup_prepare_migration(page);
/* Establish migration ptes or remove ptes */
try_to_unmap(page, 1);
if (!page_mapped(page))
rc = move_to_new_page(newpage, page);
- if (rc) {
+ if (rc)
remove_migration_ptes(page, page);
- if (charge)
- mem_cgroup_end_migration(page);
- } else if (charge)
- mem_cgroup_end_migration(newpage);
rcu_unlock:
if (rcu_locked)
rcu_read_unlock();
unlock:
-
unlock_page(page);
if (rc != -EAGAIN) {
@@ -720,15 +712,19 @@ unlock:
* restored.
*/
list_del(&page->lru);
- move_to_lru(page);
+ putback_lru_page(page);
}
move_newpage:
+ if (!charge)
+ mem_cgroup_end_migration(newpage);
+
/*
* Move the new page to the LRU. If migration was not successful
* then this will free the page.
*/
- move_to_lru(newpage);
+ putback_lru_page(newpage);
+
if (result) {
if (rc)
*result = rc;
@@ -835,9 +831,11 @@ static struct page *new_page_node(struct page *p, unsigned long private,
* Move a set of pages as indicated in the pm array. The addr
* field must be set to the virtual address of the page to be moved
* and the node number must contain a valid target node.
+ * The pm array ends with node = MAX_NUMNODES.
*/
-static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
- int migrate_all)
+static int do_move_page_to_node_array(struct mm_struct *mm,
+ struct page_to_node *pm,
+ int migrate_all)
{
int err;
struct page_to_node *pp;
@@ -891,7 +889,9 @@ static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
!migrate_all)
goto put_and_set;
- err = isolate_lru_page(page, &pagelist);
+ err = isolate_lru_page(page);
+ if (!err)
+ list_add_tail(&page->lru, &pagelist);
put_and_set:
/*
* Either remove the duplicate refcount from
@@ -903,36 +903,118 @@ set_status:
pp->status = err;
}
+ err = 0;
if (!list_empty(&pagelist))
err = migrate_pages(&pagelist, new_page_node,
(unsigned long)pm);
- else
- err = -ENOENT;
up_read(&mm->mmap_sem);
return err;
}
/*
- * Determine the nodes of a list of pages. The addr in the pm array
- * must have been set to the virtual address of which we want to determine
- * the node number.
+ * Migrate an array of page address onto an array of nodes and fill
+ * the corresponding array of status.
*/
-static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
+static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
+ unsigned long nr_pages,
+ const void __user * __user *pages,
+ const int __user *nodes,
+ int __user *status, int flags)
{
+ struct page_to_node *pm = NULL;
+ nodemask_t task_nodes;
+ int err = 0;
+ int i;
+
+ task_nodes = cpuset_mems_allowed(task);
+
+ /* Limit nr_pages so that the multiplication may not overflow */
+ if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
+ err = -E2BIG;
+ goto out;
+ }
+
+ pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
+ if (!pm) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /*
+ * Get parameters from user space and initialize the pm
+ * array. Return various errors if the user did something wrong.
+ */
+ for (i = 0; i < nr_pages; i++) {
+ const void __user *p;
+
+ err = -EFAULT;
+ if (get_user(p, pages + i))
+ goto out_pm;
+
+ pm[i].addr = (unsigned long)p;
+ if (nodes) {
+ int node;
+
+ if (get_user(node, nodes + i))
+ goto out_pm;
+
+ err = -ENODEV;
+ if (!node_state(node, N_HIGH_MEMORY))
+ goto out_pm;
+
+ err = -EACCES;
+ if (!node_isset(node, task_nodes))
+ goto out_pm;
+
+ pm[i].node = node;
+ } else
+ pm[i].node = 0; /* anything to not match MAX_NUMNODES */
+ }
+ /* End marker */
+ pm[nr_pages].node = MAX_NUMNODES;
+
+ err = do_move_page_to_node_array(mm, pm, flags & MPOL_MF_MOVE_ALL);
+ if (err >= 0)
+ /* Return status information */
+ for (i = 0; i < nr_pages; i++)
+ if (put_user(pm[i].status, status + i))
+ err = -EFAULT;
+
+out_pm:
+ vfree(pm);
+out:
+ return err;
+}
+
+/*
+ * Determine the nodes of an array of pages and store it in an array of status.
+ */
+static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
+ const void __user * __user *pages,
+ int __user *status)
+{
+ unsigned long i;
+ int err;
+
down_read(&mm->mmap_sem);
- for ( ; pm->node != MAX_NUMNODES; pm++) {
+ for (i = 0; i < nr_pages; i++) {
+ const void __user *p;
+ unsigned long addr;
struct vm_area_struct *vma;
struct page *page;
- int err;
err = -EFAULT;
- vma = find_vma(mm, pm->addr);
+ if (get_user(p, pages+i))
+ goto out;
+ addr = (unsigned long) p;
+
+ vma = find_vma(mm, addr);
if (!vma)
goto set_status;
- page = follow_page(vma, pm->addr, 0);
+ page = follow_page(vma, addr, 0);
err = PTR_ERR(page);
if (IS_ERR(page))
@@ -945,11 +1027,13 @@ static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
err = page_to_nid(page);
set_status:
- pm->status = err;
+ put_user(err, status+i);
}
+ err = 0;
+out:
up_read(&mm->mmap_sem);
- return 0;
+ return err;
}
/*
@@ -961,12 +1045,9 @@ asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
const int __user *nodes,
int __user *status, int flags)
{
- int err = 0;
- int i;
struct task_struct *task;
- nodemask_t task_nodes;
struct mm_struct *mm;
- struct page_to_node *pm = NULL;
+ int err;
/* Check flags */
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
@@ -998,79 +1079,24 @@ asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
(current->uid != task->suid) && (current->uid != task->uid) &&
!capable(CAP_SYS_NICE)) {
err = -EPERM;
- goto out2;
+ goto out;
}
err = security_task_movememory(task);
if (err)
- goto out2;
-
-
- task_nodes = cpuset_mems_allowed(task);
-
- /* Limit nr_pages so that the multiplication may not overflow */
- if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
- err = -E2BIG;
- goto out2;
- }
-
- pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
- if (!pm) {
- err = -ENOMEM;
- goto out2;
- }
-
- /*
- * Get parameters from user space and initialize the pm
- * array. Return various errors if the user did something wrong.
- */
- for (i = 0; i < nr_pages; i++) {
- const void __user *p;
-
- err = -EFAULT;
- if (get_user(p, pages + i))
- goto out;
-
- pm[i].addr = (unsigned long)p;
- if (nodes) {
- int node;
-
- if (get_user(node, nodes + i))
- goto out;
-
- err = -ENODEV;
- if (!node_state(node, N_HIGH_MEMORY))
- goto out;
-
- err = -EACCES;
- if (!node_isset(node, task_nodes))
- goto out;
+ goto out;
- pm[i].node = node;
- } else
- pm[i].node = 0; /* anything to not match MAX_NUMNODES */
+ if (nodes) {
+ err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
+ flags);
+ } else {
+ err = do_pages_stat(mm, nr_pages, pages, status);
}
- /* End marker */
- pm[nr_pages].node = MAX_NUMNODES;
-
- if (nodes)
- err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
- else
- err = do_pages_stat(mm, pm);
-
- if (err >= 0)
- /* Return status information */
- for (i = 0; i < nr_pages; i++)
- if (put_user(pm[i].status, status + i))
- err = -EFAULT;
out:
- vfree(pm);
-out2:
mmput(mm);
return err;
}
-#endif
/*
* Call migration functions in the vma_ops that may prepare
@@ -1092,3 +1118,4 @@ int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
}
return err;
}
+#endif
diff --git a/mm/mlock.c b/mm/mlock.c
index 7b2656055d6a..008ea70b7afa 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -8,10 +8,18 @@
#include <linux/capability.h>
#include <linux/mman.h>
#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/syscalls.h>
#include <linux/sched.h>
#include <linux/module.h>
+#include <linux/rmap.h>
+#include <linux/mmzone.h>
+#include <linux/hugetlb.h>
+
+#include "internal.h"
int can_do_mlock(void)
{
@@ -23,17 +31,381 @@ int can_do_mlock(void)
}
EXPORT_SYMBOL(can_do_mlock);
+#ifdef CONFIG_UNEVICTABLE_LRU
+/*
+ * Mlocked pages are marked with PageMlocked() flag for efficient testing
+ * in vmscan and, possibly, the fault path; and to support semi-accurate
+ * statistics.
+ *
+ * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
+ * be placed on the LRU "unevictable" list, rather than the [in]active lists.
+ * The unevictable list is an LRU sibling list to the [in]active lists.
+ * PageUnevictable is set to indicate the unevictable state.
+ *
+ * When lazy mlocking via vmscan, it is important to ensure that the
+ * vma's VM_LOCKED status is not concurrently being modified, otherwise we
+ * may have mlocked a page that is being munlocked. So lazy mlock must take
+ * the mmap_sem for read, and verify that the vma really is locked
+ * (see mm/rmap.c).
+ */
+
+/*
+ * LRU accounting for clear_page_mlock()
+ */
+void __clear_page_mlock(struct page *page)
+{
+ VM_BUG_ON(!PageLocked(page));
+
+ if (!page->mapping) { /* truncated ? */
+ return;
+ }
+
+ dec_zone_page_state(page, NR_MLOCK);
+ count_vm_event(UNEVICTABLE_PGCLEARED);
+ if (!isolate_lru_page(page)) {
+ putback_lru_page(page);
+ } else {
+ /*
+ * Page not on the LRU yet. Flush all pagevecs and retry.
+ */
+ lru_add_drain_all();
+ if (!isolate_lru_page(page))
+ putback_lru_page(page);
+ else if (PageUnevictable(page))
+ count_vm_event(UNEVICTABLE_PGSTRANDED);
+
+ }
+}
+
+/*
+ * Mark page as mlocked if not already.
+ * If page on LRU, isolate and putback to move to unevictable list.
+ */
+void mlock_vma_page(struct page *page)
+{
+ BUG_ON(!PageLocked(page));
+
+ if (!TestSetPageMlocked(page)) {
+ inc_zone_page_state(page, NR_MLOCK);
+ count_vm_event(UNEVICTABLE_PGMLOCKED);
+ if (!isolate_lru_page(page))
+ putback_lru_page(page);
+ }
+}
+
+/*
+ * called from munlock()/munmap() path with page supposedly on the LRU.
+ *
+ * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
+ * [in try_to_munlock()] and then attempt to isolate the page. We must
+ * isolate the page to keep others from messing with its unevictable
+ * and mlocked state while trying to munlock. However, we pre-clear the
+ * mlocked state anyway as we might lose the isolation race and we might
+ * not get another chance to clear PageMlocked. If we successfully
+ * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
+ * mapping the page, it will restore the PageMlocked state, unless the page
+ * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
+ * perhaps redundantly.
+ * If we lose the isolation race, and the page is mapped by other VM_LOCKED
+ * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
+ * either of which will restore the PageMlocked state by calling
+ * mlock_vma_page() above, if it can grab the vma's mmap sem.
+ */
+static void munlock_vma_page(struct page *page)
+{
+ BUG_ON(!PageLocked(page));
+
+ if (TestClearPageMlocked(page)) {
+ dec_zone_page_state(page, NR_MLOCK);
+ if (!isolate_lru_page(page)) {
+ int ret = try_to_munlock(page);
+ /*
+ * did try_to_unlock() succeed or punt?
+ */
+ if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
+ count_vm_event(UNEVICTABLE_PGMUNLOCKED);
+
+ putback_lru_page(page);
+ } else {
+ /*
+ * We lost the race. let try_to_unmap() deal
+ * with it. At least we get the page state and
+ * mlock stats right. However, page is still on
+ * the noreclaim list. We'll fix that up when
+ * the page is eventually freed or we scan the
+ * noreclaim list.
+ */
+ if (PageUnevictable(page))
+ count_vm_event(UNEVICTABLE_PGSTRANDED);
+ else
+ count_vm_event(UNEVICTABLE_PGMUNLOCKED);
+ }
+ }
+}
+
+/**
+ * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma.
+ * @vma: target vma
+ * @start: start address
+ * @end: end address
+ * @mlock: 0 indicate munlock, otherwise mlock.
+ *
+ * If @mlock == 0, unlock an mlocked range;
+ * else mlock the range of pages. This takes care of making the pages present ,
+ * too.
+ *
+ * return 0 on success, negative error code on error.
+ *
+ * vma->vm_mm->mmap_sem must be held for at least read.
+ */
+static long __mlock_vma_pages_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ int mlock)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long addr = start;
+ struct page *pages[16]; /* 16 gives a reasonable batch */
+ int nr_pages = (end - start) / PAGE_SIZE;
+ int ret;
+ int gup_flags = 0;
+
+ VM_BUG_ON(start & ~PAGE_MASK);
+ VM_BUG_ON(end & ~PAGE_MASK);
+ VM_BUG_ON(start < vma->vm_start);
+ VM_BUG_ON(end > vma->vm_end);
+ VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
+ (atomic_read(&mm->mm_users) != 0));
+
+ /*
+ * mlock: don't page populate if page has PROT_NONE permission.
+ * munlock: the pages always do munlock althrough
+ * its has PROT_NONE permission.
+ */
+ if (!mlock)
+ gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS;
+
+ if (vma->vm_flags & VM_WRITE)
+ gup_flags |= GUP_FLAGS_WRITE;
+
+ lru_add_drain_all(); /* push cached pages to LRU */
+
+ while (nr_pages > 0) {
+ int i;
+
+ cond_resched();
+
+ /*
+ * get_user_pages makes pages present if we are
+ * setting mlock. and this extra reference count will
+ * disable migration of this page. However, page may
+ * still be truncated out from under us.
+ */
+ ret = __get_user_pages(current, mm, addr,
+ min_t(int, nr_pages, ARRAY_SIZE(pages)),
+ gup_flags, pages, NULL);
+ /*
+ * This can happen for, e.g., VM_NONLINEAR regions before
+ * a page has been allocated and mapped at a given offset,
+ * or for addresses that map beyond end of a file.
+ * We'll mlock the the pages if/when they get faulted in.
+ */
+ if (ret < 0)
+ break;
+ if (ret == 0) {
+ /*
+ * We know the vma is there, so the only time
+ * we cannot get a single page should be an
+ * error (ret < 0) case.
+ */
+ WARN_ON(1);
+ break;
+ }
+
+ lru_add_drain(); /* push cached pages to LRU */
+
+ for (i = 0; i < ret; i++) {
+ struct page *page = pages[i];
+
+ lock_page(page);
+ /*
+ * Because we lock page here and migration is blocked
+ * by the elevated reference, we need only check for
+ * page truncation (file-cache only).
+ */
+ if (page->mapping) {
+ if (mlock)
+ mlock_vma_page(page);
+ else
+ munlock_vma_page(page);
+ }
+ unlock_page(page);
+ put_page(page); /* ref from get_user_pages() */
+
+ /*
+ * here we assume that get_user_pages() has given us
+ * a list of virtually contiguous pages.
+ */
+ addr += PAGE_SIZE; /* for next get_user_pages() */
+ nr_pages--;
+ }
+ ret = 0;
+ }
+
+ lru_add_drain_all(); /* to update stats */
+
+ return ret; /* count entire vma as locked_vm */
+}
+
+/*
+ * convert get_user_pages() return value to posix mlock() error
+ */
+static int __mlock_posix_error_return(long retval)
+{
+ if (retval == -EFAULT)
+ retval = -ENOMEM;
+ else if (retval == -ENOMEM)
+ retval = -EAGAIN;
+ return retval;
+}
+
+#else /* CONFIG_UNEVICTABLE_LRU */
+
+/*
+ * Just make pages present if VM_LOCKED. No-op if unlocking.
+ */
+static long __mlock_vma_pages_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ int mlock)
+{
+ if (mlock && (vma->vm_flags & VM_LOCKED))
+ return make_pages_present(start, end);
+ return 0;
+}
+
+static inline int __mlock_posix_error_return(long retval)
+{
+ return 0;
+}
+
+#endif /* CONFIG_UNEVICTABLE_LRU */
+
+/**
+ * mlock_vma_pages_range() - mlock pages in specified vma range.
+ * @vma - the vma containing the specfied address range
+ * @start - starting address in @vma to mlock
+ * @end - end address [+1] in @vma to mlock
+ *
+ * For mmap()/mremap()/expansion of mlocked vma.
+ *
+ * return 0 on success for "normal" vmas.
+ *
+ * return number of pages [> 0] to be removed from locked_vm on success
+ * of "special" vmas.
+ *
+ * return negative error if vma spanning @start-@range disappears while
+ * mmap semaphore is dropped. Unlikely?
+ */
+long mlock_vma_pages_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ int nr_pages = (end - start) / PAGE_SIZE;
+ BUG_ON(!(vma->vm_flags & VM_LOCKED));
+
+ /*
+ * filter unlockable vmas
+ */
+ if (vma->vm_flags & (VM_IO | VM_PFNMAP))
+ goto no_mlock;
+
+ if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
+ is_vm_hugetlb_page(vma) ||
+ vma == get_gate_vma(current))) {
+ long error;
+ downgrade_write(&mm->mmap_sem);
+
+ error = __mlock_vma_pages_range(vma, start, end, 1);
+
+ up_read(&mm->mmap_sem);
+ /* vma can change or disappear */
+ down_write(&mm->mmap_sem);
+ vma = find_vma(mm, start);
+ /* non-NULL vma must contain @start, but need to check @end */
+ if (!vma || end > vma->vm_end)
+ return -ENOMEM;
+
+ return 0; /* hide other errors from mmap(), et al */
+ }
+
+ /*
+ * User mapped kernel pages or huge pages:
+ * make these pages present to populate the ptes, but
+ * fall thru' to reset VM_LOCKED--no need to unlock, and
+ * return nr_pages so these don't get counted against task's
+ * locked limit. huge pages are already counted against
+ * locked vm limit.
+ */
+ make_pages_present(start, end);
+
+no_mlock:
+ vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
+ return nr_pages; /* error or pages NOT mlocked */
+}
+
+
+/*
+ * munlock_vma_pages_range() - munlock all pages in the vma range.'
+ * @vma - vma containing range to be munlock()ed.
+ * @start - start address in @vma of the range
+ * @end - end of range in @vma.
+ *
+ * For mremap(), munmap() and exit().
+ *
+ * Called with @vma VM_LOCKED.
+ *
+ * Returns with VM_LOCKED cleared. Callers must be prepared to
+ * deal with this.
+ *
+ * We don't save and restore VM_LOCKED here because pages are
+ * still on lru. In unmap path, pages might be scanned by reclaim
+ * and re-mlocked by try_to_{munlock|unmap} before we unmap and
+ * free them. This will result in freeing mlocked pages.
+ */
+void munlock_vma_pages_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end)
+{
+ vma->vm_flags &= ~VM_LOCKED;
+ __mlock_vma_pages_range(vma, start, end, 0);
+}
+
+/*
+ * mlock_fixup - handle mlock[all]/munlock[all] requests.
+ *
+ * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
+ * munlock is a no-op. However, for some special vmas, we go ahead and
+ * populate the ptes via make_pages_present().
+ *
+ * For vmas that pass the filters, merge/split as appropriate.
+ */
static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
unsigned long start, unsigned long end, unsigned int newflags)
{
- struct mm_struct * mm = vma->vm_mm;
+ struct mm_struct *mm = vma->vm_mm;
pgoff_t pgoff;
- int pages;
+ int nr_pages;
int ret = 0;
-
- if (newflags == vma->vm_flags) {
- *prev = vma;
- goto out;
+ int lock = newflags & VM_LOCKED;
+
+ if (newflags == vma->vm_flags ||
+ (vma->vm_flags & (VM_IO | VM_PFNMAP)))
+ goto out; /* don't set VM_LOCKED, don't count */
+
+ if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
+ is_vm_hugetlb_page(vma) ||
+ vma == get_gate_vma(current)) {
+ if (lock)
+ make_pages_present(start, end);
+ goto out; /* don't set VM_LOCKED, don't count */
}
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
@@ -44,8 +416,6 @@ static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
goto success;
}
- *prev = vma;
-
if (start != vma->vm_start) {
ret = split_vma(mm, vma, start, 1);
if (ret)
@@ -60,26 +430,61 @@ static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
success:
/*
+ * Keep track of amount of locked VM.
+ */
+ nr_pages = (end - start) >> PAGE_SHIFT;
+ if (!lock)
+ nr_pages = -nr_pages;
+ mm->locked_vm += nr_pages;
+
+ /*
* vm_flags is protected by the mmap_sem held in write mode.
* It's okay if try_to_unmap_one unmaps a page just after we
- * set VM_LOCKED, make_pages_present below will bring it back.
+ * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
*/
vma->vm_flags = newflags;
- /*
- * Keep track of amount of locked VM.
- */
- pages = (end - start) >> PAGE_SHIFT;
- if (newflags & VM_LOCKED) {
- pages = -pages;
- if (!(newflags & VM_IO))
- ret = make_pages_present(start, end);
+ if (lock) {
+ /*
+ * mmap_sem is currently held for write. Downgrade the write
+ * lock to a read lock so that other faults, mmap scans, ...
+ * while we fault in all pages.
+ */
+ downgrade_write(&mm->mmap_sem);
+
+ ret = __mlock_vma_pages_range(vma, start, end, 1);
+
+ /*
+ * Need to reacquire mmap sem in write mode, as our callers
+ * expect this. We have no support for atomically upgrading
+ * a sem to write, so we need to check for ranges while sem
+ * is unlocked.
+ */
+ up_read(&mm->mmap_sem);
+ /* vma can change or disappear */
+ down_write(&mm->mmap_sem);
+ *prev = find_vma(mm, start);
+ /* non-NULL *prev must contain @start, but need to check @end */
+ if (!(*prev) || end > (*prev)->vm_end)
+ ret = -ENOMEM;
+ else if (ret > 0) {
+ mm->locked_vm -= ret;
+ ret = 0;
+ } else
+ ret = __mlock_posix_error_return(ret); /* translate if needed */
+ } else {
+ /*
+ * TODO: for unlocking, pages will already be resident, so
+ * we don't need to wait for allocations/reclaim/pagein, ...
+ * However, unlocking a very large region can still take a
+ * while. Should we downgrade the semaphore for both lock
+ * AND unlock ?
+ */
+ __mlock_vma_pages_range(vma, start, end, 0);
}
- mm->locked_vm -= pages;
out:
- if (ret == -ENOMEM)
- ret = -EAGAIN;
+ *prev = vma;
return ret;
}
diff --git a/mm/mm_init.c b/mm/mm_init.c
new file mode 100644
index 000000000000..4e0e26591dfa
--- /dev/null
+++ b/mm/mm_init.c
@@ -0,0 +1,152 @@
+/*
+ * mm_init.c - Memory initialisation verification and debugging
+ *
+ * Copyright 2008 IBM Corporation, 2008
+ * Author Mel Gorman <mel@csn.ul.ie>
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/kobject.h>
+#include <linux/module.h>
+#include "internal.h"
+
+#ifdef CONFIG_DEBUG_MEMORY_INIT
+int mminit_loglevel;
+
+#ifndef SECTIONS_SHIFT
+#define SECTIONS_SHIFT 0
+#endif
+
+/* The zonelists are simply reported, validation is manual. */
+void mminit_verify_zonelist(void)
+{
+ int nid;
+
+ if (mminit_loglevel < MMINIT_VERIFY)
+ return;
+
+ for_each_online_node(nid) {
+ pg_data_t *pgdat = NODE_DATA(nid);
+ struct zone *zone;
+ struct zoneref *z;
+ struct zonelist *zonelist;
+ int i, listid, zoneid;
+
+ BUG_ON(MAX_ZONELISTS > 2);
+ for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
+
+ /* Identify the zone and nodelist */
+ zoneid = i % MAX_NR_ZONES;
+ listid = i / MAX_NR_ZONES;
+ zonelist = &pgdat->node_zonelists[listid];
+ zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+
+ /* Print information about the zonelist */
+ printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
+ listid > 0 ? "thisnode" : "general", nid,
+ zone->name);
+
+ /* Iterate the zonelist */
+ for_each_zone_zonelist(zone, z, zonelist, zoneid) {
+#ifdef CONFIG_NUMA
+ printk(KERN_CONT "%d:%s ",
+ zone->node, zone->name);
+#else
+ printk(KERN_CONT "0:%s ", zone->name);
+#endif /* CONFIG_NUMA */
+ }
+ printk(KERN_CONT "\n");
+ }
+ }
+}
+
+void __init mminit_verify_pageflags_layout(void)
+{
+ int shift, width;
+ unsigned long or_mask, add_mask;
+
+ shift = 8 * sizeof(unsigned long);
+ width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH;
+ mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
+ "Section %d Node %d Zone %d Flags %d\n",
+ SECTIONS_WIDTH,
+ NODES_WIDTH,
+ ZONES_WIDTH,
+ NR_PAGEFLAGS);
+ mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
+ "Section %d Node %d Zone %d\n",
+ SECTIONS_SHIFT,
+ NODES_SHIFT,
+ ZONES_SHIFT);
+ mminit_dprintk(MMINIT_TRACE, "pageflags_layout_offsets",
+ "Section %lu Node %lu Zone %lu\n",
+ (unsigned long)SECTIONS_PGSHIFT,
+ (unsigned long)NODES_PGSHIFT,
+ (unsigned long)ZONES_PGSHIFT);
+ mminit_dprintk(MMINIT_TRACE, "pageflags_layout_zoneid",
+ "Zone ID: %lu -> %lu\n",
+ (unsigned long)ZONEID_PGOFF,
+ (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT));
+ mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
+ "location: %d -> %d unused %d -> %d flags %d -> %d\n",
+ shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
+#ifdef NODE_NOT_IN_PAGE_FLAGS
+ mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
+ "Node not in page flags");
+#endif
+
+ if (SECTIONS_WIDTH) {
+ shift -= SECTIONS_WIDTH;
+ BUG_ON(shift != SECTIONS_PGSHIFT);
+ }
+ if (NODES_WIDTH) {
+ shift -= NODES_WIDTH;
+ BUG_ON(shift != NODES_PGSHIFT);
+ }
+ if (ZONES_WIDTH) {
+ shift -= ZONES_WIDTH;
+ BUG_ON(shift != ZONES_PGSHIFT);
+ }
+
+ /* Check for bitmask overlaps */
+ or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
+ (NODES_MASK << NODES_PGSHIFT) |
+ (SECTIONS_MASK << SECTIONS_PGSHIFT);
+ add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
+ (NODES_MASK << NODES_PGSHIFT) +
+ (SECTIONS_MASK << SECTIONS_PGSHIFT);
+ BUG_ON(or_mask != add_mask);
+}
+
+void __meminit mminit_verify_page_links(struct page *page, enum zone_type zone,
+ unsigned long nid, unsigned long pfn)
+{
+ BUG_ON(page_to_nid(page) != nid);
+ BUG_ON(page_zonenum(page) != zone);
+ BUG_ON(page_to_pfn(page) != pfn);
+}
+
+static __init int set_mminit_loglevel(char *str)
+{
+ get_option(&str, &mminit_loglevel);
+ return 0;
+}
+early_param("mminit_loglevel", set_mminit_loglevel);
+#endif /* CONFIG_DEBUG_MEMORY_INIT */
+
+struct kobject *mm_kobj;
+EXPORT_SYMBOL_GPL(mm_kobj);
+
+static int __init mm_sysfs_init(void)
+{
+ mm_kobj = kobject_create_and_add("mm", kernel_kobj);
+ if (!mm_kobj)
+ return -ENOMEM;
+
+ return 0;
+}
+
+__initcall(mm_sysfs_init);
diff --git a/mm/mmap.c b/mm/mmap.c
index 1d102b956fd8..74f4d158022e 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -26,12 +26,15 @@
#include <linux/mount.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
+#include <linux/mmu_notifier.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
+#include "internal.h"
+
#ifndef arch_mmap_check
#define arch_mmap_check(addr, len, flags) (0)
#endif
@@ -367,7 +370,7 @@ find_vma_prepare(struct mm_struct *mm, unsigned long addr,
if (vma_tmp->vm_end > addr) {
vma = vma_tmp;
if (vma_tmp->vm_start <= addr)
- return vma;
+ break;
__rb_link = &__rb_parent->rb_left;
} else {
rb_prev = __rb_parent;
@@ -407,7 +410,7 @@ void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
rb_insert_color(&vma->vm_rb, &mm->mm_rb);
}
-static inline void __vma_link_file(struct vm_area_struct *vma)
+static void __vma_link_file(struct vm_area_struct *vma)
{
struct file * file;
@@ -659,8 +662,6 @@ again: remove_next = 1 + (end > next->vm_end);
* If the vma has a ->close operation then the driver probably needs to release
* per-vma resources, so we don't attempt to merge those.
*/
-#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
-
static inline int is_mergeable_vma(struct vm_area_struct *vma,
struct file *file, unsigned long vm_flags)
{
@@ -969,6 +970,7 @@ unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
return -EPERM;
vm_flags |= VM_LOCKED;
}
+
/* mlock MCL_FUTURE? */
if (vm_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
@@ -1027,6 +1029,10 @@ unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
} else {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
+ /*
+ * Ignore pgoff.
+ */
+ pgoff = 0;
vm_flags |= VM_SHARED | VM_MAYSHARE;
break;
case MAP_PRIVATE:
@@ -1108,6 +1114,9 @@ munmap_back:
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
+ if (flags & MAP_NORESERVE)
+ vm_flags |= VM_NORESERVE;
+
if (accountable && (!(flags & MAP_NORESERVE) ||
sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
if (vm_flags & VM_SHARED) {
@@ -1129,10 +1138,12 @@ munmap_back:
* The VM_SHARED test is necessary because shmem_zero_setup
* will create the file object for a shared anonymous map below.
*/
- if (!file && !(vm_flags & VM_SHARED) &&
- vma_merge(mm, prev, addr, addr + len, vm_flags,
- NULL, NULL, pgoff, NULL))
- goto out;
+ if (!file && !(vm_flags & VM_SHARED)) {
+ vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
+ NULL, NULL, pgoff, NULL);
+ if (vma)
+ goto out;
+ }
/*
* Determine the object being mapped and call the appropriate
@@ -1214,10 +1225,14 @@ out:
mm->total_vm += len >> PAGE_SHIFT;
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
- mm->locked_vm += len >> PAGE_SHIFT;
- make_pages_present(addr, addr + len);
- }
- if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
+ /*
+ * makes pages present; downgrades, drops, reacquires mmap_sem
+ */
+ long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
+ if (nr_pages < 0)
+ return nr_pages; /* vma gone! */
+ mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
+ } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
make_pages_present(addr, addr + len);
return addr;
@@ -1576,7 +1591,7 @@ static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, un
* vma is the last one with address > vma->vm_end. Have to extend vma.
*/
#ifndef CONFIG_IA64
-static inline
+static
#endif
int expand_upwards(struct vm_area_struct *vma, unsigned long address)
{
@@ -1626,7 +1641,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address)
/*
* vma is the first one with address < vma->vm_start. Have to extend vma.
*/
-static inline int expand_downwards(struct vm_area_struct *vma,
+static int expand_downwards(struct vm_area_struct *vma,
unsigned long address)
{
int error;
@@ -1688,10 +1703,12 @@ find_extend_vma(struct mm_struct *mm, unsigned long addr)
vma = find_vma_prev(mm, addr, &prev);
if (vma && (vma->vm_start <= addr))
return vma;
- if (!prev || expand_stack(prev, addr))
+ if (expand_stack(prev, addr))
return NULL;
- if (prev->vm_flags & VM_LOCKED)
- make_pages_present(addr, prev->vm_end);
+ if (prev->vm_flags & VM_LOCKED) {
+ if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
+ return NULL; /* vma gone! */
+ }
return prev;
}
#else
@@ -1717,8 +1734,10 @@ find_extend_vma(struct mm_struct * mm, unsigned long addr)
start = vma->vm_start;
if (expand_stack(vma, addr))
return NULL;
- if (vma->vm_flags & VM_LOCKED)
- make_pages_present(addr, start);
+ if (vma->vm_flags & VM_LOCKED) {
+ if (mlock_vma_pages_range(vma, addr, start) < 0)
+ return NULL; /* vma gone! */
+ }
return vma;
}
#endif
@@ -1737,8 +1756,6 @@ static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
long nrpages = vma_pages(vma);
mm->total_vm -= nrpages;
- if (vma->vm_flags & VM_LOCKED)
- mm->locked_vm -= nrpages;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
vma = remove_vma(vma);
} while (vma);
@@ -1763,7 +1780,7 @@ static void unmap_region(struct mm_struct *mm,
update_hiwater_rss(mm);
unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
vm_unacct_memory(nr_accounted);
- free_pgtables(&tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
+ free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
next? next->vm_start: 0);
tlb_finish_mmu(tlb, start, end);
}
@@ -1807,7 +1824,8 @@ int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
struct mempolicy *pol;
struct vm_area_struct *new;
- if (is_vm_hugetlb_page(vma) && (addr & ~HPAGE_MASK))
+ if (is_vm_hugetlb_page(vma) && (addr &
+ ~(huge_page_mask(hstate_vma(vma)))))
return -EINVAL;
if (mm->map_count >= sysctl_max_map_count)
@@ -1903,6 +1921,20 @@ int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
vma = prev? prev->vm_next: mm->mmap;
/*
+ * unlock any mlock()ed ranges before detaching vmas
+ */
+ if (mm->locked_vm) {
+ struct vm_area_struct *tmp = vma;
+ while (tmp && tmp->vm_start < end) {
+ if (tmp->vm_flags & VM_LOCKED) {
+ mm->locked_vm -= vma_pages(tmp);
+ munlock_vma_pages_all(tmp);
+ }
+ tmp = tmp->vm_next;
+ }
+ }
+
+ /*
* Remove the vma's, and unmap the actual pages
*/
detach_vmas_to_be_unmapped(mm, vma, prev, end);
@@ -2014,8 +2046,9 @@ unsigned long do_brk(unsigned long addr, unsigned long len)
return -ENOMEM;
/* Can we just expand an old private anonymous mapping? */
- if (vma_merge(mm, prev, addr, addr + len, flags,
- NULL, NULL, pgoff, NULL))
+ vma = vma_merge(mm, prev, addr, addr + len, flags,
+ NULL, NULL, pgoff, NULL);
+ if (vma)
goto out;
/*
@@ -2037,8 +2070,8 @@ unsigned long do_brk(unsigned long addr, unsigned long len)
out:
mm->total_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED) {
- mm->locked_vm += len >> PAGE_SHIFT;
- make_pages_present(addr, addr + len);
+ if (!mlock_vma_pages_range(vma, addr, addr + len))
+ mm->locked_vm += (len >> PAGE_SHIFT);
}
return addr;
}
@@ -2049,13 +2082,23 @@ EXPORT_SYMBOL(do_brk);
void exit_mmap(struct mm_struct *mm)
{
struct mmu_gather *tlb;
- struct vm_area_struct *vma = mm->mmap;
+ struct vm_area_struct *vma;
unsigned long nr_accounted = 0;
unsigned long end;
/* mm's last user has gone, and its about to be pulled down */
arch_exit_mmap(mm);
-
+ mmu_notifier_release(mm);
+
+ if (mm->locked_vm) {
+ vma = mm->mmap;
+ while (vma) {
+ if (vma->vm_flags & VM_LOCKED)
+ munlock_vma_pages_all(vma);
+ vma = vma->vm_next;
+ }
+ }
+ vma = mm->mmap;
lru_add_drain();
flush_cache_mm(mm);
tlb = tlb_gather_mmu(mm, 1);
@@ -2063,7 +2106,7 @@ void exit_mmap(struct mm_struct *mm)
/* Use -1 here to ensure all VMAs in the mm are unmapped */
end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
vm_unacct_memory(nr_accounted);
- free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
+ free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
tlb_finish_mmu(tlb, 0, end);
/*
@@ -2262,3 +2305,167 @@ int install_special_mapping(struct mm_struct *mm,
return 0;
}
+
+static DEFINE_MUTEX(mm_all_locks_mutex);
+
+static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
+{
+ if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
+ /*
+ * The LSB of head.next can't change from under us
+ * because we hold the mm_all_locks_mutex.
+ */
+ spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
+ /*
+ * We can safely modify head.next after taking the
+ * anon_vma->lock. If some other vma in this mm shares
+ * the same anon_vma we won't take it again.
+ *
+ * No need of atomic instructions here, head.next
+ * can't change from under us thanks to the
+ * anon_vma->lock.
+ */
+ if (__test_and_set_bit(0, (unsigned long *)
+ &anon_vma->head.next))
+ BUG();
+ }
+}
+
+static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
+{
+ if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
+ /*
+ * AS_MM_ALL_LOCKS can't change from under us because
+ * we hold the mm_all_locks_mutex.
+ *
+ * Operations on ->flags have to be atomic because
+ * even if AS_MM_ALL_LOCKS is stable thanks to the
+ * mm_all_locks_mutex, there may be other cpus
+ * changing other bitflags in parallel to us.
+ */
+ if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
+ BUG();
+ spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
+ }
+}
+
+/*
+ * This operation locks against the VM for all pte/vma/mm related
+ * operations that could ever happen on a certain mm. This includes
+ * vmtruncate, try_to_unmap, and all page faults.
+ *
+ * The caller must take the mmap_sem in write mode before calling
+ * mm_take_all_locks(). The caller isn't allowed to release the
+ * mmap_sem until mm_drop_all_locks() returns.
+ *
+ * mmap_sem in write mode is required in order to block all operations
+ * that could modify pagetables and free pages without need of
+ * altering the vma layout (for example populate_range() with
+ * nonlinear vmas). It's also needed in write mode to avoid new
+ * anon_vmas to be associated with existing vmas.
+ *
+ * A single task can't take more than one mm_take_all_locks() in a row
+ * or it would deadlock.
+ *
+ * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
+ * mapping->flags avoid to take the same lock twice, if more than one
+ * vma in this mm is backed by the same anon_vma or address_space.
+ *
+ * We can take all the locks in random order because the VM code
+ * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
+ * takes more than one of them in a row. Secondly we're protected
+ * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
+ *
+ * mm_take_all_locks() and mm_drop_all_locks are expensive operations
+ * that may have to take thousand of locks.
+ *
+ * mm_take_all_locks() can fail if it's interrupted by signals.
+ */
+int mm_take_all_locks(struct mm_struct *mm)
+{
+ struct vm_area_struct *vma;
+ int ret = -EINTR;
+
+ BUG_ON(down_read_trylock(&mm->mmap_sem));
+
+ mutex_lock(&mm_all_locks_mutex);
+
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ if (signal_pending(current))
+ goto out_unlock;
+ if (vma->vm_file && vma->vm_file->f_mapping)
+ vm_lock_mapping(mm, vma->vm_file->f_mapping);
+ }
+
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ if (signal_pending(current))
+ goto out_unlock;
+ if (vma->anon_vma)
+ vm_lock_anon_vma(mm, vma->anon_vma);
+ }
+
+ ret = 0;
+
+out_unlock:
+ if (ret)
+ mm_drop_all_locks(mm);
+
+ return ret;
+}
+
+static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
+{
+ if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
+ /*
+ * The LSB of head.next can't change to 0 from under
+ * us because we hold the mm_all_locks_mutex.
+ *
+ * We must however clear the bitflag before unlocking
+ * the vma so the users using the anon_vma->head will
+ * never see our bitflag.
+ *
+ * No need of atomic instructions here, head.next
+ * can't change from under us until we release the
+ * anon_vma->lock.
+ */
+ if (!__test_and_clear_bit(0, (unsigned long *)
+ &anon_vma->head.next))
+ BUG();
+ spin_unlock(&anon_vma->lock);
+ }
+}
+
+static void vm_unlock_mapping(struct address_space *mapping)
+{
+ if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
+ /*
+ * AS_MM_ALL_LOCKS can't change to 0 from under us
+ * because we hold the mm_all_locks_mutex.
+ */
+ spin_unlock(&mapping->i_mmap_lock);
+ if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
+ &mapping->flags))
+ BUG();
+ }
+}
+
+/*
+ * The mmap_sem cannot be released by the caller until
+ * mm_drop_all_locks() returns.
+ */
+void mm_drop_all_locks(struct mm_struct *mm)
+{
+ struct vm_area_struct *vma;
+
+ BUG_ON(down_read_trylock(&mm->mmap_sem));
+ BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
+
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ if (vma->anon_vma)
+ vm_unlock_anon_vma(vma->anon_vma);
+ if (vma->vm_file && vma->vm_file->f_mapping)
+ vm_unlock_mapping(vma->vm_file->f_mapping);
+ }
+
+ mutex_unlock(&mm_all_locks_mutex);
+}
diff --git a/mm/mmu_notifier.c b/mm/mmu_notifier.c
new file mode 100644
index 000000000000..5f4ef0250bee
--- /dev/null
+++ b/mm/mmu_notifier.c
@@ -0,0 +1,277 @@
+/*
+ * linux/mm/mmu_notifier.c
+ *
+ * Copyright (C) 2008 Qumranet, Inc.
+ * Copyright (C) 2008 SGI
+ * Christoph Lameter <clameter@sgi.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ */
+
+#include <linux/rculist.h>
+#include <linux/mmu_notifier.h>
+#include <linux/module.h>
+#include <linux/mm.h>
+#include <linux/err.h>
+#include <linux/rcupdate.h>
+#include <linux/sched.h>
+
+/*
+ * This function can't run concurrently against mmu_notifier_register
+ * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
+ * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
+ * in parallel despite there being no task using this mm any more,
+ * through the vmas outside of the exit_mmap context, such as with
+ * vmtruncate. This serializes against mmu_notifier_unregister with
+ * the mmu_notifier_mm->lock in addition to RCU and it serializes
+ * against the other mmu notifiers with RCU. struct mmu_notifier_mm
+ * can't go away from under us as exit_mmap holds an mm_count pin
+ * itself.
+ */
+void __mmu_notifier_release(struct mm_struct *mm)
+{
+ struct mmu_notifier *mn;
+
+ spin_lock(&mm->mmu_notifier_mm->lock);
+ while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
+ mn = hlist_entry(mm->mmu_notifier_mm->list.first,
+ struct mmu_notifier,
+ hlist);
+ /*
+ * We arrived before mmu_notifier_unregister so
+ * mmu_notifier_unregister will do nothing other than
+ * to wait ->release to finish and
+ * mmu_notifier_unregister to return.
+ */
+ hlist_del_init_rcu(&mn->hlist);
+ /*
+ * RCU here will block mmu_notifier_unregister until
+ * ->release returns.
+ */
+ rcu_read_lock();
+ spin_unlock(&mm->mmu_notifier_mm->lock);
+ /*
+ * if ->release runs before mmu_notifier_unregister it
+ * must be handled as it's the only way for the driver
+ * to flush all existing sptes and stop the driver
+ * from establishing any more sptes before all the
+ * pages in the mm are freed.
+ */
+ if (mn->ops->release)
+ mn->ops->release(mn, mm);
+ rcu_read_unlock();
+ spin_lock(&mm->mmu_notifier_mm->lock);
+ }
+ spin_unlock(&mm->mmu_notifier_mm->lock);
+
+ /*
+ * synchronize_rcu here prevents mmu_notifier_release to
+ * return to exit_mmap (which would proceed freeing all pages
+ * in the mm) until the ->release method returns, if it was
+ * invoked by mmu_notifier_unregister.
+ *
+ * The mmu_notifier_mm can't go away from under us because one
+ * mm_count is hold by exit_mmap.
+ */
+ synchronize_rcu();
+}
+
+/*
+ * If no young bitflag is supported by the hardware, ->clear_flush_young can
+ * unmap the address and return 1 or 0 depending if the mapping previously
+ * existed or not.
+ */
+int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
+ unsigned long address)
+{
+ struct mmu_notifier *mn;
+ struct hlist_node *n;
+ int young = 0;
+
+ rcu_read_lock();
+ hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
+ if (mn->ops->clear_flush_young)
+ young |= mn->ops->clear_flush_young(mn, mm, address);
+ }
+ rcu_read_unlock();
+
+ return young;
+}
+
+void __mmu_notifier_invalidate_page(struct mm_struct *mm,
+ unsigned long address)
+{
+ struct mmu_notifier *mn;
+ struct hlist_node *n;
+
+ rcu_read_lock();
+ hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
+ if (mn->ops->invalidate_page)
+ mn->ops->invalidate_page(mn, mm, address);
+ }
+ rcu_read_unlock();
+}
+
+void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
+ unsigned long start, unsigned long end)
+{
+ struct mmu_notifier *mn;
+ struct hlist_node *n;
+
+ rcu_read_lock();
+ hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
+ if (mn->ops->invalidate_range_start)
+ mn->ops->invalidate_range_start(mn, mm, start, end);
+ }
+ rcu_read_unlock();
+}
+
+void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
+ unsigned long start, unsigned long end)
+{
+ struct mmu_notifier *mn;
+ struct hlist_node *n;
+
+ rcu_read_lock();
+ hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) {
+ if (mn->ops->invalidate_range_end)
+ mn->ops->invalidate_range_end(mn, mm, start, end);
+ }
+ rcu_read_unlock();
+}
+
+static int do_mmu_notifier_register(struct mmu_notifier *mn,
+ struct mm_struct *mm,
+ int take_mmap_sem)
+{
+ struct mmu_notifier_mm *mmu_notifier_mm;
+ int ret;
+
+ BUG_ON(atomic_read(&mm->mm_users) <= 0);
+
+ ret = -ENOMEM;
+ mmu_notifier_mm = kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
+ if (unlikely(!mmu_notifier_mm))
+ goto out;
+
+ if (take_mmap_sem)
+ down_write(&mm->mmap_sem);
+ ret = mm_take_all_locks(mm);
+ if (unlikely(ret))
+ goto out_cleanup;
+
+ if (!mm_has_notifiers(mm)) {
+ INIT_HLIST_HEAD(&mmu_notifier_mm->list);
+ spin_lock_init(&mmu_notifier_mm->lock);
+ mm->mmu_notifier_mm = mmu_notifier_mm;
+ mmu_notifier_mm = NULL;
+ }
+ atomic_inc(&mm->mm_count);
+
+ /*
+ * Serialize the update against mmu_notifier_unregister. A
+ * side note: mmu_notifier_release can't run concurrently with
+ * us because we hold the mm_users pin (either implicitly as
+ * current->mm or explicitly with get_task_mm() or similar).
+ * We can't race against any other mmu notifier method either
+ * thanks to mm_take_all_locks().
+ */
+ spin_lock(&mm->mmu_notifier_mm->lock);
+ hlist_add_head(&mn->hlist, &mm->mmu_notifier_mm->list);
+ spin_unlock(&mm->mmu_notifier_mm->lock);
+
+ mm_drop_all_locks(mm);
+out_cleanup:
+ if (take_mmap_sem)
+ up_write(&mm->mmap_sem);
+ /* kfree() does nothing if mmu_notifier_mm is NULL */
+ kfree(mmu_notifier_mm);
+out:
+ BUG_ON(atomic_read(&mm->mm_users) <= 0);
+ return ret;
+}
+
+/*
+ * Must not hold mmap_sem nor any other VM related lock when calling
+ * this registration function. Must also ensure mm_users can't go down
+ * to zero while this runs to avoid races with mmu_notifier_release,
+ * so mm has to be current->mm or the mm should be pinned safely such
+ * as with get_task_mm(). If the mm is not current->mm, the mm_users
+ * pin should be released by calling mmput after mmu_notifier_register
+ * returns. mmu_notifier_unregister must be always called to
+ * unregister the notifier. mm_count is automatically pinned to allow
+ * mmu_notifier_unregister to safely run at any time later, before or
+ * after exit_mmap. ->release will always be called before exit_mmap
+ * frees the pages.
+ */
+int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
+{
+ return do_mmu_notifier_register(mn, mm, 1);
+}
+EXPORT_SYMBOL_GPL(mmu_notifier_register);
+
+/*
+ * Same as mmu_notifier_register but here the caller must hold the
+ * mmap_sem in write mode.
+ */
+int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
+{
+ return do_mmu_notifier_register(mn, mm, 0);
+}
+EXPORT_SYMBOL_GPL(__mmu_notifier_register);
+
+/* this is called after the last mmu_notifier_unregister() returned */
+void __mmu_notifier_mm_destroy(struct mm_struct *mm)
+{
+ BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
+ kfree(mm->mmu_notifier_mm);
+ mm->mmu_notifier_mm = LIST_POISON1; /* debug */
+}
+
+/*
+ * This releases the mm_count pin automatically and frees the mm
+ * structure if it was the last user of it. It serializes against
+ * running mmu notifiers with RCU and against mmu_notifier_unregister
+ * with the unregister lock + RCU. All sptes must be dropped before
+ * calling mmu_notifier_unregister. ->release or any other notifier
+ * method may be invoked concurrently with mmu_notifier_unregister,
+ * and only after mmu_notifier_unregister returned we're guaranteed
+ * that ->release or any other method can't run anymore.
+ */
+void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
+{
+ BUG_ON(atomic_read(&mm->mm_count) <= 0);
+
+ spin_lock(&mm->mmu_notifier_mm->lock);
+ if (!hlist_unhashed(&mn->hlist)) {
+ hlist_del_rcu(&mn->hlist);
+
+ /*
+ * RCU here will force exit_mmap to wait ->release to finish
+ * before freeing the pages.
+ */
+ rcu_read_lock();
+ spin_unlock(&mm->mmu_notifier_mm->lock);
+ /*
+ * exit_mmap will block in mmu_notifier_release to
+ * guarantee ->release is called before freeing the
+ * pages.
+ */
+ if (mn->ops->release)
+ mn->ops->release(mn, mm);
+ rcu_read_unlock();
+ } else
+ spin_unlock(&mm->mmu_notifier_mm->lock);
+
+ /*
+ * Wait any running method to finish, of course including
+ * ->release if it was run by mmu_notifier_relase instead of us.
+ */
+ synchronize_rcu();
+
+ BUG_ON(atomic_read(&mm->mm_count) <= 0);
+
+ mmdrop(mm);
+}
+EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
diff --git a/mm/mmzone.c b/mm/mmzone.c
index 486ed595ee6f..16ce8b955dcf 100644
--- a/mm/mmzone.c
+++ b/mm/mmzone.c
@@ -69,6 +69,6 @@ struct zoneref *next_zones_zonelist(struct zoneref *z,
(z->zone && !zref_in_nodemask(z, nodes)))
z++;
- *zone = zonelist_zone(z++);
+ *zone = zonelist_zone(z);
return z;
}
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 360d9cc8b38c..fded06f923f4 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -21,6 +21,7 @@
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <linux/swapops.h>
+#include <linux/mmu_notifier.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
@@ -153,12 +154,10 @@ mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev,
* If we make a private mapping writable we increase our commit;
* but (without finer accounting) cannot reduce our commit if we
* make it unwritable again.
- *
- * FIXME? We haven't defined a VM_NORESERVE flag, so mprotecting
- * a MAP_NORESERVE private mapping to writable will now reserve.
*/
if (newflags & VM_WRITE) {
- if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_SHARED))) {
+ if (!(oldflags & (VM_ACCOUNT|VM_WRITE|
+ VM_SHARED|VM_NORESERVE))) {
charged = nrpages;
if (security_vm_enough_memory(charged))
return -ENOMEM;
@@ -205,10 +204,12 @@ success:
dirty_accountable = 1;
}
+ mmu_notifier_invalidate_range_start(mm, start, end);
if (is_vm_hugetlb_page(vma))
hugetlb_change_protection(vma, start, end, vma->vm_page_prot);
else
change_protection(vma, start, end, vma->vm_page_prot, dirty_accountable);
+ mmu_notifier_invalidate_range_end(mm, start, end);
vm_stat_account(mm, oldflags, vma->vm_file, -nrpages);
vm_stat_account(mm, newflags, vma->vm_file, nrpages);
return 0;
diff --git a/mm/mremap.c b/mm/mremap.c
index 08e3c7f2bd15..58a2908f42f5 100644
--- a/mm/mremap.c
+++ b/mm/mremap.c
@@ -18,11 +18,14 @@
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/syscalls.h>
+#include <linux/mmu_notifier.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
+#include "internal.h"
+
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
@@ -74,7 +77,11 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
struct mm_struct *mm = vma->vm_mm;
pte_t *old_pte, *new_pte, pte;
spinlock_t *old_ptl, *new_ptl;
+ unsigned long old_start;
+ old_start = old_addr;
+ mmu_notifier_invalidate_range_start(vma->vm_mm,
+ old_start, old_end);
if (vma->vm_file) {
/*
* Subtle point from Rajesh Venkatasubramanian: before
@@ -116,6 +123,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
pte_unmap_unlock(old_pte - 1, old_ptl);
if (mapping)
spin_unlock(&mapping->i_mmap_lock);
+ mmu_notifier_invalidate_range_end(vma->vm_mm, old_start, old_end);
}
#define LATENCY_LIMIT (64 * PAGE_SIZE)
@@ -232,8 +240,8 @@ static unsigned long move_vma(struct vm_area_struct *vma,
if (vm_flags & VM_LOCKED) {
mm->locked_vm += new_len >> PAGE_SHIFT;
if (new_len > old_len)
- make_pages_present(new_addr + old_len,
- new_addr + new_len);
+ mlock_vma_pages_range(new_vma, new_addr + old_len,
+ new_addr + new_len);
}
return new_addr;
@@ -373,7 +381,7 @@ unsigned long do_mremap(unsigned long addr,
vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages);
if (vma->vm_flags & VM_LOCKED) {
mm->locked_vm += pages;
- make_pages_present(addr + old_len,
+ mlock_vma_pages_range(vma, addr + old_len,
addr + new_len);
}
ret = addr;
diff --git a/mm/nommu.c b/mm/nommu.c
index 4462b6a3fcb9..2696b24f2bb3 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -22,7 +22,7 @@
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
-#include <linux/ptrace.h>
+#include <linux/tracehook.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/mount.h>
@@ -34,6 +34,8 @@
#include <asm/tlb.h>
#include <asm/tlbflush.h>
+#include "internal.h"
+
void *high_memory;
struct page *mem_map;
unsigned long max_mapnr;
@@ -128,20 +130,16 @@ unsigned int kobjsize(const void *objp)
return PAGE_SIZE << compound_order(page);
}
-/*
- * get a list of pages in an address range belonging to the specified process
- * and indicate the VMA that covers each page
- * - this is potentially dodgy as we may end incrementing the page count of a
- * slab page or a secondary page from a compound page
- * - don't permit access to VMAs that don't support it, such as I/O mappings
- */
-int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, int len, int write, int force,
- struct page **pages, struct vm_area_struct **vmas)
+int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, int len, int flags,
+ struct page **pages, struct vm_area_struct **vmas)
{
struct vm_area_struct *vma;
unsigned long vm_flags;
int i;
+ int write = !!(flags & GUP_FLAGS_WRITE);
+ int force = !!(flags & GUP_FLAGS_FORCE);
+ int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
/* calculate required read or write permissions.
* - if 'force' is set, we only require the "MAY" flags.
@@ -156,7 +154,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
/* protect what we can, including chardevs */
if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
- !(vm_flags & vma->vm_flags))
+ (!ignore && !(vm_flags & vma->vm_flags)))
goto finish_or_fault;
if (pages) {
@@ -174,6 +172,30 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
finish_or_fault:
return i ? : -EFAULT;
}
+
+
+/*
+ * get a list of pages in an address range belonging to the specified process
+ * and indicate the VMA that covers each page
+ * - this is potentially dodgy as we may end incrementing the page count of a
+ * slab page or a secondary page from a compound page
+ * - don't permit access to VMAs that don't support it, such as I/O mappings
+ */
+int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
+ unsigned long start, int len, int write, int force,
+ struct page **pages, struct vm_area_struct **vmas)
+{
+ int flags = 0;
+
+ if (write)
+ flags |= GUP_FLAGS_WRITE;
+ if (force)
+ flags |= GUP_FLAGS_FORCE;
+
+ return __get_user_pages(tsk, mm,
+ start, len, flags,
+ pages, vmas);
+}
EXPORT_SYMBOL(get_user_pages);
DEFINE_RWLOCK(vmlist_lock);
@@ -266,6 +288,27 @@ void *vmalloc_node(unsigned long size, int node)
}
EXPORT_SYMBOL(vmalloc_node);
+#ifndef PAGE_KERNEL_EXEC
+# define PAGE_KERNEL_EXEC PAGE_KERNEL
+#endif
+
+/**
+ * vmalloc_exec - allocate virtually contiguous, executable memory
+ * @size: allocation size
+ *
+ * Kernel-internal function to allocate enough pages to cover @size
+ * the page level allocator and map them into contiguous and
+ * executable kernel virtual space.
+ *
+ * For tight control over page level allocator and protection flags
+ * use __vmalloc() instead.
+ */
+
+void *vmalloc_exec(unsigned long size)
+{
+ return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
+}
+
/**
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
* @size: allocation size
@@ -745,7 +788,7 @@ static unsigned long determine_vm_flags(struct file *file,
* it's being traced - otherwise breakpoints set in it may interfere
* with another untraced process
*/
- if ((flags & MAP_PRIVATE) && (current->ptrace & PT_PTRACED))
+ if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
vm_flags &= ~VM_MAYSHARE;
return vm_flags;
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 8a5467ee6265..64e5b4bcd964 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -26,6 +26,7 @@
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/memcontrol.h>
+#include <linux/security.h>
int sysctl_panic_on_oom;
int sysctl_oom_kill_allocating_task;
@@ -128,7 +129,8 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
* Superuser processes are usually more important, so we make it
* less likely that we kill those.
*/
- if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE))
+ if (has_capability(p, CAP_SYS_ADMIN) ||
+ has_capability(p, CAP_SYS_RESOURCE))
points /= 4;
/*
@@ -137,7 +139,7 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
* tend to only have this flag set on applications they think
* of as important.
*/
- if (__capable(p, CAP_SYS_RAWIO))
+ if (has_capability(p, CAP_SYS_RAWIO))
points /= 4;
/*
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 94c6d8988ab3..2970e35fd03f 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -7,7 +7,7 @@
* Contains functions related to writing back dirty pages at the
* address_space level.
*
- * 10Apr2002 akpm@zip.com.au
+ * 10Apr2002 Andrew Morton
* Initial version
*/
@@ -329,9 +329,7 @@ static unsigned long highmem_dirtyable_memory(unsigned long total)
struct zone *z =
&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
- x += zone_page_state(z, NR_FREE_PAGES)
- + zone_page_state(z, NR_INACTIVE)
- + zone_page_state(z, NR_ACTIVE);
+ x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
}
/*
* Make sure that the number of highmem pages is never larger
@@ -355,9 +353,7 @@ unsigned long determine_dirtyable_memory(void)
{
unsigned long x;
- x = global_page_state(NR_FREE_PAGES)
- + global_page_state(NR_INACTIVE)
- + global_page_state(NR_ACTIVE);
+ x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
if (!vm_highmem_is_dirtyable)
x -= highmem_dirtyable_memory(x);
@@ -876,6 +872,7 @@ int write_cache_pages(struct address_space *mapping,
pgoff_t end; /* Inclusive */
int scanned = 0;
int range_whole = 0;
+ long nr_to_write = wbc->nr_to_write;
if (wbc->nonblocking && bdi_write_congested(bdi)) {
wbc->encountered_congestion = 1;
@@ -939,7 +936,7 @@ retry:
unlock_page(page);
ret = 0;
}
- if (ret || (--(wbc->nr_to_write) <= 0))
+ if (ret || (--nr_to_write <= 0))
done = 1;
if (wbc->nonblocking && bdi_write_congested(bdi)) {
wbc->encountered_congestion = 1;
@@ -958,11 +955,12 @@ retry:
index = 0;
goto retry;
}
- if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
- mapping->writeback_index = index;
+ if (!wbc->no_nrwrite_index_update) {
+ if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
+ mapping->writeback_index = index;
+ wbc->nr_to_write = nr_to_write;
+ }
- if (wbc->range_cont)
- wbc->range_start = index << PAGE_CACHE_SHIFT;
return ret;
}
EXPORT_SYMBOL(write_cache_pages);
@@ -1088,7 +1086,7 @@ int __set_page_dirty_nobuffers(struct page *page)
if (!mapping)
return 1;
- write_lock_irq(&mapping->tree_lock);
+ spin_lock_irq(&mapping->tree_lock);
mapping2 = page_mapping(page);
if (mapping2) { /* Race with truncate? */
BUG_ON(mapping2 != mapping);
@@ -1102,7 +1100,7 @@ int __set_page_dirty_nobuffers(struct page *page)
radix_tree_tag_set(&mapping->page_tree,
page_index(page), PAGECACHE_TAG_DIRTY);
}
- write_unlock_irq(&mapping->tree_lock);
+ spin_unlock_irq(&mapping->tree_lock);
if (mapping->host) {
/* !PageAnon && !swapper_space */
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
@@ -1258,7 +1256,7 @@ int test_clear_page_writeback(struct page *page)
struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long flags;
- write_lock_irqsave(&mapping->tree_lock, flags);
+ spin_lock_irqsave(&mapping->tree_lock, flags);
ret = TestClearPageWriteback(page);
if (ret) {
radix_tree_tag_clear(&mapping->page_tree,
@@ -1269,7 +1267,7 @@ int test_clear_page_writeback(struct page *page)
__bdi_writeout_inc(bdi);
}
}
- write_unlock_irqrestore(&mapping->tree_lock, flags);
+ spin_unlock_irqrestore(&mapping->tree_lock, flags);
} else {
ret = TestClearPageWriteback(page);
}
@@ -1287,7 +1285,7 @@ int test_set_page_writeback(struct page *page)
struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long flags;
- write_lock_irqsave(&mapping->tree_lock, flags);
+ spin_lock_irqsave(&mapping->tree_lock, flags);
ret = TestSetPageWriteback(page);
if (!ret) {
radix_tree_tag_set(&mapping->page_tree,
@@ -1300,7 +1298,7 @@ int test_set_page_writeback(struct page *page)
radix_tree_tag_clear(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_DIRTY);
- write_unlock_irqrestore(&mapping->tree_lock, flags);
+ spin_unlock_irqrestore(&mapping->tree_lock, flags);
} else {
ret = TestSetPageWriteback(page);
}
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 79ac4afc908c..d0a240fbb8bf 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -44,7 +44,7 @@
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
#include <linux/page-isolation.h>
-#include <linux/memcontrol.h>
+#include <linux/page_cgroup.h>
#include <linux/debugobjects.h>
#include <asm/tlbflush.h>
@@ -153,9 +153,9 @@ static unsigned long __meminitdata dma_reserve;
static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
- unsigned long __initdata required_kernelcore;
+ static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
- unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
+ static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
@@ -223,17 +223,12 @@ static inline int bad_range(struct zone *zone, struct page *page)
static void bad_page(struct page *page)
{
- void *pc = page_get_page_cgroup(page);
-
printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
current->comm, page, (int)(2*sizeof(unsigned long)),
(unsigned long)page->flags, page->mapping,
page_mapcount(page), page_count(page));
- if (pc) {
- printk(KERN_EMERG "cgroup:%p\n", pc);
- page_reset_bad_cgroup(page);
- }
+
printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
KERN_EMERG "Backtrace:\n");
dump_stack();
@@ -264,17 +259,18 @@ static void free_compound_page(struct page *page)
__free_pages_ok(page, compound_order(page));
}
-static void prep_compound_page(struct page *page, unsigned long order)
+void prep_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
+ struct page *p = page + 1;
set_compound_page_dtor(page, free_compound_page);
set_compound_order(page, order);
__SetPageHead(page);
- for (i = 1; i < nr_pages; i++) {
- struct page *p = page + i;
-
+ for (i = 1; i < nr_pages; i++, p++) {
+ if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
+ p = pfn_to_page(page_to_pfn(page) + i);
__SetPageTail(p);
p->first_page = page;
}
@@ -284,6 +280,7 @@ static void destroy_compound_page(struct page *page, unsigned long order)
{
int i;
int nr_pages = 1 << order;
+ struct page *p = page + 1;
if (unlikely(compound_order(page) != order))
bad_page(page);
@@ -291,8 +288,9 @@ static void destroy_compound_page(struct page *page, unsigned long order)
if (unlikely(!PageHead(page)))
bad_page(page);
__ClearPageHead(page);
- for (i = 1; i < nr_pages; i++) {
- struct page *p = page + i;
+ for (i = 1; i < nr_pages; i++, p++) {
+ if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
+ p = pfn_to_page(page_to_pfn(page) + i);
if (unlikely(!PageTail(p) |
(p->first_page != page)))
@@ -432,8 +430,9 @@ static inline void __free_one_page(struct page *page,
buddy = __page_find_buddy(page, page_idx, order);
if (!page_is_buddy(page, buddy, order))
- break; /* Move the buddy up one level. */
+ break;
+ /* Our buddy is free, merge with it and move up one order. */
list_del(&buddy->lru);
zone->free_area[order].nr_free--;
rmv_page_order(buddy);
@@ -450,14 +449,16 @@ static inline void __free_one_page(struct page *page,
static inline int free_pages_check(struct page *page)
{
+ free_page_mlock(page);
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
- (page_get_page_cgroup(page) != NULL) |
(page_count(page) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
bad_page(page);
if (PageDirty(page))
__ClearPageDirty(page);
+ if (PageSwapBacked(page))
+ __ClearPageSwapBacked(page);
/*
* For now, we report if PG_reserved was found set, but do not
* clear it, and do not free the page. But we shall soon need
@@ -532,7 +533,7 @@ static void __free_pages_ok(struct page *page, unsigned int order)
/*
* permit the bootmem allocator to evade page validation on high-order frees
*/
-void __free_pages_bootmem(struct page *page, unsigned int order)
+void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
{
if (order == 0) {
__ClearPageReserved(page);
@@ -596,7 +597,6 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
- (page_get_page_cgroup(page) != NULL) |
(page_count(page) != 0) |
(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
bad_page(page);
@@ -610,7 +610,11 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
1 << PG_referenced | 1 << PG_arch_1 |
- 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
+ 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
+#ifdef CONFIG_UNEVICTABLE_LRU
+ | 1 << PG_mlocked
+#endif
+ );
set_page_private(page, 0);
set_page_refcounted(page);
@@ -673,9 +677,9 @@ static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
* Note that start_page and end_pages are not aligned on a pageblock
* boundary. If alignment is required, use move_freepages_block()
*/
-int move_freepages(struct zone *zone,
- struct page *start_page, struct page *end_page,
- int migratetype)
+static int move_freepages(struct zone *zone,
+ struct page *start_page, struct page *end_page,
+ int migratetype)
{
struct page *page;
unsigned long order;
@@ -693,6 +697,9 @@ int move_freepages(struct zone *zone,
#endif
for (page = start_page; page <= end_page;) {
+ /* Make sure we are not inadvertently changing nodes */
+ VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
+
if (!pfn_valid_within(page_to_pfn(page))) {
page++;
continue;
@@ -714,7 +721,8 @@ int move_freepages(struct zone *zone,
return pages_moved;
}
-int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
+static int move_freepages_block(struct zone *zone, struct page *page,
+ int migratetype)
{
unsigned long start_pfn, end_pfn;
struct page *start_page, *end_page;
@@ -1429,7 +1437,7 @@ try_next_zone:
/*
* This is the 'heart' of the zoned buddy allocator.
*/
-static struct page *
+struct page *
__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, nodemask_t *nodemask)
{
@@ -1632,22 +1640,7 @@ nopage:
got_pg:
return page;
}
-
-struct page *
-__alloc_pages(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist)
-{
- return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
-}
-
-struct page *
-__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, nodemask_t *nodemask)
-{
- return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
-}
-
-EXPORT_SYMBOL(__alloc_pages);
+EXPORT_SYMBOL(__alloc_pages_internal);
/*
* Common helper functions.
@@ -1711,6 +1704,59 @@ void free_pages(unsigned long addr, unsigned int order)
EXPORT_SYMBOL(free_pages);
+/**
+ * alloc_pages_exact - allocate an exact number physically-contiguous pages.
+ * @size: the number of bytes to allocate
+ * @gfp_mask: GFP flags for the allocation
+ *
+ * This function is similar to alloc_pages(), except that it allocates the
+ * minimum number of pages to satisfy the request. alloc_pages() can only
+ * allocate memory in power-of-two pages.
+ *
+ * This function is also limited by MAX_ORDER.
+ *
+ * Memory allocated by this function must be released by free_pages_exact().
+ */
+void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
+{
+ unsigned int order = get_order(size);
+ unsigned long addr;
+
+ addr = __get_free_pages(gfp_mask, order);
+ if (addr) {
+ unsigned long alloc_end = addr + (PAGE_SIZE << order);
+ unsigned long used = addr + PAGE_ALIGN(size);
+
+ split_page(virt_to_page(addr), order);
+ while (used < alloc_end) {
+ free_page(used);
+ used += PAGE_SIZE;
+ }
+ }
+
+ return (void *)addr;
+}
+EXPORT_SYMBOL(alloc_pages_exact);
+
+/**
+ * free_pages_exact - release memory allocated via alloc_pages_exact()
+ * @virt: the value returned by alloc_pages_exact.
+ * @size: size of allocation, same value as passed to alloc_pages_exact().
+ *
+ * Release the memory allocated by a previous call to alloc_pages_exact.
+ */
+void free_pages_exact(void *virt, size_t size)
+{
+ unsigned long addr = (unsigned long)virt;
+ unsigned long end = addr + PAGE_ALIGN(size);
+
+ while (addr < end) {
+ free_page(addr);
+ addr += PAGE_SIZE;
+ }
+}
+EXPORT_SYMBOL(free_pages_exact);
+
static unsigned int nr_free_zone_pages(int offset)
{
struct zoneref *z;
@@ -1816,10 +1862,21 @@ void show_free_areas(void)
}
}
- printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
+ printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
+ " inactive_file:%lu"
+//TODO: check/adjust line lengths
+#ifdef CONFIG_UNEVICTABLE_LRU
+ " unevictable:%lu"
+#endif
+ " dirty:%lu writeback:%lu unstable:%lu\n"
" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
- global_page_state(NR_ACTIVE),
- global_page_state(NR_INACTIVE),
+ global_page_state(NR_ACTIVE_ANON),
+ global_page_state(NR_ACTIVE_FILE),
+ global_page_state(NR_INACTIVE_ANON),
+ global_page_state(NR_INACTIVE_FILE),
+#ifdef CONFIG_UNEVICTABLE_LRU
+ global_page_state(NR_UNEVICTABLE),
+#endif
global_page_state(NR_FILE_DIRTY),
global_page_state(NR_WRITEBACK),
global_page_state(NR_UNSTABLE_NFS),
@@ -1842,8 +1899,13 @@ void show_free_areas(void)
" min:%lukB"
" low:%lukB"
" high:%lukB"
- " active:%lukB"
- " inactive:%lukB"
+ " active_anon:%lukB"
+ " inactive_anon:%lukB"
+ " active_file:%lukB"
+ " inactive_file:%lukB"
+#ifdef CONFIG_UNEVICTABLE_LRU
+ " unevictable:%lukB"
+#endif
" present:%lukB"
" pages_scanned:%lu"
" all_unreclaimable? %s"
@@ -1853,8 +1915,13 @@ void show_free_areas(void)
K(zone->pages_min),
K(zone->pages_low),
K(zone->pages_high),
- K(zone_page_state(zone, NR_ACTIVE)),
- K(zone_page_state(zone, NR_INACTIVE)),
+ K(zone_page_state(zone, NR_ACTIVE_ANON)),
+ K(zone_page_state(zone, NR_INACTIVE_ANON)),
+ K(zone_page_state(zone, NR_ACTIVE_FILE)),
+ K(zone_page_state(zone, NR_INACTIVE_FILE)),
+#ifdef CONFIG_UNEVICTABLE_LRU
+ K(zone_page_state(zone, NR_UNEVICTABLE)),
+#endif
K(zone->present_pages),
zone->pages_scanned,
(zone_is_all_unreclaimable(zone) ? "yes" : "no")
@@ -2332,7 +2399,7 @@ static void build_zonelist_cache(pg_data_t *pgdat)
#endif /* CONFIG_NUMA */
-/* return values int ....just for stop_machine_run() */
+/* return values int ....just for stop_machine() */
static int __build_all_zonelists(void *dummy)
{
int nid;
@@ -2352,11 +2419,12 @@ void build_all_zonelists(void)
if (system_state == SYSTEM_BOOTING) {
__build_all_zonelists(NULL);
+ mminit_verify_zonelist();
cpuset_init_current_mems_allowed();
} else {
/* we have to stop all cpus to guarantee there is no user
of zonelist */
- stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
+ stop_machine(__build_all_zonelists, NULL, NULL);
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
@@ -2475,6 +2543,10 @@ static void setup_zone_migrate_reserve(struct zone *zone)
continue;
page = pfn_to_page(pfn);
+ /* Watch out for overlapping nodes */
+ if (page_to_nid(page) != zone_to_nid(zone))
+ continue;
+
/* Blocks with reserved pages will never free, skip them. */
if (PageReserved(page))
continue;
@@ -2534,6 +2606,7 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
}
page = pfn_to_page(pfn);
set_page_links(page, zone, nid, pfn);
+ mminit_verify_page_links(page, zone, nid, pfn);
init_page_count(page);
reset_page_mapcount(page);
SetPageReserved(page);
@@ -2611,7 +2684,7 @@ static int zone_batchsize(struct zone *zone)
return batch;
}
-inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
+static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
struct per_cpu_pages *pcp;
@@ -2836,6 +2909,12 @@ __meminit int init_currently_empty_zone(struct zone *zone,
zone->zone_start_pfn = zone_start_pfn;
+ mminit_dprintk(MMINIT_TRACE, "memmap_init",
+ "Initialising map node %d zone %lu pfns %lu -> %lu\n",
+ pgdat->node_id,
+ (unsigned long)zone_idx(zone),
+ zone_start_pfn, (zone_start_pfn + size));
+
zone_init_free_lists(zone);
return 0;
@@ -2975,7 +3054,8 @@ void __init sparse_memory_present_with_active_regions(int nid)
void __init push_node_boundaries(unsigned int nid,
unsigned long start_pfn, unsigned long end_pfn)
{
- printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
+ mminit_dprintk(MMINIT_TRACE, "zoneboundary",
+ "Entering push_node_boundaries(%u, %lu, %lu)\n",
nid, start_pfn, end_pfn);
/* Initialise the boundary for this node if necessary */
@@ -2993,7 +3073,8 @@ void __init push_node_boundaries(unsigned int nid,
static void __meminit account_node_boundary(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
- printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
+ mminit_dprintk(MMINIT_TRACE, "zoneboundary",
+ "Entering account_node_boundary(%u, %lu, %lu)\n",
nid, *start_pfn, *end_pfn);
/* Return if boundary information has not been provided */
@@ -3050,7 +3131,7 @@ void __meminit get_pfn_range_for_nid(unsigned int nid,
* assumption is made that zones within a node are ordered in monotonic
* increasing memory addresses so that the "highest" populated zone is used
*/
-void __init find_usable_zone_for_movable(void)
+static void __init find_usable_zone_for_movable(void)
{
int zone_index;
for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
@@ -3076,7 +3157,7 @@ void __init find_usable_zone_for_movable(void)
* highest usable zone for ZONE_MOVABLE. This preserves the assumption that
* zones within a node are in order of monotonic increases memory addresses
*/
-void __meminit adjust_zone_range_for_zone_movable(int nid,
+static void __meminit adjust_zone_range_for_zone_movable(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
@@ -3137,7 +3218,7 @@ static unsigned long __meminit zone_spanned_pages_in_node(int nid,
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
* then all holes in the requested range will be accounted for.
*/
-unsigned long __meminit __absent_pages_in_range(int nid,
+static unsigned long __meminit __absent_pages_in_range(int nid,
unsigned long range_start_pfn,
unsigned long range_end_pfn)
{
@@ -3350,10 +3431,12 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat,
pgdat->nr_zones = 0;
init_waitqueue_head(&pgdat->kswapd_wait);
pgdat->kswapd_max_order = 0;
+ pgdat_page_cgroup_init(pgdat);
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long size, realsize, memmap_pages;
+ enum lru_list l;
size = zone_spanned_pages_in_node(nid, j, zones_size);
realsize = size - zone_absent_pages_in_node(nid, j,
@@ -3404,10 +3487,14 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat,
zone->prev_priority = DEF_PRIORITY;
zone_pcp_init(zone);
- INIT_LIST_HEAD(&zone->active_list);
- INIT_LIST_HEAD(&zone->inactive_list);
- zone->nr_scan_active = 0;
- zone->nr_scan_inactive = 0;
+ for_each_lru(l) {
+ INIT_LIST_HEAD(&zone->lru[l].list);
+ zone->lru[l].nr_scan = 0;
+ }
+ zone->recent_rotated[0] = 0;
+ zone->recent_rotated[1] = 0;
+ zone->recent_scanned[0] = 0;
+ zone->recent_scanned[1] = 0;
zap_zone_vm_stats(zone);
zone->flags = 0;
if (!size)
@@ -3464,10 +3551,11 @@ static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
}
-void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
- unsigned long *zones_size, unsigned long node_start_pfn,
- unsigned long *zholes_size)
+void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
+ unsigned long node_start_pfn, unsigned long *zholes_size)
{
+ pg_data_t *pgdat = NODE_DATA(nid);
+
pgdat->node_id = nid;
pgdat->node_start_pfn = node_start_pfn;
calculate_node_totalpages(pgdat, zones_size, zholes_size);
@@ -3520,10 +3608,13 @@ void __init add_active_range(unsigned int nid, unsigned long start_pfn,
{
int i;
- printk(KERN_DEBUG "Entering add_active_range(%d, %#lx, %#lx) "
- "%d entries of %d used\n",
- nid, start_pfn, end_pfn,
- nr_nodemap_entries, MAX_ACTIVE_REGIONS);
+ mminit_dprintk(MMINIT_TRACE, "memory_register",
+ "Entering add_active_range(%d, %#lx, %#lx) "
+ "%d entries of %d used\n",
+ nid, start_pfn, end_pfn,
+ nr_nodemap_entries, MAX_ACTIVE_REGIONS);
+
+ mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
/* Merge with existing active regions if possible */
for (i = 0; i < nr_nodemap_entries; i++) {
@@ -3669,7 +3760,7 @@ static void __init sort_node_map(void)
}
/* Find the lowest pfn for a node */
-unsigned long __init find_min_pfn_for_node(int nid)
+static unsigned long __init find_min_pfn_for_node(int nid)
{
int i;
unsigned long min_pfn = ULONG_MAX;
@@ -3698,23 +3789,6 @@ unsigned long __init find_min_pfn_with_active_regions(void)
return find_min_pfn_for_node(MAX_NUMNODES);
}
-/**
- * find_max_pfn_with_active_regions - Find the maximum PFN registered
- *
- * It returns the maximum PFN based on information provided via
- * add_active_range().
- */
-unsigned long __init find_max_pfn_with_active_regions(void)
-{
- int i;
- unsigned long max_pfn = 0;
-
- for (i = 0; i < nr_nodemap_entries; i++)
- max_pfn = max(max_pfn, early_node_map[i].end_pfn);
-
- return max_pfn;
-}
-
/*
* early_calculate_totalpages()
* Sum pages in active regions for movable zone.
@@ -3741,7 +3815,7 @@ static unsigned long __init early_calculate_totalpages(void)
* memory. When they don't, some nodes will have more kernelcore than
* others
*/
-void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
+static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
{
int i, nid;
unsigned long usable_startpfn;
@@ -3904,7 +3978,7 @@ static void check_for_regular_memory(pg_data_t *pgdat)
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
unsigned long nid;
- enum zone_type i;
+ int i;
/* Sort early_node_map as initialisation assumes it is sorted */
sort_node_map();
@@ -3957,10 +4031,11 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn)
early_node_map[i].end_pfn);
/* Initialise every node */
+ mminit_verify_pageflags_layout();
setup_nr_node_ids();
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
- free_area_init_node(nid, pgdat, NULL,
+ free_area_init_node(nid, NULL,
find_min_pfn_for_node(nid), NULL);
/* Any memory on that node */
@@ -4025,15 +4100,13 @@ void __init set_dma_reserve(unsigned long new_dma_reserve)
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
-static bootmem_data_t contig_bootmem_data;
-struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
-
+struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
EXPORT_SYMBOL(contig_page_data);
#endif
void __init free_area_init(unsigned long *zones_size)
{
- free_area_init_node(0, NODE_DATA(0), zones_size,
+ free_area_init_node(0, zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}
@@ -4163,7 +4236,7 @@ void setup_per_zone_pages_min(void)
for_each_zone(zone) {
u64 tmp;
- spin_lock_irqsave(&zone->lru_lock, flags);
+ spin_lock_irqsave(&zone->lock, flags);
tmp = (u64)pages_min * zone->present_pages;
do_div(tmp, lowmem_pages);
if (is_highmem(zone)) {
@@ -4195,13 +4268,53 @@ void setup_per_zone_pages_min(void)
zone->pages_low = zone->pages_min + (tmp >> 2);
zone->pages_high = zone->pages_min + (tmp >> 1);
setup_zone_migrate_reserve(zone);
- spin_unlock_irqrestore(&zone->lru_lock, flags);
+ spin_unlock_irqrestore(&zone->lock, flags);
}
/* update totalreserve_pages */
calculate_totalreserve_pages();
}
+/**
+ * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
+ *
+ * The inactive anon list should be small enough that the VM never has to
+ * do too much work, but large enough that each inactive page has a chance
+ * to be referenced again before it is swapped out.
+ *
+ * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
+ * INACTIVE_ANON pages on this zone's LRU, maintained by the
+ * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
+ * the anonymous pages are kept on the inactive list.
+ *
+ * total target max
+ * memory ratio inactive anon
+ * -------------------------------------
+ * 10MB 1 5MB
+ * 100MB 1 50MB
+ * 1GB 3 250MB
+ * 10GB 10 0.9GB
+ * 100GB 31 3GB
+ * 1TB 101 10GB
+ * 10TB 320 32GB
+ */
+void setup_per_zone_inactive_ratio(void)
+{
+ struct zone *zone;
+
+ for_each_zone(zone) {
+ unsigned int gb, ratio;
+
+ /* Zone size in gigabytes */
+ gb = zone->present_pages >> (30 - PAGE_SHIFT);
+ ratio = int_sqrt(10 * gb);
+ if (!ratio)
+ ratio = 1;
+
+ zone->inactive_ratio = ratio;
+ }
+}
+
/*
* Initialise min_free_kbytes.
*
@@ -4239,6 +4352,7 @@ static int __init init_per_zone_pages_min(void)
min_free_kbytes = 65536;
setup_per_zone_pages_min();
setup_per_zone_lowmem_reserve();
+ setup_per_zone_inactive_ratio();
return 0;
}
module_init(init_per_zone_pages_min)
@@ -4400,7 +4514,7 @@ void *__init alloc_large_system_hash(const char *tablename,
do {
size = bucketsize << log2qty;
if (flags & HASH_EARLY)
- table = alloc_bootmem(size);
+ table = alloc_bootmem_nopanic(size);
else if (hashdist)
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
else {
diff --git a/mm/page_cgroup.c b/mm/page_cgroup.c
new file mode 100644
index 000000000000..f59d797dc5a9
--- /dev/null
+++ b/mm/page_cgroup.c
@@ -0,0 +1,256 @@
+#include <linux/mm.h>
+#include <linux/mmzone.h>
+#include <linux/bootmem.h>
+#include <linux/bit_spinlock.h>
+#include <linux/page_cgroup.h>
+#include <linux/hash.h>
+#include <linux/slab.h>
+#include <linux/memory.h>
+#include <linux/vmalloc.h>
+#include <linux/cgroup.h>
+
+static void __meminit
+__init_page_cgroup(struct page_cgroup *pc, unsigned long pfn)
+{
+ pc->flags = 0;
+ pc->mem_cgroup = NULL;
+ pc->page = pfn_to_page(pfn);
+}
+static unsigned long total_usage;
+
+#if !defined(CONFIG_SPARSEMEM)
+
+
+void __init pgdat_page_cgroup_init(struct pglist_data *pgdat)
+{
+ pgdat->node_page_cgroup = NULL;
+}
+
+struct page_cgroup *lookup_page_cgroup(struct page *page)
+{
+ unsigned long pfn = page_to_pfn(page);
+ unsigned long offset;
+ struct page_cgroup *base;
+
+ base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
+ if (unlikely(!base))
+ return NULL;
+
+ offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
+ return base + offset;
+}
+
+static int __init alloc_node_page_cgroup(int nid)
+{
+ struct page_cgroup *base, *pc;
+ unsigned long table_size;
+ unsigned long start_pfn, nr_pages, index;
+
+ start_pfn = NODE_DATA(nid)->node_start_pfn;
+ nr_pages = NODE_DATA(nid)->node_spanned_pages;
+
+ table_size = sizeof(struct page_cgroup) * nr_pages;
+
+ base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
+ table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
+ if (!base)
+ return -ENOMEM;
+ for (index = 0; index < nr_pages; index++) {
+ pc = base + index;
+ __init_page_cgroup(pc, start_pfn + index);
+ }
+ NODE_DATA(nid)->node_page_cgroup = base;
+ total_usage += table_size;
+ return 0;
+}
+
+void __init page_cgroup_init(void)
+{
+
+ int nid, fail;
+
+ if (mem_cgroup_subsys.disabled)
+ return;
+
+ for_each_online_node(nid) {
+ fail = alloc_node_page_cgroup(nid);
+ if (fail)
+ goto fail;
+ }
+ printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
+ printk(KERN_INFO "please try cgroup_disable=memory option if you"
+ " don't want\n");
+ return;
+fail:
+ printk(KERN_CRIT "allocation of page_cgroup was failed.\n");
+ printk(KERN_CRIT "please try cgroup_disable=memory boot option\n");
+ panic("Out of memory");
+}
+
+#else /* CONFIG_FLAT_NODE_MEM_MAP */
+
+struct page_cgroup *lookup_page_cgroup(struct page *page)
+{
+ unsigned long pfn = page_to_pfn(page);
+ struct mem_section *section = __pfn_to_section(pfn);
+
+ return section->page_cgroup + pfn;
+}
+
+int __meminit init_section_page_cgroup(unsigned long pfn)
+{
+ struct mem_section *section;
+ struct page_cgroup *base, *pc;
+ unsigned long table_size;
+ int nid, index;
+
+ section = __pfn_to_section(pfn);
+
+ if (section->page_cgroup)
+ return 0;
+
+ nid = page_to_nid(pfn_to_page(pfn));
+
+ table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
+ if (slab_is_available()) {
+ base = kmalloc_node(table_size, GFP_KERNEL, nid);
+ if (!base)
+ base = vmalloc_node(table_size, nid);
+ } else {
+ base = __alloc_bootmem_node_nopanic(NODE_DATA(nid), table_size,
+ PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
+ }
+
+ if (!base) {
+ printk(KERN_ERR "page cgroup allocation failure\n");
+ return -ENOMEM;
+ }
+
+ for (index = 0; index < PAGES_PER_SECTION; index++) {
+ pc = base + index;
+ __init_page_cgroup(pc, pfn + index);
+ }
+
+ section = __pfn_to_section(pfn);
+ section->page_cgroup = base - pfn;
+ total_usage += table_size;
+ return 0;
+}
+#ifdef CONFIG_MEMORY_HOTPLUG
+void __free_page_cgroup(unsigned long pfn)
+{
+ struct mem_section *ms;
+ struct page_cgroup *base;
+
+ ms = __pfn_to_section(pfn);
+ if (!ms || !ms->page_cgroup)
+ return;
+ base = ms->page_cgroup + pfn;
+ if (is_vmalloc_addr(base)) {
+ vfree(base);
+ ms->page_cgroup = NULL;
+ } else {
+ struct page *page = virt_to_page(base);
+ if (!PageReserved(page)) { /* Is bootmem ? */
+ kfree(base);
+ ms->page_cgroup = NULL;
+ }
+ }
+}
+
+int online_page_cgroup(unsigned long start_pfn,
+ unsigned long nr_pages,
+ int nid)
+{
+ unsigned long start, end, pfn;
+ int fail = 0;
+
+ start = start_pfn & (PAGES_PER_SECTION - 1);
+ end = ALIGN(start_pfn + nr_pages, PAGES_PER_SECTION);
+
+ for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
+ if (!pfn_present(pfn))
+ continue;
+ fail = init_section_page_cgroup(pfn);
+ }
+ if (!fail)
+ return 0;
+
+ /* rollback */
+ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
+ __free_page_cgroup(pfn);
+
+ return -ENOMEM;
+}
+
+int offline_page_cgroup(unsigned long start_pfn,
+ unsigned long nr_pages, int nid)
+{
+ unsigned long start, end, pfn;
+
+ start = start_pfn & (PAGES_PER_SECTION - 1);
+ end = ALIGN(start_pfn + nr_pages, PAGES_PER_SECTION);
+
+ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
+ __free_page_cgroup(pfn);
+ return 0;
+
+}
+
+static int page_cgroup_callback(struct notifier_block *self,
+ unsigned long action, void *arg)
+{
+ struct memory_notify *mn = arg;
+ int ret = 0;
+ switch (action) {
+ case MEM_GOING_ONLINE:
+ ret = online_page_cgroup(mn->start_pfn,
+ mn->nr_pages, mn->status_change_nid);
+ break;
+ case MEM_CANCEL_ONLINE:
+ case MEM_OFFLINE:
+ offline_page_cgroup(mn->start_pfn,
+ mn->nr_pages, mn->status_change_nid);
+ break;
+ case MEM_GOING_OFFLINE:
+ break;
+ case MEM_ONLINE:
+ case MEM_CANCEL_OFFLINE:
+ break;
+ }
+ ret = notifier_from_errno(ret);
+ return ret;
+}
+
+#endif
+
+void __init page_cgroup_init(void)
+{
+ unsigned long pfn;
+ int fail = 0;
+
+ if (mem_cgroup_subsys.disabled)
+ return;
+
+ for (pfn = 0; !fail && pfn < max_pfn; pfn += PAGES_PER_SECTION) {
+ if (!pfn_present(pfn))
+ continue;
+ fail = init_section_page_cgroup(pfn);
+ }
+ if (fail) {
+ printk(KERN_CRIT "try cgroup_disable=memory boot option\n");
+ panic("Out of memory");
+ } else {
+ hotplug_memory_notifier(page_cgroup_callback, 0);
+ }
+ printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
+ printk(KERN_INFO "please try cgroup_disable=memory option if you don't"
+ " want\n");
+}
+
+void __init pgdat_page_cgroup_init(struct pglist_data *pgdat)
+{
+ return;
+}
+
+#endif
diff --git a/mm/page_isolation.c b/mm/page_isolation.c
index 3444b58033c8..b70a7fec1ff6 100644
--- a/mm/page_isolation.c
+++ b/mm/page_isolation.c
@@ -2,7 +2,6 @@
* linux/mm/page_isolation.c
*/
-#include <stddef.h>
#include <linux/mm.h>
#include <linux/page-isolation.h>
#include <linux/pageblock-flags.h>
@@ -115,8 +114,10 @@ __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn)
int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
{
- unsigned long pfn;
+ unsigned long pfn, flags;
struct page *page;
+ struct zone *zone;
+ int ret;
pfn = start_pfn;
/*
@@ -132,7 +133,9 @@ int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
if (pfn < end_pfn)
return -EBUSY;
/* Check all pages are free or Marked as ISOLATED */
- if (__test_page_isolated_in_pageblock(start_pfn, end_pfn))
- return 0;
- return -EBUSY;
+ zone = page_zone(pfn_to_page(pfn));
+ spin_lock_irqsave(&zone->lock, flags);
+ ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn);
+ spin_unlock_irqrestore(&zone->lock, flags);
+ return ret ? 0 : -EBUSY;
}
diff --git a/mm/pdflush.c b/mm/pdflush.c
index 9d834aa4b979..a0a14c4d5072 100644
--- a/mm/pdflush.c
+++ b/mm/pdflush.c
@@ -3,7 +3,7 @@
*
* Copyright (C) 2002, Linus Torvalds.
*
- * 09Apr2002 akpm@zip.com.au
+ * 09Apr2002 Andrew Morton
* Initial version
* 29Feb2004 kaos@sgi.com
* Move worker thread creation to kthread to avoid chewing
@@ -130,7 +130,7 @@ static int __pdflush(struct pdflush_work *my_work)
* Thread creation: For how long have there been zero
* available threads?
*/
- if (jiffies - last_empty_jifs > 1 * HZ) {
+ if (time_after(jiffies, last_empty_jifs + 1 * HZ)) {
/* unlocked list_empty() test is OK here */
if (list_empty(&pdflush_list)) {
/* unlocked test is OK here */
@@ -151,7 +151,7 @@ static int __pdflush(struct pdflush_work *my_work)
if (nr_pdflush_threads <= MIN_PDFLUSH_THREADS)
continue;
pdf = list_entry(pdflush_list.prev, struct pdflush_work, list);
- if (jiffies - pdf->when_i_went_to_sleep > 1 * HZ) {
+ if (time_after(jiffies, pdf->when_i_went_to_sleep + 1 * HZ)) {
/* Limit exit rate */
pdf->when_i_went_to_sleep = jiffies;
break; /* exeunt */
diff --git a/mm/quicklist.c b/mm/quicklist.c
index 3f703f7cb398..8dbb6805ef35 100644
--- a/mm/quicklist.c
+++ b/mm/quicklist.c
@@ -26,7 +26,10 @@ DEFINE_PER_CPU(struct quicklist, quicklist)[CONFIG_NR_QUICK];
static unsigned long max_pages(unsigned long min_pages)
{
unsigned long node_free_pages, max;
- struct zone *zones = NODE_DATA(numa_node_id())->node_zones;
+ int node = numa_node_id();
+ struct zone *zones = NODE_DATA(node)->node_zones;
+ int num_cpus_on_node;
+ node_to_cpumask_ptr(cpumask_on_node, node);
node_free_pages =
#ifdef CONFIG_ZONE_DMA
@@ -38,6 +41,10 @@ static unsigned long max_pages(unsigned long min_pages)
zone_page_state(&zones[ZONE_NORMAL], NR_FREE_PAGES);
max = node_free_pages / FRACTION_OF_NODE_MEM;
+
+ num_cpus_on_node = cpus_weight_nr(*cpumask_on_node);
+ max /= num_cpus_on_node;
+
return max(max, min_pages);
}
diff --git a/mm/readahead.c b/mm/readahead.c
index d8723a5f6496..bec83c15a78f 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -3,7 +3,7 @@
*
* Copyright (C) 2002, Linus Torvalds
*
- * 09Apr2002 akpm@zip.com.au
+ * 09Apr2002 Andrew Morton
* Initial version.
*/
@@ -229,7 +229,7 @@ int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
*/
unsigned long max_sane_readahead(unsigned long nr)
{
- return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
+ return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
}
@@ -382,9 +382,9 @@ ondemand_readahead(struct address_space *mapping,
if (hit_readahead_marker) {
pgoff_t start;
- read_lock_irq(&mapping->tree_lock);
- start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
- read_unlock_irq(&mapping->tree_lock);
+ rcu_read_lock();
+ start = radix_tree_next_hole(&mapping->page_tree, offset,max+1);
+ rcu_read_unlock();
if (!start || start - offset > max)
return 0;
diff --git a/mm/rmap.c b/mm/rmap.c
index bf0a5b7cfb8e..10993942d6c9 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -49,12 +49,51 @@
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/memcontrol.h>
+#include <linux/mmu_notifier.h>
#include <asm/tlbflush.h>
-struct kmem_cache *anon_vma_cachep;
+#include "internal.h"
-/* This must be called under the mmap_sem. */
+static struct kmem_cache *anon_vma_cachep;
+
+static inline struct anon_vma *anon_vma_alloc(void)
+{
+ return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
+}
+
+static inline void anon_vma_free(struct anon_vma *anon_vma)
+{
+ kmem_cache_free(anon_vma_cachep, anon_vma);
+}
+
+/**
+ * anon_vma_prepare - attach an anon_vma to a memory region
+ * @vma: the memory region in question
+ *
+ * This makes sure the memory mapping described by 'vma' has
+ * an 'anon_vma' attached to it, so that we can associate the
+ * anonymous pages mapped into it with that anon_vma.
+ *
+ * The common case will be that we already have one, but if
+ * if not we either need to find an adjacent mapping that we
+ * can re-use the anon_vma from (very common when the only
+ * reason for splitting a vma has been mprotect()), or we
+ * allocate a new one.
+ *
+ * Anon-vma allocations are very subtle, because we may have
+ * optimistically looked up an anon_vma in page_lock_anon_vma()
+ * and that may actually touch the spinlock even in the newly
+ * allocated vma (it depends on RCU to make sure that the
+ * anon_vma isn't actually destroyed).
+ *
+ * As a result, we need to do proper anon_vma locking even
+ * for the new allocation. At the same time, we do not want
+ * to do any locking for the common case of already having
+ * an anon_vma.
+ *
+ * This must be called with the mmap_sem held for reading.
+ */
int anon_vma_prepare(struct vm_area_struct *vma)
{
struct anon_vma *anon_vma = vma->anon_vma;
@@ -62,20 +101,17 @@ int anon_vma_prepare(struct vm_area_struct *vma)
might_sleep();
if (unlikely(!anon_vma)) {
struct mm_struct *mm = vma->vm_mm;
- struct anon_vma *allocated, *locked;
+ struct anon_vma *allocated;
anon_vma = find_mergeable_anon_vma(vma);
- if (anon_vma) {
- allocated = NULL;
- locked = anon_vma;
- spin_lock(&locked->lock);
- } else {
+ allocated = NULL;
+ if (!anon_vma) {
anon_vma = anon_vma_alloc();
if (unlikely(!anon_vma))
return -ENOMEM;
allocated = anon_vma;
- locked = NULL;
}
+ spin_lock(&anon_vma->lock);
/* page_table_lock to protect against threads */
spin_lock(&mm->page_table_lock);
@@ -86,8 +122,7 @@ int anon_vma_prepare(struct vm_area_struct *vma)
}
spin_unlock(&mm->page_table_lock);
- if (locked)
- spin_unlock(&locked->lock);
+ spin_unlock(&anon_vma->lock);
if (unlikely(allocated))
anon_vma_free(allocated);
}
@@ -138,7 +173,7 @@ void anon_vma_unlink(struct vm_area_struct *vma)
anon_vma_free(anon_vma);
}
-static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
+static void anon_vma_ctor(void *data)
{
struct anon_vma *anon_vma = data;
@@ -156,7 +191,7 @@ void __init anon_vma_init(void)
* Getting a lock on a stable anon_vma from a page off the LRU is
* tricky: page_lock_anon_vma rely on RCU to guard against the races.
*/
-static struct anon_vma *page_lock_anon_vma(struct page *page)
+struct anon_vma *page_lock_anon_vma(struct page *page)
{
struct anon_vma *anon_vma;
unsigned long anon_mapping;
@@ -176,7 +211,7 @@ out:
return NULL;
}
-static void page_unlock_anon_vma(struct anon_vma *anon_vma)
+void page_unlock_anon_vma(struct anon_vma *anon_vma)
{
spin_unlock(&anon_vma->lock);
rcu_read_unlock();
@@ -223,10 +258,14 @@ unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
/*
* Check that @page is mapped at @address into @mm.
*
+ * If @sync is false, page_check_address may perform a racy check to avoid
+ * the page table lock when the pte is not present (helpful when reclaiming
+ * highly shared pages).
+ *
* On success returns with pte mapped and locked.
*/
pte_t *page_check_address(struct page *page, struct mm_struct *mm,
- unsigned long address, spinlock_t **ptlp)
+ unsigned long address, spinlock_t **ptlp, int sync)
{
pgd_t *pgd;
pud_t *pud;
@@ -248,7 +287,7 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm,
pte = pte_offset_map(pmd, address);
/* Make a quick check before getting the lock */
- if (!pte_present(*pte)) {
+ if (!sync && !pte_present(*pte)) {
pte_unmap(pte);
return NULL;
}
@@ -263,6 +302,32 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm,
return NULL;
}
+/**
+ * page_mapped_in_vma - check whether a page is really mapped in a VMA
+ * @page: the page to test
+ * @vma: the VMA to test
+ *
+ * Returns 1 if the page is mapped into the page tables of the VMA, 0
+ * if the page is not mapped into the page tables of this VMA. Only
+ * valid for normal file or anonymous VMAs.
+ */
+static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
+{
+ unsigned long address;
+ pte_t *pte;
+ spinlock_t *ptl;
+
+ address = vma_address(page, vma);
+ if (address == -EFAULT) /* out of vma range */
+ return 0;
+ pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
+ if (!pte) /* the page is not in this mm */
+ return 0;
+ pte_unmap_unlock(pte, ptl);
+
+ return 1;
+}
+
/*
* Subfunctions of page_referenced: page_referenced_one called
* repeatedly from either page_referenced_anon or page_referenced_file.
@@ -280,14 +345,21 @@ static int page_referenced_one(struct page *page,
if (address == -EFAULT)
goto out;
- pte = page_check_address(page, mm, address, &ptl);
+ pte = page_check_address(page, mm, address, &ptl, 0);
if (!pte)
goto out;
+ /*
+ * Don't want to elevate referenced for mlocked page that gets this far,
+ * in order that it progresses to try_to_unmap and is moved to the
+ * unevictable list.
+ */
if (vma->vm_flags & VM_LOCKED) {
- referenced++;
*mapcount = 1; /* break early from loop */
- } else if (ptep_clear_flush_young(vma, address, pte))
+ goto out_unmap;
+ }
+
+ if (ptep_clear_flush_young_notify(vma, address, pte))
referenced++;
/* Pretend the page is referenced if the task has the
@@ -296,6 +368,7 @@ static int page_referenced_one(struct page *page,
rwsem_is_locked(&mm->mmap_sem))
referenced++;
+out_unmap:
(*mapcount)--;
pte_unmap_unlock(pte, ptl);
out:
@@ -385,11 +458,6 @@ static int page_referenced_file(struct page *page,
*/
if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
continue;
- if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
- == (VM_LOCKED|VM_MAYSHARE)) {
- referenced++;
- break;
- }
referenced += page_referenced_one(page, vma, &mapcount);
if (!mapcount)
break;
@@ -421,7 +489,7 @@ int page_referenced(struct page *page, int is_locked,
referenced += page_referenced_anon(page, mem_cont);
else if (is_locked)
referenced += page_referenced_file(page, mem_cont);
- else if (TestSetPageLocked(page))
+ else if (!trylock_page(page))
referenced++;
else {
if (page->mapping)
@@ -449,7 +517,7 @@ static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
if (address == -EFAULT)
goto out;
- pte = page_check_address(page, mm, address, &ptl);
+ pte = page_check_address(page, mm, address, &ptl, 1);
if (!pte)
goto out;
@@ -457,7 +525,7 @@ static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
pte_t entry;
flush_cache_page(vma, address, pte_pfn(*pte));
- entry = ptep_clear_flush(vma, address, pte);
+ entry = ptep_clear_flush_notify(vma, address, pte);
entry = pte_wrprotect(entry);
entry = pte_mkclean(entry);
set_pte_at(mm, address, pte, entry);
@@ -576,14 +644,8 @@ void page_add_anon_rmap(struct page *page,
VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
if (atomic_inc_and_test(&page->_mapcount))
__page_set_anon_rmap(page, vma, address);
- else {
+ else
__page_check_anon_rmap(page, vma, address);
- /*
- * We unconditionally charged during prepare, we uncharge here
- * This takes care of balancing the reference counts
- */
- mem_cgroup_uncharge_page(page);
- }
}
/**
@@ -614,12 +676,6 @@ void page_add_file_rmap(struct page *page)
{
if (atomic_inc_and_test(&page->_mapcount))
__inc_zone_page_state(page, NR_FILE_MAPPED);
- else
- /*
- * We unconditionally charged during prepare, we uncharge here
- * This takes care of balancing the reference counts
- */
- mem_cgroup_uncharge_page(page);
}
#ifdef CONFIG_DEBUG_VM
@@ -670,6 +726,22 @@ void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
}
/*
+ * Now that the last pte has gone, s390 must transfer dirty
+ * flag from storage key to struct page. We can usually skip
+ * this if the page is anon, so about to be freed; but perhaps
+ * not if it's in swapcache - there might be another pte slot
+ * containing the swap entry, but page not yet written to swap.
+ */
+ if ((!PageAnon(page) || PageSwapCache(page)) &&
+ page_test_dirty(page)) {
+ page_clear_dirty(page);
+ set_page_dirty(page);
+ }
+ if (PageAnon(page))
+ mem_cgroup_uncharge_page(page);
+ __dec_zone_page_state(page,
+ PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
+ /*
* It would be tidy to reset the PageAnon mapping here,
* but that might overwrite a racing page_add_anon_rmap
* which increments mapcount after us but sets mapping
@@ -678,14 +750,6 @@ void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
* Leaving it set also helps swapoff to reinstate ptes
* faster for those pages still in swapcache.
*/
- if (page_test_dirty(page)) {
- page_clear_dirty(page);
- set_page_dirty(page);
- }
- mem_cgroup_uncharge_page(page);
-
- __dec_zone_page_state(page,
- PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
}
}
@@ -707,7 +771,7 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
if (address == -EFAULT)
goto out;
- pte = page_check_address(page, mm, address, &ptl);
+ pte = page_check_address(page, mm, address, &ptl, 0);
if (!pte)
goto out;
@@ -716,15 +780,20 @@ static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
* If it's recently referenced (perhaps page_referenced
* skipped over this mm) then we should reactivate it.
*/
- if (!migration && ((vma->vm_flags & VM_LOCKED) ||
- (ptep_clear_flush_young(vma, address, pte)))) {
- ret = SWAP_FAIL;
- goto out_unmap;
- }
+ if (!migration) {
+ if (vma->vm_flags & VM_LOCKED) {
+ ret = SWAP_MLOCK;
+ goto out_unmap;
+ }
+ if (ptep_clear_flush_young_notify(vma, address, pte)) {
+ ret = SWAP_FAIL;
+ goto out_unmap;
+ }
+ }
/* Nuke the page table entry. */
flush_cache_page(vma, address, page_to_pfn(page));
- pteval = ptep_clear_flush(vma, address, pte);
+ pteval = ptep_clear_flush_notify(vma, address, pte);
/* Move the dirty bit to the physical page now the pte is gone. */
if (pte_dirty(pteval))
@@ -801,12 +870,17 @@ out:
* For very sparsely populated VMAs this is a little inefficient - chances are
* there there won't be many ptes located within the scan cluster. In this case
* maybe we could scan further - to the end of the pte page, perhaps.
+ *
+ * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
+ * acquire it without blocking. If vma locked, mlock the pages in the cluster,
+ * rather than unmapping them. If we encounter the "check_page" that vmscan is
+ * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
*/
#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
-static void try_to_unmap_cluster(unsigned long cursor,
- unsigned int *mapcount, struct vm_area_struct *vma)
+static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
+ struct vm_area_struct *vma, struct page *check_page)
{
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgd;
@@ -818,6 +892,8 @@ static void try_to_unmap_cluster(unsigned long cursor,
struct page *page;
unsigned long address;
unsigned long end;
+ int ret = SWAP_AGAIN;
+ int locked_vma = 0;
address = (vma->vm_start + cursor) & CLUSTER_MASK;
end = address + CLUSTER_SIZE;
@@ -828,15 +904,26 @@ static void try_to_unmap_cluster(unsigned long cursor,
pgd = pgd_offset(mm, address);
if (!pgd_present(*pgd))
- return;
+ return ret;
pud = pud_offset(pgd, address);
if (!pud_present(*pud))
- return;
+ return ret;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
- return;
+ return ret;
+
+ /*
+ * MLOCK_PAGES => feature is configured.
+ * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
+ * keep the sem while scanning the cluster for mlocking pages.
+ */
+ if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
+ locked_vma = (vma->vm_flags & VM_LOCKED);
+ if (!locked_vma)
+ up_read(&vma->vm_mm->mmap_sem); /* don't need it */
+ }
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
@@ -849,12 +936,19 @@ static void try_to_unmap_cluster(unsigned long cursor,
page = vm_normal_page(vma, address, *pte);
BUG_ON(!page || PageAnon(page));
- if (ptep_clear_flush_young(vma, address, pte))
+ if (locked_vma) {
+ mlock_vma_page(page); /* no-op if already mlocked */
+ if (page == check_page)
+ ret = SWAP_MLOCK;
+ continue; /* don't unmap */
+ }
+
+ if (ptep_clear_flush_young_notify(vma, address, pte))
continue;
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pte));
- pteval = ptep_clear_flush(vma, address, pte);
+ pteval = ptep_clear_flush_notify(vma, address, pte);
/* If nonlinear, store the file page offset in the pte. */
if (page->index != linear_page_index(vma, address))
@@ -870,39 +964,104 @@ static void try_to_unmap_cluster(unsigned long cursor,
(*mapcount)--;
}
pte_unmap_unlock(pte - 1, ptl);
+ if (locked_vma)
+ up_read(&vma->vm_mm->mmap_sem);
+ return ret;
}
-static int try_to_unmap_anon(struct page *page, int migration)
+/*
+ * common handling for pages mapped in VM_LOCKED vmas
+ */
+static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
+{
+ int mlocked = 0;
+
+ if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
+ if (vma->vm_flags & VM_LOCKED) {
+ mlock_vma_page(page);
+ mlocked++; /* really mlocked the page */
+ }
+ up_read(&vma->vm_mm->mmap_sem);
+ }
+ return mlocked;
+}
+
+/**
+ * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
+ * rmap method
+ * @page: the page to unmap/unlock
+ * @unlock: request for unlock rather than unmap [unlikely]
+ * @migration: unmapping for migration - ignored if @unlock
+ *
+ * Find all the mappings of a page using the mapping pointer and the vma chains
+ * contained in the anon_vma struct it points to.
+ *
+ * This function is only called from try_to_unmap/try_to_munlock for
+ * anonymous pages.
+ * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
+ * where the page was found will be held for write. So, we won't recheck
+ * vm_flags for that VMA. That should be OK, because that vma shouldn't be
+ * 'LOCKED.
+ */
+static int try_to_unmap_anon(struct page *page, int unlock, int migration)
{
struct anon_vma *anon_vma;
struct vm_area_struct *vma;
+ unsigned int mlocked = 0;
int ret = SWAP_AGAIN;
+ if (MLOCK_PAGES && unlikely(unlock))
+ ret = SWAP_SUCCESS; /* default for try_to_munlock() */
+
anon_vma = page_lock_anon_vma(page);
if (!anon_vma)
return ret;
list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
- ret = try_to_unmap_one(page, vma, migration);
- if (ret == SWAP_FAIL || !page_mapped(page))
- break;
+ if (MLOCK_PAGES && unlikely(unlock)) {
+ if (!((vma->vm_flags & VM_LOCKED) &&
+ page_mapped_in_vma(page, vma)))
+ continue; /* must visit all unlocked vmas */
+ ret = SWAP_MLOCK; /* saw at least one mlocked vma */
+ } else {
+ ret = try_to_unmap_one(page, vma, migration);
+ if (ret == SWAP_FAIL || !page_mapped(page))
+ break;
+ }
+ if (ret == SWAP_MLOCK) {
+ mlocked = try_to_mlock_page(page, vma);
+ if (mlocked)
+ break; /* stop if actually mlocked page */
+ }
}
page_unlock_anon_vma(anon_vma);
+
+ if (mlocked)
+ ret = SWAP_MLOCK; /* actually mlocked the page */
+ else if (ret == SWAP_MLOCK)
+ ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
+
return ret;
}
/**
- * try_to_unmap_file - unmap file page using the object-based rmap method
- * @page: the page to unmap
- * @migration: migration flag
+ * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
+ * @page: the page to unmap/unlock
+ * @unlock: request for unlock rather than unmap [unlikely]
+ * @migration: unmapping for migration - ignored if @unlock
*
* Find all the mappings of a page using the mapping pointer and the vma chains
* contained in the address_space struct it points to.
*
- * This function is only called from try_to_unmap for object-based pages.
+ * This function is only called from try_to_unmap/try_to_munlock for
+ * object-based pages.
+ * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
+ * where the page was found will be held for write. So, we won't recheck
+ * vm_flags for that VMA. That should be OK, because that vma shouldn't be
+ * 'LOCKED.
*/
-static int try_to_unmap_file(struct page *page, int migration)
+static int try_to_unmap_file(struct page *page, int unlock, int migration)
{
struct address_space *mapping = page->mapping;
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
@@ -913,20 +1072,44 @@ static int try_to_unmap_file(struct page *page, int migration)
unsigned long max_nl_cursor = 0;
unsigned long max_nl_size = 0;
unsigned int mapcount;
+ unsigned int mlocked = 0;
+
+ if (MLOCK_PAGES && unlikely(unlock))
+ ret = SWAP_SUCCESS; /* default for try_to_munlock() */
spin_lock(&mapping->i_mmap_lock);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
- ret = try_to_unmap_one(page, vma, migration);
- if (ret == SWAP_FAIL || !page_mapped(page))
- goto out;
+ if (MLOCK_PAGES && unlikely(unlock)) {
+ if (!(vma->vm_flags & VM_LOCKED))
+ continue; /* must visit all vmas */
+ ret = SWAP_MLOCK;
+ } else {
+ ret = try_to_unmap_one(page, vma, migration);
+ if (ret == SWAP_FAIL || !page_mapped(page))
+ goto out;
+ }
+ if (ret == SWAP_MLOCK) {
+ mlocked = try_to_mlock_page(page, vma);
+ if (mlocked)
+ break; /* stop if actually mlocked page */
+ }
}
+ if (mlocked)
+ goto out;
+
if (list_empty(&mapping->i_mmap_nonlinear))
goto out;
list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
shared.vm_set.list) {
- if ((vma->vm_flags & VM_LOCKED) && !migration)
+ if (MLOCK_PAGES && unlikely(unlock)) {
+ if (!(vma->vm_flags & VM_LOCKED))
+ continue; /* must visit all vmas */
+ ret = SWAP_MLOCK; /* leave mlocked == 0 */
+ goto out; /* no need to look further */
+ }
+ if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
continue;
cursor = (unsigned long) vma->vm_private_data;
if (cursor > max_nl_cursor)
@@ -936,7 +1119,7 @@ static int try_to_unmap_file(struct page *page, int migration)
max_nl_size = cursor;
}
- if (max_nl_size == 0) { /* any nonlinears locked or reserved */
+ if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
ret = SWAP_FAIL;
goto out;
}
@@ -960,12 +1143,16 @@ static int try_to_unmap_file(struct page *page, int migration)
do {
list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
shared.vm_set.list) {
- if ((vma->vm_flags & VM_LOCKED) && !migration)
+ if (!MLOCK_PAGES && !migration &&
+ (vma->vm_flags & VM_LOCKED))
continue;
cursor = (unsigned long) vma->vm_private_data;
while ( cursor < max_nl_cursor &&
cursor < vma->vm_end - vma->vm_start) {
- try_to_unmap_cluster(cursor, &mapcount, vma);
+ ret = try_to_unmap_cluster(cursor, &mapcount,
+ vma, page);
+ if (ret == SWAP_MLOCK)
+ mlocked = 2; /* to return below */
cursor += CLUSTER_SIZE;
vma->vm_private_data = (void *) cursor;
if ((int)mapcount <= 0)
@@ -986,6 +1173,10 @@ static int try_to_unmap_file(struct page *page, int migration)
vma->vm_private_data = NULL;
out:
spin_unlock(&mapping->i_mmap_lock);
+ if (mlocked)
+ ret = SWAP_MLOCK; /* actually mlocked the page */
+ else if (ret == SWAP_MLOCK)
+ ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
return ret;
}
@@ -1001,6 +1192,7 @@ out:
* SWAP_SUCCESS - we succeeded in removing all mappings
* SWAP_AGAIN - we missed a mapping, try again later
* SWAP_FAIL - the page is unswappable
+ * SWAP_MLOCK - page is mlocked.
*/
int try_to_unmap(struct page *page, int migration)
{
@@ -1009,12 +1201,36 @@ int try_to_unmap(struct page *page, int migration)
BUG_ON(!PageLocked(page));
if (PageAnon(page))
- ret = try_to_unmap_anon(page, migration);
+ ret = try_to_unmap_anon(page, 0, migration);
else
- ret = try_to_unmap_file(page, migration);
-
- if (!page_mapped(page))
+ ret = try_to_unmap_file(page, 0, migration);
+ if (ret != SWAP_MLOCK && !page_mapped(page))
ret = SWAP_SUCCESS;
return ret;
}
+#ifdef CONFIG_UNEVICTABLE_LRU
+/**
+ * try_to_munlock - try to munlock a page
+ * @page: the page to be munlocked
+ *
+ * Called from munlock code. Checks all of the VMAs mapping the page
+ * to make sure nobody else has this page mlocked. The page will be
+ * returned with PG_mlocked cleared if no other vmas have it mlocked.
+ *
+ * Return values are:
+ *
+ * SWAP_SUCCESS - no vma's holding page mlocked.
+ * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
+ * SWAP_MLOCK - page is now mlocked.
+ */
+int try_to_munlock(struct page *page)
+{
+ VM_BUG_ON(!PageLocked(page) || PageLRU(page));
+
+ if (PageAnon(page))
+ return try_to_unmap_anon(page, 1, 0);
+ else
+ return try_to_unmap_file(page, 1, 0);
+}
+#endif
diff --git a/mm/shmem.c b/mm/shmem.c
index e2a6ae1a44e9..d38d7e61fcd0 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -50,14 +50,12 @@
#include <linux/migrate.h>
#include <linux/highmem.h>
#include <linux/seq_file.h>
+#include <linux/magic.h>
#include <asm/uaccess.h>
#include <asm/div64.h>
#include <asm/pgtable.h>
-/* This magic number is used in glibc for posix shared memory */
-#define TMPFS_MAGIC 0x01021994
-
#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
@@ -201,7 +199,7 @@ static struct vm_operations_struct shmem_vm_ops;
static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
.ra_pages = 0, /* No readahead */
- .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
+ .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
.unplug_io_fn = default_unplug_io_fn,
};
@@ -922,20 +920,26 @@ found:
error = 1;
if (!inode)
goto out;
- /* Precharge page while we can wait, compensate afterwards */
+ /* Precharge page using GFP_KERNEL while we can wait */
error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
if (error)
goto out;
error = radix_tree_preload(GFP_KERNEL);
- if (error)
- goto uncharge;
+ if (error) {
+ mem_cgroup_uncharge_cache_page(page);
+ goto out;
+ }
error = 1;
spin_lock(&info->lock);
ptr = shmem_swp_entry(info, idx, NULL);
- if (ptr && ptr->val == entry.val)
- error = add_to_page_cache(page, inode->i_mapping,
+ if (ptr && ptr->val == entry.val) {
+ error = add_to_page_cache_locked(page, inode->i_mapping,
idx, GFP_NOWAIT);
+ /* does mem_cgroup_uncharge_cache_page on error */
+ } else /* we must compensate for our precharge above */
+ mem_cgroup_uncharge_cache_page(page);
+
if (error == -EEXIST) {
struct page *filepage = find_get_page(inode->i_mapping, idx);
error = 1;
@@ -961,8 +965,6 @@ found:
shmem_swp_unmap(ptr);
spin_unlock(&info->lock);
radix_tree_preload_end();
-uncharge:
- mem_cgroup_uncharge_page(page);
out:
unlock_page(page);
page_cache_release(page);
@@ -1261,7 +1263,7 @@ repeat:
}
/* We have to do this with page locked to prevent races */
- if (TestSetPageLocked(swappage)) {
+ if (!trylock_page(swappage)) {
shmem_swp_unmap(entry);
spin_unlock(&info->lock);
wait_on_page_locked(swappage);
@@ -1297,8 +1299,8 @@ repeat:
SetPageUptodate(filepage);
set_page_dirty(filepage);
swap_free(swap);
- } else if (!(error = add_to_page_cache(
- swappage, mapping, idx, GFP_NOWAIT))) {
+ } else if (!(error = add_to_page_cache_locked(swappage, mapping,
+ idx, GFP_NOWAIT))) {
info->flags |= SHMEM_PAGEIN;
shmem_swp_set(info, entry, 0);
shmem_swp_unmap(entry);
@@ -1311,24 +1313,21 @@ repeat:
shmem_swp_unmap(entry);
spin_unlock(&info->lock);
unlock_page(swappage);
+ page_cache_release(swappage);
if (error == -ENOMEM) {
/* allow reclaim from this memory cgroup */
- error = mem_cgroup_cache_charge(swappage,
- current->mm, gfp & ~__GFP_HIGHMEM);
- if (error) {
- page_cache_release(swappage);
+ error = mem_cgroup_shrink_usage(current->mm,
+ gfp);
+ if (error)
goto failed;
- }
- mem_cgroup_uncharge_page(swappage);
}
- page_cache_release(swappage);
goto repeat;
}
} else if (sgp == SGP_READ && !filepage) {
shmem_swp_unmap(entry);
filepage = find_get_page(mapping, idx);
if (filepage &&
- (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
+ (!PageUptodate(filepage) || !trylock_page(filepage))) {
spin_unlock(&info->lock);
wait_on_page_locked(filepage);
page_cache_release(filepage);
@@ -1358,6 +1357,8 @@ repeat:
}
if (!filepage) {
+ int ret;
+
spin_unlock(&info->lock);
filepage = shmem_alloc_page(gfp, info, idx);
if (!filepage) {
@@ -1366,6 +1367,7 @@ repeat:
error = -ENOMEM;
goto failed;
}
+ SetPageSwapBacked(filepage);
/* Precharge page while we can wait, compensate after */
error = mem_cgroup_cache_charge(filepage, current->mm,
@@ -1386,10 +1388,18 @@ repeat:
swap = *entry;
shmem_swp_unmap(entry);
}
- if (error || swap.val || 0 != add_to_page_cache_lru(
- filepage, mapping, idx, GFP_NOWAIT)) {
+ ret = error || swap.val;
+ if (ret)
+ mem_cgroup_uncharge_cache_page(filepage);
+ else
+ ret = add_to_page_cache_lru(filepage, mapping,
+ idx, GFP_NOWAIT);
+ /*
+ * At add_to_page_cache_lru() failure, uncharge will
+ * be done automatically.
+ */
+ if (ret) {
spin_unlock(&info->lock);
- mem_cgroup_uncharge_page(filepage);
page_cache_release(filepage);
shmem_unacct_blocks(info->flags, 1);
shmem_free_blocks(inode, 1);
@@ -1398,7 +1408,6 @@ repeat:
goto failed;
goto repeat;
}
- mem_cgroup_uncharge_page(filepage);
info->flags |= SHMEM_PAGEIN;
}
@@ -1468,12 +1477,16 @@ int shmem_lock(struct file *file, int lock, struct user_struct *user)
if (!user_shm_lock(inode->i_size, user))
goto out_nomem;
info->flags |= VM_LOCKED;
+ mapping_set_unevictable(file->f_mapping);
}
if (!lock && (info->flags & VM_LOCKED) && user) {
user_shm_unlock(inode->i_size, user);
info->flags &= ~VM_LOCKED;
+ mapping_clear_unevictable(file->f_mapping);
+ scan_mapping_unevictable_pages(file->f_mapping);
}
retval = 0;
+
out_nomem:
spin_unlock(&info->lock);
return retval;
@@ -1503,7 +1516,6 @@ shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
inode->i_uid = current->fsuid;
inode->i_gid = current->fsgid;
inode->i_blocks = 0;
- inode->i_mapping->a_ops = &shmem_aops;
inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
inode->i_generation = get_seconds();
@@ -1518,6 +1530,7 @@ shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
init_special_inode(inode, mode, dev);
break;
case S_IFREG:
+ inode->i_mapping->a_ops = &shmem_aops;
inode->i_op = &shmem_inode_operations;
inode->i_fop = &shmem_file_operations;
mpol_shared_policy_init(&info->policy,
@@ -1690,26 +1703,38 @@ static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_
file_accessed(filp);
}
-static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
+static ssize_t shmem_file_aio_read(struct kiocb *iocb,
+ const struct iovec *iov, unsigned long nr_segs, loff_t pos)
{
- read_descriptor_t desc;
+ struct file *filp = iocb->ki_filp;
+ ssize_t retval;
+ unsigned long seg;
+ size_t count;
+ loff_t *ppos = &iocb->ki_pos;
- if ((ssize_t) count < 0)
- return -EINVAL;
- if (!access_ok(VERIFY_WRITE, buf, count))
- return -EFAULT;
- if (!count)
- return 0;
+ retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
+ if (retval)
+ return retval;
- desc.written = 0;
- desc.count = count;
- desc.arg.buf = buf;
- desc.error = 0;
+ for (seg = 0; seg < nr_segs; seg++) {
+ read_descriptor_t desc;
- do_shmem_file_read(filp, ppos, &desc, file_read_actor);
- if (desc.written)
- return desc.written;
- return desc.error;
+ desc.written = 0;
+ desc.arg.buf = iov[seg].iov_base;
+ desc.count = iov[seg].iov_len;
+ if (desc.count == 0)
+ continue;
+ desc.error = 0;
+ do_shmem_file_read(filp, ppos, &desc, file_read_actor);
+ retval += desc.written;
+ if (desc.error) {
+ retval = retval ?: desc.error;
+ break;
+ }
+ if (desc.count > 0)
+ break;
+ }
+ return retval;
}
static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
@@ -1907,6 +1932,7 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s
return error;
}
unlock_page(page);
+ inode->i_mapping->a_ops = &shmem_aops;
inode->i_op = &shmem_symlink_inode_operations;
kaddr = kmap_atomic(page, KM_USER0);
memcpy(kaddr, symname, len);
@@ -2330,7 +2356,7 @@ static void shmem_destroy_inode(struct inode *inode)
kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
}
-static void init_once(struct kmem_cache *cachep, void *foo)
+static void init_once(void *foo)
{
struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
@@ -2369,8 +2395,9 @@ static const struct file_operations shmem_file_operations = {
.mmap = shmem_mmap,
#ifdef CONFIG_TMPFS
.llseek = generic_file_llseek,
- .read = shmem_file_read,
+ .read = do_sync_read,
.write = do_sync_write,
+ .aio_read = shmem_file_aio_read,
.aio_write = generic_file_aio_write,
.fsync = simple_sync_file,
.splice_read = generic_file_splice_read,
@@ -2558,6 +2585,7 @@ put_memory:
shmem_unacct_size(flags, size);
return ERR_PTR(error);
}
+EXPORT_SYMBOL_GPL(shmem_file_setup);
/**
* shmem_zero_setup - setup a shared anonymous mapping
diff --git a/mm/shmem_acl.c b/mm/shmem_acl.c
index f5664c5b9eb1..8e5aadd7dcd6 100644
--- a/mm/shmem_acl.c
+++ b/mm/shmem_acl.c
@@ -191,7 +191,7 @@ shmem_check_acl(struct inode *inode, int mask)
* shmem_permission - permission() inode operation
*/
int
-shmem_permission(struct inode *inode, int mask, struct nameidata *nd)
+shmem_permission(struct inode *inode, int mask)
{
return generic_permission(inode, mask, shmem_check_acl);
}
diff --git a/mm/slab.c b/mm/slab.c
index 052e7d64537e..09187517f9dc 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -95,6 +95,7 @@
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/cpuset.h>
+#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/notifier.h>
#include <linux/kallsyms.h>
@@ -406,7 +407,7 @@ struct kmem_cache {
unsigned int dflags; /* dynamic flags */
/* constructor func */
- void (*ctor)(struct kmem_cache *, void *);
+ void (*ctor)(void *obj);
/* 5) cache creation/removal */
const char *name;
@@ -2137,8 +2138,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
*/
struct kmem_cache *
kmem_cache_create (const char *name, size_t size, size_t align,
- unsigned long flags,
- void (*ctor)(struct kmem_cache *, void *))
+ unsigned long flags, void (*ctor)(void *))
{
size_t left_over, slab_size, ralign;
struct kmem_cache *cachep = NULL, *pc;
@@ -2653,7 +2653,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
* They must also be threaded.
*/
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(cachep, objp + obj_offset(cachep));
+ cachep->ctor(objp + obj_offset(cachep));
if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
@@ -2669,7 +2669,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
cachep->buffer_size / PAGE_SIZE, 0);
#else
if (cachep->ctor)
- cachep->ctor(cachep, objp);
+ cachep->ctor(objp);
#endif
slab_bufctl(slabp)[i] = i + 1;
}
@@ -3093,7 +3093,7 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
#endif
objp += obj_offset(cachep);
if (cachep->ctor && cachep->flags & SLAB_POISON)
- cachep->ctor(cachep, objp);
+ cachep->ctor(objp);
#if ARCH_SLAB_MINALIGN
if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
@@ -4259,7 +4259,7 @@ static int s_show(struct seq_file *m, void *p)
* + further values on SMP and with statistics enabled
*/
-const struct seq_operations slabinfo_op = {
+static const struct seq_operations slabinfo_op = {
.start = s_start,
.next = s_next,
.stop = s_stop,
@@ -4316,6 +4316,19 @@ ssize_t slabinfo_write(struct file *file, const char __user * buffer,
return res;
}
+static int slabinfo_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &slabinfo_op);
+}
+
+static const struct file_operations proc_slabinfo_operations = {
+ .open = slabinfo_open,
+ .read = seq_read,
+ .write = slabinfo_write,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
#ifdef CONFIG_DEBUG_SLAB_LEAK
static void *leaks_start(struct seq_file *m, loff_t *pos)
@@ -4444,13 +4457,47 @@ static int leaks_show(struct seq_file *m, void *p)
return 0;
}
-const struct seq_operations slabstats_op = {
+static const struct seq_operations slabstats_op = {
.start = leaks_start,
.next = s_next,
.stop = s_stop,
.show = leaks_show,
};
+
+static int slabstats_open(struct inode *inode, struct file *file)
+{
+ unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
+ int ret = -ENOMEM;
+ if (n) {
+ ret = seq_open(file, &slabstats_op);
+ if (!ret) {
+ struct seq_file *m = file->private_data;
+ *n = PAGE_SIZE / (2 * sizeof(unsigned long));
+ m->private = n;
+ n = NULL;
+ }
+ kfree(n);
+ }
+ return ret;
+}
+
+static const struct file_operations proc_slabstats_operations = {
+ .open = slabstats_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release_private,
+};
+#endif
+
+static int __init slab_proc_init(void)
+{
+ proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
+#ifdef CONFIG_DEBUG_SLAB_LEAK
+ proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
#endif
+ return 0;
+}
+module_init(slab_proc_init);
#endif
/**
@@ -4473,4 +4520,3 @@ size_t ksize(const void *objp)
return obj_size(virt_to_cache(objp));
}
-EXPORT_SYMBOL(ksize);
diff --git a/mm/slob.c b/mm/slob.c
index a3ad6671adf1..cb675d126791 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -130,17 +130,17 @@ static LIST_HEAD(free_slob_large);
*/
static inline int slob_page(struct slob_page *sp)
{
- return test_bit(PG_active, &sp->flags);
+ return PageSlobPage((struct page *)sp);
}
static inline void set_slob_page(struct slob_page *sp)
{
- __set_bit(PG_active, &sp->flags);
+ __SetPageSlobPage((struct page *)sp);
}
static inline void clear_slob_page(struct slob_page *sp)
{
- __clear_bit(PG_active, &sp->flags);
+ __ClearPageSlobPage((struct page *)sp);
}
/*
@@ -148,19 +148,19 @@ static inline void clear_slob_page(struct slob_page *sp)
*/
static inline int slob_page_free(struct slob_page *sp)
{
- return test_bit(PG_private, &sp->flags);
+ return PageSlobFree((struct page *)sp);
}
static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
{
list_add(&sp->list, list);
- __set_bit(PG_private, &sp->flags);
+ __SetPageSlobFree((struct page *)sp);
}
static inline void clear_slob_page_free(struct slob_page *sp)
{
list_del(&sp->list);
- __clear_bit(PG_private, &sp->flags);
+ __ClearPageSlobFree((struct page *)sp);
}
#define SLOB_UNIT sizeof(slob_t)
@@ -514,23 +514,23 @@ size_t ksize(const void *block)
return 0;
sp = (struct slob_page *)virt_to_page(block);
- if (slob_page(sp))
- return ((slob_t *)block - 1)->units + SLOB_UNIT;
- else
+ if (slob_page(sp)) {
+ int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
+ unsigned int *m = (unsigned int *)(block - align);
+ return SLOB_UNITS(*m) * SLOB_UNIT;
+ } else
return sp->page.private;
}
-EXPORT_SYMBOL(ksize);
struct kmem_cache {
unsigned int size, align;
unsigned long flags;
const char *name;
- void (*ctor)(struct kmem_cache *, void *);
+ void (*ctor)(void *);
};
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
- size_t align, unsigned long flags,
- void (*ctor)(struct kmem_cache *, void *))
+ size_t align, unsigned long flags, void (*ctor)(void *))
{
struct kmem_cache *c;
@@ -575,7 +575,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
b = slob_new_page(flags, get_order(c->size), node);
if (c->ctor)
- c->ctor(c, b);
+ c->ctor(b);
return b;
}
diff --git a/mm/slub.c b/mm/slub.c
index 35ab38a94b46..7ad489af9561 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -14,6 +14,7 @@
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
+#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
@@ -102,44 +103,12 @@
* the fast path and disables lockless freelists.
*/
-#define FROZEN (1 << PG_active)
-
#ifdef CONFIG_SLUB_DEBUG
-#define SLABDEBUG (1 << PG_error)
+#define SLABDEBUG 1
#else
#define SLABDEBUG 0
#endif
-static inline int SlabFrozen(struct page *page)
-{
- return page->flags & FROZEN;
-}
-
-static inline void SetSlabFrozen(struct page *page)
-{
- page->flags |= FROZEN;
-}
-
-static inline void ClearSlabFrozen(struct page *page)
-{
- page->flags &= ~FROZEN;
-}
-
-static inline int SlabDebug(struct page *page)
-{
- return page->flags & SLABDEBUG;
-}
-
-static inline void SetSlabDebug(struct page *page)
-{
- page->flags |= SLABDEBUG;
-}
-
-static inline void ClearSlabDebug(struct page *page)
-{
- page->flags &= ~SLABDEBUG;
-}
-
/*
* Issues still to be resolved:
*
@@ -492,7 +461,7 @@ static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
if (p > addr + 16)
print_section("Bytes b4", p - 16, 16);
- print_section("Object", p, min(s->objsize, 128));
+ print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
if (s->flags & SLAB_RED_ZONE)
print_section("Redzone", p + s->objsize,
@@ -971,7 +940,7 @@ static int free_debug_processing(struct kmem_cache *s, struct page *page,
}
/* Special debug activities for freeing objects */
- if (!SlabFrozen(page) && !page->freelist)
+ if (!PageSlubFrozen(page) && !page->freelist)
remove_full(s, page);
if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_FREE, addr);
@@ -1044,7 +1013,7 @@ __setup("slub_debug", setup_slub_debug);
static unsigned long kmem_cache_flags(unsigned long objsize,
unsigned long flags, const char *name,
- void (*ctor)(struct kmem_cache *, void *))
+ void (*ctor)(void *))
{
/*
* Enable debugging if selected on the kernel commandline.
@@ -1072,7 +1041,7 @@ static inline int check_object(struct kmem_cache *s, struct page *page,
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
static inline unsigned long kmem_cache_flags(unsigned long objsize,
unsigned long flags, const char *name,
- void (*ctor)(struct kmem_cache *, void *))
+ void (*ctor)(void *))
{
return flags;
}
@@ -1135,7 +1104,7 @@ static void setup_object(struct kmem_cache *s, struct page *page,
{
setup_object_debug(s, page, object);
if (unlikely(s->ctor))
- s->ctor(s, object);
+ s->ctor(object);
}
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
@@ -1157,7 +1126,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
page->flags |= 1 << PG_slab;
if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
SLAB_STORE_USER | SLAB_TRACE))
- SetSlabDebug(page);
+ __SetPageSlubDebug(page);
start = page_address(page);
@@ -1184,14 +1153,14 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
int order = compound_order(page);
int pages = 1 << order;
- if (unlikely(SlabDebug(page))) {
+ if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
void *p;
slab_pad_check(s, page);
for_each_object(p, s, page_address(page),
page->objects)
check_object(s, page, p, 0);
- ClearSlabDebug(page);
+ __ClearPageSlubDebug(page);
}
mod_zone_page_state(page_zone(page),
@@ -1288,7 +1257,7 @@ static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
if (slab_trylock(page)) {
list_del(&page->lru);
n->nr_partial--;
- SetSlabFrozen(page);
+ __SetPageSlubFrozen(page);
return 1;
}
return 0;
@@ -1361,7 +1330,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
n = get_node(s, zone_to_nid(zone));
if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
- n->nr_partial > MIN_PARTIAL) {
+ n->nr_partial > n->min_partial) {
page = get_partial_node(n);
if (page)
return page;
@@ -1398,7 +1367,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
- ClearSlabFrozen(page);
+ __ClearPageSlubFrozen(page);
if (page->inuse) {
if (page->freelist) {
@@ -1406,13 +1375,14 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
} else {
stat(c, DEACTIVATE_FULL);
- if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
+ if (SLABDEBUG && PageSlubDebug(page) &&
+ (s->flags & SLAB_STORE_USER))
add_full(n, page);
}
slab_unlock(page);
} else {
stat(c, DEACTIVATE_EMPTY);
- if (n->nr_partial < MIN_PARTIAL) {
+ if (n->nr_partial < n->min_partial) {
/*
* Adding an empty slab to the partial slabs in order
* to avoid page allocator overhead. This slab needs
@@ -1495,15 +1465,7 @@ static void flush_cpu_slab(void *d)
static void flush_all(struct kmem_cache *s)
{
-#ifdef CONFIG_SMP
on_each_cpu(flush_cpu_slab, s, 1);
-#else
- unsigned long flags;
-
- local_irq_save(flags);
- flush_cpu_slab(s);
- local_irq_restore(flags);
-#endif
}
/*
@@ -1559,7 +1521,7 @@ load_freelist:
object = c->page->freelist;
if (unlikely(!object))
goto another_slab;
- if (unlikely(SlabDebug(c->page)))
+ if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
goto debug;
c->freelist = object[c->offset];
@@ -1596,7 +1558,7 @@ new_slab:
if (c->page)
flush_slab(s, c);
slab_lock(new);
- SetSlabFrozen(new);
+ __SetPageSlubFrozen(new);
c->page = new;
goto load_freelist;
}
@@ -1682,7 +1644,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
stat(c, FREE_SLOWPATH);
slab_lock(page);
- if (unlikely(SlabDebug(page)))
+ if (unlikely(SLABDEBUG && PageSlubDebug(page)))
goto debug;
checks_ok:
@@ -1690,7 +1652,7 @@ checks_ok:
page->freelist = object;
page->inuse--;
- if (unlikely(SlabFrozen(page))) {
+ if (unlikely(PageSlubFrozen(page))) {
stat(c, FREE_FROZEN);
goto out_unlock;
}
@@ -1952,13 +1914,26 @@ static void init_kmem_cache_cpu(struct kmem_cache *s,
#endif
}
-static void init_kmem_cache_node(struct kmem_cache_node *n)
+static void
+init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
{
n->nr_partial = 0;
+
+ /*
+ * The larger the object size is, the more pages we want on the partial
+ * list to avoid pounding the page allocator excessively.
+ */
+ n->min_partial = ilog2(s->size);
+ if (n->min_partial < MIN_PARTIAL)
+ n->min_partial = MIN_PARTIAL;
+ else if (n->min_partial > MAX_PARTIAL)
+ n->min_partial = MAX_PARTIAL;
+
spin_lock_init(&n->list_lock);
INIT_LIST_HEAD(&n->partial);
#ifdef CONFIG_SLUB_DEBUG
atomic_long_set(&n->nr_slabs, 0);
+ atomic_long_set(&n->total_objects, 0);
INIT_LIST_HEAD(&n->full);
#endif
}
@@ -2126,7 +2101,7 @@ static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
init_object(kmalloc_caches, n, 1);
init_tracking(kmalloc_caches, n);
#endif
- init_kmem_cache_node(n);
+ init_kmem_cache_node(n, kmalloc_caches);
inc_slabs_node(kmalloc_caches, node, page->objects);
/*
@@ -2183,7 +2158,7 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
}
s->node[node] = n;
- init_kmem_cache_node(n);
+ init_kmem_cache_node(n, s);
}
return 1;
}
@@ -2194,7 +2169,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
- init_kmem_cache_node(&s->local_node);
+ init_kmem_cache_node(&s->local_node, s);
return 1;
}
#endif
@@ -2325,7 +2300,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
const char *name, size_t size,
size_t align, unsigned long flags,
- void (*ctor)(struct kmem_cache *, void *))
+ void (*ctor)(void *))
{
memset(s, 0, kmem_size);
s->name = name;
@@ -2339,7 +2314,7 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
s->refcount = 1;
#ifdef CONFIG_NUMA
- s->remote_node_defrag_ratio = 100;
+ s->remote_node_defrag_ratio = 1000;
#endif
if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
goto error;
@@ -2754,7 +2729,6 @@ size_t ksize(const void *object)
*/
return s->size;
}
-EXPORT_SYMBOL(ksize);
void kfree(const void *x)
{
@@ -2929,7 +2903,7 @@ static int slab_mem_going_online_callback(void *arg)
ret = -ENOMEM;
goto out;
}
- init_kmem_cache_node(n);
+ init_kmem_cache_node(n, s);
s->node[nid] = n;
}
out:
@@ -3081,7 +3055,7 @@ static int slab_unmergeable(struct kmem_cache *s)
static struct kmem_cache *find_mergeable(size_t size,
size_t align, unsigned long flags, const char *name,
- void (*ctor)(struct kmem_cache *, void *))
+ void (*ctor)(void *))
{
struct kmem_cache *s;
@@ -3121,8 +3095,7 @@ static struct kmem_cache *find_mergeable(size_t size,
}
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
- size_t align, unsigned long flags,
- void (*ctor)(struct kmem_cache *, void *))
+ size_t align, unsigned long flags, void (*ctor)(void *))
{
struct kmem_cache *s;
@@ -3325,12 +3298,12 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page,
s->name, page);
if (s->flags & DEBUG_DEFAULT_FLAGS) {
- if (!SlabDebug(page))
- printk(KERN_ERR "SLUB %s: SlabDebug not set "
+ if (!PageSlubDebug(page))
+ printk(KERN_ERR "SLUB %s: SlubDebug not set "
"on slab 0x%p\n", s->name, page);
} else {
- if (SlabDebug(page))
- printk(KERN_ERR "SLUB %s: SlabDebug set on "
+ if (PageSlubDebug(page))
+ printk(KERN_ERR "SLUB %s: SlubDebug set on "
"slab 0x%p\n", s->name, page);
}
}
@@ -4087,7 +4060,7 @@ static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
if (err)
return err;
- if (ratio < 100)
+ if (ratio <= 100)
s->remote_node_defrag_ratio = ratio * 10;
return length;
@@ -4445,14 +4418,6 @@ __initcall(slab_sysfs_init);
* The /proc/slabinfo ABI
*/
#ifdef CONFIG_SLABINFO
-
-ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
-{
- return -EINVAL;
-}
-
-
static void print_slabinfo_header(struct seq_file *m)
{
seq_puts(m, "slabinfo - version: 2.1\n");
@@ -4520,11 +4485,29 @@ static int s_show(struct seq_file *m, void *p)
return 0;
}
-const struct seq_operations slabinfo_op = {
+static const struct seq_operations slabinfo_op = {
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
+static int slabinfo_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &slabinfo_op);
+}
+
+static const struct file_operations proc_slabinfo_operations = {
+ .open = slabinfo_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+static int __init slab_proc_init(void)
+{
+ proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
+ return 0;
+}
+module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
diff --git a/mm/sparse.c b/mm/sparse.c
index 36511c7b5e2c..39db301b920d 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -147,22 +147,41 @@ static inline int sparse_early_nid(struct mem_section *section)
return (section->section_mem_map >> SECTION_NID_SHIFT);
}
-/* Record a memory area against a node. */
-void __init memory_present(int nid, unsigned long start, unsigned long end)
+/* Validate the physical addressing limitations of the model */
+void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
+ unsigned long *end_pfn)
{
- unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
- unsigned long pfn;
+ unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
/*
* Sanity checks - do not allow an architecture to pass
* in larger pfns than the maximum scope of sparsemem:
*/
- if (start >= max_arch_pfn)
- return;
- if (end >= max_arch_pfn)
- end = max_arch_pfn;
+ if (*start_pfn > max_sparsemem_pfn) {
+ mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
+ "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
+ *start_pfn, *end_pfn, max_sparsemem_pfn);
+ WARN_ON_ONCE(1);
+ *start_pfn = max_sparsemem_pfn;
+ *end_pfn = max_sparsemem_pfn;
+ }
+
+ if (*end_pfn > max_sparsemem_pfn) {
+ mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
+ "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
+ *start_pfn, *end_pfn, max_sparsemem_pfn);
+ WARN_ON_ONCE(1);
+ *end_pfn = max_sparsemem_pfn;
+ }
+}
+
+/* Record a memory area against a node. */
+void __init memory_present(int nid, unsigned long start, unsigned long end)
+{
+ unsigned long pfn;
start &= PAGE_SECTION_MASK;
+ mminit_validate_memmodel_limits(&start, &end);
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
unsigned long section = pfn_to_section_nr(pfn);
struct mem_section *ms;
@@ -187,6 +206,7 @@ unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
unsigned long pfn;
unsigned long nr_pages = 0;
+ mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
if (nid != early_pfn_to_nid(pfn))
continue;
@@ -248,16 +268,92 @@ static unsigned long *__kmalloc_section_usemap(void)
}
#endif /* CONFIG_MEMORY_HOTPLUG */
+#ifdef CONFIG_MEMORY_HOTREMOVE
+static unsigned long * __init
+sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
+{
+ unsigned long section_nr;
+
+ /*
+ * A page may contain usemaps for other sections preventing the
+ * page being freed and making a section unremovable while
+ * other sections referencing the usemap retmain active. Similarly,
+ * a pgdat can prevent a section being removed. If section A
+ * contains a pgdat and section B contains the usemap, both
+ * sections become inter-dependent. This allocates usemaps
+ * from the same section as the pgdat where possible to avoid
+ * this problem.
+ */
+ section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
+ return alloc_bootmem_section(usemap_size(), section_nr);
+}
+
+static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
+{
+ unsigned long usemap_snr, pgdat_snr;
+ static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
+ static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
+ struct pglist_data *pgdat = NODE_DATA(nid);
+ int usemap_nid;
+
+ usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
+ pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
+ if (usemap_snr == pgdat_snr)
+ return;
+
+ if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
+ /* skip redundant message */
+ return;
+
+ old_usemap_snr = usemap_snr;
+ old_pgdat_snr = pgdat_snr;
+
+ usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
+ if (usemap_nid != nid) {
+ printk(KERN_INFO
+ "node %d must be removed before remove section %ld\n",
+ nid, usemap_snr);
+ return;
+ }
+ /*
+ * There is a circular dependency.
+ * Some platforms allow un-removable section because they will just
+ * gather other removable sections for dynamic partitioning.
+ * Just notify un-removable section's number here.
+ */
+ printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
+ pgdat_snr, nid);
+ printk(KERN_CONT
+ " have a circular dependency on usemap and pgdat allocations\n");
+}
+#else
+static unsigned long * __init
+sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
+{
+ return NULL;
+}
+
+static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
+{
+}
+#endif /* CONFIG_MEMORY_HOTREMOVE */
+
static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
{
unsigned long *usemap;
struct mem_section *ms = __nr_to_section(pnum);
int nid = sparse_early_nid(ms);
- usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
+ usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
if (usemap)
return usemap;
+ usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
+ if (usemap) {
+ check_usemap_section_nr(nid, usemap);
+ return usemap;
+ }
+
/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
nid = 0;
@@ -280,7 +376,7 @@ struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
-struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
+static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
{
struct page *map;
struct mem_section *ms = __nr_to_section(pnum);
diff --git a/mm/swap.c b/mm/swap.c
index 45c9f25a8a3b..2152e48a7b8f 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -31,12 +31,13 @@
#include <linux/backing-dev.h>
#include <linux/memcontrol.h>
+#include "internal.h"
+
/* How many pages do we try to swap or page in/out together? */
int page_cluster;
-static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
-static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
-static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs) = { 0, };
+static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
+static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
/*
* This path almost never happens for VM activity - pages are normally
@@ -116,8 +117,9 @@ static void pagevec_move_tail(struct pagevec *pvec)
zone = pagezone;
spin_lock(&zone->lru_lock);
}
- if (PageLRU(page) && !PageActive(page)) {
- list_move_tail(&page->lru, &zone->inactive_list);
+ if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
+ int lru = page_is_file_cache(page);
+ list_move_tail(&page->lru, &zone->lru[lru].list);
pgmoved++;
}
}
@@ -136,7 +138,7 @@ static void pagevec_move_tail(struct pagevec *pvec)
void rotate_reclaimable_page(struct page *page)
{
if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
- PageLRU(page)) {
+ !PageUnevictable(page) && PageLRU(page)) {
struct pagevec *pvec;
unsigned long flags;
@@ -157,12 +159,19 @@ void activate_page(struct page *page)
struct zone *zone = page_zone(page);
spin_lock_irq(&zone->lru_lock);
- if (PageLRU(page) && !PageActive(page)) {
- del_page_from_inactive_list(zone, page);
+ if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
+ int file = page_is_file_cache(page);
+ int lru = LRU_BASE + file;
+ del_page_from_lru_list(zone, page, lru);
+
SetPageActive(page);
- add_page_to_active_list(zone, page);
+ lru += LRU_ACTIVE;
+ add_page_to_lru_list(zone, page, lru);
__count_vm_event(PGACTIVATE);
- mem_cgroup_move_lists(page, true);
+ mem_cgroup_move_lists(page, lru);
+
+ zone->recent_rotated[!!file]++;
+ zone->recent_scanned[!!file]++;
}
spin_unlock_irq(&zone->lru_lock);
}
@@ -176,7 +185,8 @@ void activate_page(struct page *page)
*/
void mark_page_accessed(struct page *page)
{
- if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
+ if (!PageActive(page) && !PageUnevictable(page) &&
+ PageReferenced(page) && PageLRU(page)) {
activate_page(page);
ClearPageReferenced(page);
} else if (!PageReferenced(page)) {
@@ -186,28 +196,73 @@ void mark_page_accessed(struct page *page)
EXPORT_SYMBOL(mark_page_accessed);
-/**
- * lru_cache_add: add a page to the page lists
- * @page: the page to add
- */
-void lru_cache_add(struct page *page)
+void __lru_cache_add(struct page *page, enum lru_list lru)
{
- struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
+ struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
page_cache_get(page);
if (!pagevec_add(pvec, page))
- __pagevec_lru_add(pvec);
+ ____pagevec_lru_add(pvec, lru);
put_cpu_var(lru_add_pvecs);
}
-void lru_cache_add_active(struct page *page)
+/**
+ * lru_cache_add_lru - add a page to a page list
+ * @page: the page to be added to the LRU.
+ * @lru: the LRU list to which the page is added.
+ */
+void lru_cache_add_lru(struct page *page, enum lru_list lru)
{
- struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
+ if (PageActive(page)) {
+ VM_BUG_ON(PageUnevictable(page));
+ ClearPageActive(page);
+ } else if (PageUnevictable(page)) {
+ VM_BUG_ON(PageActive(page));
+ ClearPageUnevictable(page);
+ }
- page_cache_get(page);
- if (!pagevec_add(pvec, page))
- __pagevec_lru_add_active(pvec);
- put_cpu_var(lru_add_active_pvecs);
+ VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
+ __lru_cache_add(page, lru);
+}
+
+/**
+ * add_page_to_unevictable_list - add a page to the unevictable list
+ * @page: the page to be added to the unevictable list
+ *
+ * Add page directly to its zone's unevictable list. To avoid races with
+ * tasks that might be making the page evictable, through eg. munlock,
+ * munmap or exit, while it's not on the lru, we want to add the page
+ * while it's locked or otherwise "invisible" to other tasks. This is
+ * difficult to do when using the pagevec cache, so bypass that.
+ */
+void add_page_to_unevictable_list(struct page *page)
+{
+ struct zone *zone = page_zone(page);
+
+ spin_lock_irq(&zone->lru_lock);
+ SetPageUnevictable(page);
+ SetPageLRU(page);
+ add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
+ spin_unlock_irq(&zone->lru_lock);
+}
+
+/**
+ * lru_cache_add_active_or_unevictable
+ * @page: the page to be added to LRU
+ * @vma: vma in which page is mapped for determining reclaimability
+ *
+ * place @page on active or unevictable LRU list, depending on
+ * page_evictable(). Note that if the page is not evictable,
+ * it goes directly back onto it's zone's unevictable list. It does
+ * NOT use a per cpu pagevec.
+ */
+void lru_cache_add_active_or_unevictable(struct page *page,
+ struct vm_area_struct *vma)
+{
+ if (page_evictable(page, vma))
+ lru_cache_add_lru(page, LRU_ACTIVE + page_is_file_cache(page));
+ else
+ add_page_to_unevictable_list(page);
}
/*
@@ -217,15 +272,15 @@ void lru_cache_add_active(struct page *page)
*/
static void drain_cpu_pagevecs(int cpu)
{
+ struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
struct pagevec *pvec;
+ int lru;
- pvec = &per_cpu(lru_add_pvecs, cpu);
- if (pagevec_count(pvec))
- __pagevec_lru_add(pvec);
-
- pvec = &per_cpu(lru_add_active_pvecs, cpu);
- if (pagevec_count(pvec))
- __pagevec_lru_add_active(pvec);
+ for_each_lru(lru) {
+ pvec = &pvecs[lru - LRU_BASE];
+ if (pagevec_count(pvec))
+ ____pagevec_lru_add(pvec, lru);
+ }
pvec = &per_cpu(lru_rotate_pvecs, cpu);
if (pagevec_count(pvec)) {
@@ -244,7 +299,7 @@ void lru_add_drain(void)
put_cpu();
}
-#ifdef CONFIG_NUMA
+#if defined(CONFIG_NUMA) || defined(CONFIG_UNEVICTABLE_LRU)
static void lru_add_drain_per_cpu(struct work_struct *dummy)
{
lru_add_drain();
@@ -278,9 +333,10 @@ int lru_add_drain_all(void)
* Avoid taking zone->lru_lock if possible, but if it is taken, retain it
* for the remainder of the operation.
*
- * The locking in this function is against shrink_cache(): we recheck the
- * page count inside the lock to see whether shrink_cache grabbed the page
- * via the LRU. If it did, give up: shrink_cache will free it.
+ * The locking in this function is against shrink_inactive_list(): we recheck
+ * the page count inside the lock to see whether shrink_inactive_list()
+ * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
+ * will free it.
*/
void release_pages(struct page **pages, int nr, int cold)
{
@@ -307,6 +363,7 @@ void release_pages(struct page **pages, int nr, int cold)
if (PageLRU(page)) {
struct zone *pagezone = page_zone(page);
+
if (pagezone != zone) {
if (zone)
spin_unlock_irqrestore(&zone->lru_lock,
@@ -379,10 +436,11 @@ void __pagevec_release_nonlru(struct pagevec *pvec)
* Add the passed pages to the LRU, then drop the caller's refcount
* on them. Reinitialises the caller's pagevec.
*/
-void __pagevec_lru_add(struct pagevec *pvec)
+void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
{
int i;
struct zone *zone = NULL;
+ VM_BUG_ON(is_unevictable_lru(lru));
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
@@ -394,9 +452,13 @@ void __pagevec_lru_add(struct pagevec *pvec)
zone = pagezone;
spin_lock_irq(&zone->lru_lock);
}
+ VM_BUG_ON(PageActive(page));
+ VM_BUG_ON(PageUnevictable(page));
VM_BUG_ON(PageLRU(page));
SetPageLRU(page);
- add_page_to_inactive_list(zone, page);
+ if (is_active_lru(lru))
+ SetPageActive(page);
+ add_page_to_lru_list(zone, page, lru);
}
if (zone)
spin_unlock_irq(&zone->lru_lock);
@@ -404,48 +466,45 @@ void __pagevec_lru_add(struct pagevec *pvec)
pagevec_reinit(pvec);
}
-EXPORT_SYMBOL(__pagevec_lru_add);
+EXPORT_SYMBOL(____pagevec_lru_add);
-void __pagevec_lru_add_active(struct pagevec *pvec)
+/*
+ * Try to drop buffers from the pages in a pagevec
+ */
+void pagevec_strip(struct pagevec *pvec)
{
int i;
- struct zone *zone = NULL;
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
- struct zone *pagezone = page_zone(page);
- if (pagezone != zone) {
- if (zone)
- spin_unlock_irq(&zone->lru_lock);
- zone = pagezone;
- spin_lock_irq(&zone->lru_lock);
+ if (PagePrivate(page) && trylock_page(page)) {
+ if (PagePrivate(page))
+ try_to_release_page(page, 0);
+ unlock_page(page);
}
- VM_BUG_ON(PageLRU(page));
- SetPageLRU(page);
- VM_BUG_ON(PageActive(page));
- SetPageActive(page);
- add_page_to_active_list(zone, page);
}
- if (zone)
- spin_unlock_irq(&zone->lru_lock);
- release_pages(pvec->pages, pvec->nr, pvec->cold);
- pagevec_reinit(pvec);
}
-/*
- * Try to drop buffers from the pages in a pagevec
+/**
+ * pagevec_swap_free - try to free swap space from the pages in a pagevec
+ * @pvec: pagevec with swapcache pages to free the swap space of
+ *
+ * The caller needs to hold an extra reference to each page and
+ * not hold the page lock on the pages. This function uses a
+ * trylock on the page lock so it may not always free the swap
+ * space associated with a page.
*/
-void pagevec_strip(struct pagevec *pvec)
+void pagevec_swap_free(struct pagevec *pvec)
{
int i;
for (i = 0; i < pagevec_count(pvec); i++) {
struct page *page = pvec->pages[i];
- if (PagePrivate(page) && !TestSetPageLocked(page)) {
- if (PagePrivate(page))
- try_to_release_page(page, 0);
+ if (PageSwapCache(page) && trylock_page(page)) {
+ if (PageSwapCache(page))
+ remove_exclusive_swap_page_ref(page);
unlock_page(page);
}
}
@@ -493,7 +552,7 @@ EXPORT_SYMBOL(pagevec_lookup_tag);
*/
#define ACCT_THRESHOLD max(16, NR_CPUS * 2)
-static DEFINE_PER_CPU(long, committed_space) = 0;
+static DEFINE_PER_CPU(long, committed_space);
void vm_acct_memory(long pages)
{
diff --git a/mm/swap_state.c b/mm/swap_state.c
index d8aadaf2a0ba..3353c9029cef 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -33,13 +33,13 @@ static const struct address_space_operations swap_aops = {
};
static struct backing_dev_info swap_backing_dev_info = {
- .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
+ .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
.unplug_io_fn = swap_unplug_io_fn,
};
struct address_space swapper_space = {
.page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
- .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock),
+ .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
.a_ops = &swap_aops,
.i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
.backing_dev_info = &swap_backing_dev_info,
@@ -56,15 +56,16 @@ static struct {
void show_swap_cache_info(void)
{
- printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n",
+ printk("%lu pages in swap cache\n", total_swapcache_pages);
+ printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
swap_cache_info.add_total, swap_cache_info.del_total,
swap_cache_info.find_success, swap_cache_info.find_total);
- printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
+ printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}
/*
- * add_to_swap_cache resembles add_to_page_cache on swapper_space,
+ * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
* but sets SwapCache flag and private instead of mapping and index.
*/
int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
@@ -74,21 +75,29 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
BUG_ON(!PageLocked(page));
BUG_ON(PageSwapCache(page));
BUG_ON(PagePrivate(page));
+ BUG_ON(!PageSwapBacked(page));
error = radix_tree_preload(gfp_mask);
if (!error) {
- write_lock_irq(&swapper_space.tree_lock);
+ page_cache_get(page);
+ SetPageSwapCache(page);
+ set_page_private(page, entry.val);
+
+ spin_lock_irq(&swapper_space.tree_lock);
error = radix_tree_insert(&swapper_space.page_tree,
entry.val, page);
- if (!error) {
- page_cache_get(page);
- SetPageSwapCache(page);
- set_page_private(page, entry.val);
+ if (likely(!error)) {
total_swapcache_pages++;
__inc_zone_page_state(page, NR_FILE_PAGES);
INC_CACHE_INFO(add_total);
}
- write_unlock_irq(&swapper_space.tree_lock);
+ spin_unlock_irq(&swapper_space.tree_lock);
radix_tree_preload_end();
+
+ if (unlikely(error)) {
+ set_page_private(page, 0UL);
+ ClearPageSwapCache(page);
+ page_cache_release(page);
+ }
}
return error;
}
@@ -175,9 +184,9 @@ void delete_from_swap_cache(struct page *page)
entry.val = page_private(page);
- write_lock_irq(&swapper_space.tree_lock);
+ spin_lock_irq(&swapper_space.tree_lock);
__delete_from_swap_cache(page);
- write_unlock_irq(&swapper_space.tree_lock);
+ spin_unlock_irq(&swapper_space.tree_lock);
swap_free(entry);
page_cache_release(page);
@@ -193,7 +202,7 @@ void delete_from_swap_cache(struct page *page)
*/
static inline void free_swap_cache(struct page *page)
{
- if (PageSwapCache(page) && !TestSetPageLocked(page)) {
+ if (PageSwapCache(page) && trylock_page(page)) {
remove_exclusive_swap_page(page);
unlock_page(page);
}
@@ -294,17 +303,19 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
* re-using the just freed swap entry for an existing page.
* May fail (-ENOMEM) if radix-tree node allocation failed.
*/
- SetPageLocked(new_page);
+ __set_page_locked(new_page);
+ SetPageSwapBacked(new_page);
err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
- if (!err) {
+ if (likely(!err)) {
/*
* Initiate read into locked page and return.
*/
- lru_cache_add_active(new_page);
+ lru_cache_add_anon(new_page);
swap_readpage(NULL, new_page);
return new_page;
}
- ClearPageLocked(new_page);
+ ClearPageSwapBacked(new_page);
+ __clear_page_locked(new_page);
swap_free(entry);
} while (err != -ENOMEM);
diff --git a/mm/swapfile.c b/mm/swapfile.c
index bd1bb5920306..90cb67a5417c 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -33,17 +33,18 @@
#include <asm/tlbflush.h>
#include <linux/swapops.h>
-DEFINE_SPINLOCK(swap_lock);
-unsigned int nr_swapfiles;
+static DEFINE_SPINLOCK(swap_lock);
+static unsigned int nr_swapfiles;
long total_swap_pages;
static int swap_overflow;
+static int least_priority;
static const char Bad_file[] = "Bad swap file entry ";
static const char Unused_file[] = "Unused swap file entry ";
static const char Bad_offset[] = "Bad swap offset entry ";
static const char Unused_offset[] = "Unused swap offset entry ";
-struct swap_list_t swap_list = {-1, -1};
+static struct swap_list_t swap_list = {-1, -1};
static struct swap_info_struct swap_info[MAX_SWAPFILES];
@@ -343,7 +344,7 @@ int can_share_swap_page(struct page *page)
* Work out if there are any other processes sharing this
* swap cache page. Free it if you can. Return success.
*/
-int remove_exclusive_swap_page(struct page *page)
+static int remove_exclusive_swap_page_count(struct page *page, int count)
{
int retval;
struct swap_info_struct * p;
@@ -356,7 +357,7 @@ int remove_exclusive_swap_page(struct page *page)
return 0;
if (PageWriteback(page))
return 0;
- if (page_count(page) != 2) /* 2: us + cache */
+ if (page_count(page) != count) /* us + cache + ptes */
return 0;
entry.val = page_private(page);
@@ -368,13 +369,13 @@ int remove_exclusive_swap_page(struct page *page)
retval = 0;
if (p->swap_map[swp_offset(entry)] == 1) {
/* Recheck the page count with the swapcache lock held.. */
- write_lock_irq(&swapper_space.tree_lock);
- if ((page_count(page) == 2) && !PageWriteback(page)) {
+ spin_lock_irq(&swapper_space.tree_lock);
+ if ((page_count(page) == count) && !PageWriteback(page)) {
__delete_from_swap_cache(page);
SetPageDirty(page);
retval = 1;
}
- write_unlock_irq(&swapper_space.tree_lock);
+ spin_unlock_irq(&swapper_space.tree_lock);
}
spin_unlock(&swap_lock);
@@ -387,6 +388,25 @@ int remove_exclusive_swap_page(struct page *page)
}
/*
+ * Most of the time the page should have two references: one for the
+ * process and one for the swap cache.
+ */
+int remove_exclusive_swap_page(struct page *page)
+{
+ return remove_exclusive_swap_page_count(page, 2);
+}
+
+/*
+ * The pageout code holds an extra reference to the page. That raises
+ * the reference count to test for to 2 for a page that is only in the
+ * swap cache plus 1 for each process that maps the page.
+ */
+int remove_exclusive_swap_page_ref(struct page *page)
+{
+ return remove_exclusive_swap_page_count(page, 2 + page_mapcount(page));
+}
+
+/*
* Free the swap entry like above, but also try to
* free the page cache entry if it is the last user.
*/
@@ -402,7 +422,7 @@ void free_swap_and_cache(swp_entry_t entry)
if (p) {
if (swap_entry_free(p, swp_offset(entry)) == 1) {
page = find_get_page(&swapper_space, entry.val);
- if (page && unlikely(TestSetPageLocked(page))) {
+ if (page && !trylock_page(page)) {
page_cache_release(page);
page = NULL;
}
@@ -655,8 +675,8 @@ static int unuse_mm(struct mm_struct *mm,
if (!down_read_trylock(&mm->mmap_sem)) {
/*
- * Activate page so shrink_cache is unlikely to unmap its
- * ptes while lock is dropped, so swapoff can make progress.
+ * Activate page so shrink_inactive_list is unlikely to unmap
+ * its ptes while lock is dropped, so swapoff can make progress.
*/
activate_page(page);
unlock_page(page);
@@ -1260,6 +1280,11 @@ asmlinkage long sys_swapoff(const char __user * specialfile)
/* just pick something that's safe... */
swap_list.next = swap_list.head;
}
+ if (p->prio < 0) {
+ for (i = p->next; i >= 0; i = swap_info[i].next)
+ swap_info[i].prio = p->prio--;
+ least_priority++;
+ }
nr_swap_pages -= p->pages;
total_swap_pages -= p->pages;
p->flags &= ~SWP_WRITEOK;
@@ -1272,9 +1297,14 @@ asmlinkage long sys_swapoff(const char __user * specialfile)
if (err) {
/* re-insert swap space back into swap_list */
spin_lock(&swap_lock);
- for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
+ if (p->prio < 0)
+ p->prio = --least_priority;
+ prev = -1;
+ for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
if (p->prio >= swap_info[i].prio)
break;
+ prev = i;
+ }
p->next = i;
if (prev < 0)
swap_list.head = swap_list.next = p - swap_info;
@@ -1447,7 +1477,6 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
unsigned int type;
int i, prev;
int error;
- static int least_priority;
union swap_header *swap_header = NULL;
int swap_header_version;
unsigned int nr_good_pages = 0;
@@ -1455,7 +1484,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
sector_t span;
unsigned long maxpages = 1;
int swapfilesize;
- unsigned short *swap_map;
+ unsigned short *swap_map = NULL;
struct page *page = NULL;
struct inode *inode = NULL;
int did_down = 0;
@@ -1474,22 +1503,10 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
}
if (type >= nr_swapfiles)
nr_swapfiles = type+1;
+ memset(p, 0, sizeof(*p));
INIT_LIST_HEAD(&p->extent_list);
p->flags = SWP_USED;
- p->swap_file = NULL;
- p->old_block_size = 0;
- p->swap_map = NULL;
- p->lowest_bit = 0;
- p->highest_bit = 0;
- p->cluster_nr = 0;
- p->inuse_pages = 0;
p->next = -1;
- if (swap_flags & SWAP_FLAG_PREFER) {
- p->prio =
- (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
- } else {
- p->prio = --least_priority;
- }
spin_unlock(&swap_lock);
name = getname(specialfile);
error = PTR_ERR(name);
@@ -1632,19 +1649,20 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
goto bad_swap;
/* OK, set up the swap map and apply the bad block list */
- if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
+ swap_map = vmalloc(maxpages * sizeof(short));
+ if (!swap_map) {
error = -ENOMEM;
goto bad_swap;
}
error = 0;
- memset(p->swap_map, 0, maxpages * sizeof(short));
+ memset(swap_map, 0, maxpages * sizeof(short));
for (i = 0; i < swap_header->info.nr_badpages; i++) {
int page_nr = swap_header->info.badpages[i];
if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
error = -EINVAL;
else
- p->swap_map[page_nr] = SWAP_MAP_BAD;
+ swap_map[page_nr] = SWAP_MAP_BAD;
}
nr_good_pages = swap_header->info.last_page -
swap_header->info.nr_badpages -
@@ -1654,7 +1672,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
}
if (nr_good_pages) {
- p->swap_map[0] = SWAP_MAP_BAD;
+ swap_map[0] = SWAP_MAP_BAD;
p->max = maxpages;
p->pages = nr_good_pages;
nr_extents = setup_swap_extents(p, &span);
@@ -1672,6 +1690,12 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
mutex_lock(&swapon_mutex);
spin_lock(&swap_lock);
+ if (swap_flags & SWAP_FLAG_PREFER)
+ p->prio =
+ (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
+ else
+ p->prio = --least_priority;
+ p->swap_map = swap_map;
p->flags = SWP_ACTIVE;
nr_swap_pages += nr_good_pages;
total_swap_pages += nr_good_pages;
@@ -1707,12 +1731,8 @@ bad_swap:
destroy_swap_extents(p);
bad_swap_2:
spin_lock(&swap_lock);
- swap_map = p->swap_map;
p->swap_file = NULL;
- p->swap_map = NULL;
p->flags = 0;
- if (!(swap_flags & SWAP_FLAG_PREFER))
- ++least_priority;
spin_unlock(&swap_lock);
vfree(swap_map);
if (swap_file)
diff --git a/mm/tiny-shmem.c b/mm/tiny-shmem.c
index ae532f501943..3e67d575ee6e 100644
--- a/mm/tiny-shmem.c
+++ b/mm/tiny-shmem.c
@@ -65,36 +65,37 @@ struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
if (!dentry)
goto put_memory;
+ error = -ENFILE;
+ file = get_empty_filp();
+ if (!file)
+ goto put_dentry;
+
error = -ENOSPC;
inode = ramfs_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
if (!inode)
- goto put_dentry;
+ goto close_file;
d_instantiate(dentry, inode);
- error = -ENFILE;
- file = alloc_file(shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
- &ramfs_file_operations);
- if (!file)
- goto put_dentry;
-
+ inode->i_size = size;
inode->i_nlink = 0; /* It is unlinked */
+ init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
+ &ramfs_file_operations);
- /* notify everyone as to the change of file size */
- error = do_truncate(dentry, size, 0, file);
- if (error < 0)
+#ifndef CONFIG_MMU
+ error = ramfs_nommu_expand_for_mapping(inode, size);
+ if (error)
goto close_file;
-
+#endif
return file;
close_file:
put_filp(file);
- return ERR_PTR(error);
-
put_dentry:
dput(dentry);
put_memory:
return ERR_PTR(error);
}
+EXPORT_SYMBOL_GPL(shmem_file_setup);
/**
* shmem_zero_setup - setup a shared anonymous mapping
diff --git a/mm/truncate.c b/mm/truncate.c
index b8961cb63414..1229211104f8 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -3,7 +3,7 @@
*
* Copyright (C) 2002, Linus Torvalds
*
- * 10Sep2002 akpm@zip.com.au
+ * 10Sep2002 Andrew Morton
* Initial version.
*/
@@ -18,6 +18,7 @@
#include <linux/task_io_accounting_ops.h>
#include <linux/buffer_head.h> /* grr. try_to_release_page,
do_invalidatepage */
+#include "internal.h"
/**
@@ -103,8 +104,8 @@ truncate_complete_page(struct address_space *mapping, struct page *page)
cancel_dirty_page(page, PAGE_CACHE_SIZE);
+ clear_page_mlock(page);
remove_from_page_cache(page);
- ClearPageUptodate(page);
ClearPageMappedToDisk(page);
page_cache_release(page); /* pagecache ref */
}
@@ -128,6 +129,7 @@ invalidate_complete_page(struct address_space *mapping, struct page *page)
if (PagePrivate(page) && !try_to_release_page(page, 0))
return 0;
+ clear_page_mlock(page);
ret = remove_mapping(mapping, page);
return ret;
@@ -188,7 +190,7 @@ void truncate_inode_pages_range(struct address_space *mapping,
if (page_index > next)
next = page_index;
next++;
- if (TestSetPageLocked(page))
+ if (!trylock_page(page))
continue;
if (PageWriteback(page)) {
unlock_page(page);
@@ -281,7 +283,7 @@ unsigned long __invalidate_mapping_pages(struct address_space *mapping,
pgoff_t index;
int lock_failed;
- lock_failed = TestSetPageLocked(page);
+ lock_failed = !trylock_page(page);
/*
* We really shouldn't be looking at the ->index of an
@@ -349,18 +351,18 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page)
if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
return 0;
- write_lock_irq(&mapping->tree_lock);
+ spin_lock_irq(&mapping->tree_lock);
if (PageDirty(page))
goto failed;
+ clear_page_mlock(page);
BUG_ON(PagePrivate(page));
__remove_from_page_cache(page);
- write_unlock_irq(&mapping->tree_lock);
- ClearPageUptodate(page);
+ spin_unlock_irq(&mapping->tree_lock);
page_cache_release(page); /* pagecache ref */
return 1;
failed:
- write_unlock_irq(&mapping->tree_lock);
+ spin_unlock_irq(&mapping->tree_lock);
return 0;
}
@@ -382,7 +384,7 @@ static int do_launder_page(struct address_space *mapping, struct page *page)
* Any pages which are found to be mapped into pagetables are unmapped prior to
* invalidation.
*
- * Returns -EIO if any pages could not be invalidated.
+ * Returns -EBUSY if any pages could not be invalidated.
*/
int invalidate_inode_pages2_range(struct address_space *mapping,
pgoff_t start, pgoff_t end)
@@ -442,7 +444,7 @@ int invalidate_inode_pages2_range(struct address_space *mapping,
ret2 = do_launder_page(mapping, page);
if (ret2 == 0) {
if (!invalidate_complete_page2(mapping, page))
- ret2 = -EIO;
+ ret2 = -EBUSY;
}
if (ret2 < 0)
ret = ret2;
diff --git a/mm/util.c b/mm/util.c
index 8f18683825bc..cb00b748ce47 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -1,7 +1,9 @@
+#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/err.h>
+#include <linux/sched.h>
#include <asm/uaccess.h>
/**
@@ -68,25 +70,22 @@ void *kmemdup(const void *src, size_t len, gfp_t gfp)
EXPORT_SYMBOL(kmemdup);
/**
- * krealloc - reallocate memory. The contents will remain unchanged.
+ * __krealloc - like krealloc() but don't free @p.
* @p: object to reallocate memory for.
* @new_size: how many bytes of memory are required.
* @flags: the type of memory to allocate.
*
- * The contents of the object pointed to are preserved up to the
- * lesser of the new and old sizes. If @p is %NULL, krealloc()
- * behaves exactly like kmalloc(). If @size is 0 and @p is not a
- * %NULL pointer, the object pointed to is freed.
+ * This function is like krealloc() except it never frees the originally
+ * allocated buffer. Use this if you don't want to free the buffer immediately
+ * like, for example, with RCU.
*/
-void *krealloc(const void *p, size_t new_size, gfp_t flags)
+void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
void *ret;
size_t ks = 0;
- if (unlikely(!new_size)) {
- kfree(p);
+ if (unlikely(!new_size))
return ZERO_SIZE_PTR;
- }
if (p)
ks = ksize(p);
@@ -95,10 +94,37 @@ void *krealloc(const void *p, size_t new_size, gfp_t flags)
return (void *)p;
ret = kmalloc_track_caller(new_size, flags);
- if (ret && p) {
+ if (ret && p)
memcpy(ret, p, ks);
+
+ return ret;
+}
+EXPORT_SYMBOL(__krealloc);
+
+/**
+ * krealloc - reallocate memory. The contents will remain unchanged.
+ * @p: object to reallocate memory for.
+ * @new_size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate.
+ *
+ * The contents of the object pointed to are preserved up to the
+ * lesser of the new and old sizes. If @p is %NULL, krealloc()
+ * behaves exactly like kmalloc(). If @size is 0 and @p is not a
+ * %NULL pointer, the object pointed to is freed.
+ */
+void *krealloc(const void *p, size_t new_size, gfp_t flags)
+{
+ void *ret;
+
+ if (unlikely(!new_size)) {
kfree(p);
+ return ZERO_SIZE_PTR;
}
+
+ ret = __krealloc(p, new_size, flags);
+ if (ret && p != ret)
+ kfree(p);
+
return ret;
}
EXPORT_SYMBOL(krealloc);
@@ -136,3 +162,27 @@ char *strndup_user(const char __user *s, long n)
return p;
}
EXPORT_SYMBOL(strndup_user);
+
+#ifndef HAVE_ARCH_PICK_MMAP_LAYOUT
+void arch_pick_mmap_layout(struct mm_struct *mm)
+{
+ mm->mmap_base = TASK_UNMAPPED_BASE;
+ mm->get_unmapped_area = arch_get_unmapped_area;
+ mm->unmap_area = arch_unmap_area;
+}
+#endif
+
+int __attribute__((weak)) get_user_pages_fast(unsigned long start,
+ int nr_pages, int write, struct page **pages)
+{
+ struct mm_struct *mm = current->mm;
+ int ret;
+
+ down_read(&mm->mmap_sem);
+ ret = get_user_pages(current, mm, start, nr_pages,
+ write, 0, pages, NULL);
+ up_read(&mm->mmap_sem);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(get_user_pages_fast);
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 6e45b0f3d125..036536945dd9 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -8,26 +8,28 @@
* Numa awareness, Christoph Lameter, SGI, June 2005
*/
+#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
+#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/debugobjects.h>
-#include <linux/vmalloc.h>
#include <linux/kallsyms.h>
+#include <linux/list.h>
+#include <linux/rbtree.h>
+#include <linux/radix-tree.h>
+#include <linux/rcupdate.h>
+#include <asm/atomic.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
-DEFINE_RWLOCK(vmlist_lock);
-struct vm_struct *vmlist;
-
-static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
- int node, void *caller);
+/*** Page table manipulation functions ***/
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
@@ -40,8 +42,7 @@ static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
} while (pte++, addr += PAGE_SIZE, addr != end);
}
-static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
- unsigned long end)
+static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
{
pmd_t *pmd;
unsigned long next;
@@ -55,8 +56,7 @@ static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
} while (pmd++, addr = next, addr != end);
}
-static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
- unsigned long end)
+static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
pud_t *pud;
unsigned long next;
@@ -70,12 +70,10 @@ static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
} while (pud++, addr = next, addr != end);
}
-void unmap_kernel_range(unsigned long addr, unsigned long size)
+static void vunmap_page_range(unsigned long addr, unsigned long end)
{
pgd_t *pgd;
unsigned long next;
- unsigned long start = addr;
- unsigned long end = addr + size;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
@@ -86,35 +84,36 @@ void unmap_kernel_range(unsigned long addr, unsigned long size)
continue;
vunmap_pud_range(pgd, addr, next);
} while (pgd++, addr = next, addr != end);
- flush_tlb_kernel_range(start, end);
-}
-
-static void unmap_vm_area(struct vm_struct *area)
-{
- unmap_kernel_range((unsigned long)area->addr, area->size);
}
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
- unsigned long end, pgprot_t prot, struct page ***pages)
+ unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
pte_t *pte;
+ /*
+ * nr is a running index into the array which helps higher level
+ * callers keep track of where we're up to.
+ */
+
pte = pte_alloc_kernel(pmd, addr);
if (!pte)
return -ENOMEM;
do {
- struct page *page = **pages;
- WARN_ON(!pte_none(*pte));
- if (!page)
+ struct page *page = pages[*nr];
+
+ if (WARN_ON(!pte_none(*pte)))
+ return -EBUSY;
+ if (WARN_ON(!page))
return -ENOMEM;
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
- (*pages)++;
+ (*nr)++;
} while (pte++, addr += PAGE_SIZE, addr != end);
return 0;
}
-static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
- unsigned long end, pgprot_t prot, struct page ***pages)
+static int vmap_pmd_range(pud_t *pud, unsigned long addr,
+ unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
pmd_t *pmd;
unsigned long next;
@@ -124,14 +123,14 @@ static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
- if (vmap_pte_range(pmd, addr, next, prot, pages))
+ if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
return -ENOMEM;
} while (pmd++, addr = next, addr != end);
return 0;
}
-static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
- unsigned long end, pgprot_t prot, struct page ***pages)
+static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
+ unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
pud_t *pud;
unsigned long next;
@@ -141,50 +140,78 @@ static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
- if (vmap_pmd_range(pud, addr, next, prot, pages))
+ if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
return -ENOMEM;
} while (pud++, addr = next, addr != end);
return 0;
}
-int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
+/*
+ * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
+ * will have pfns corresponding to the "pages" array.
+ *
+ * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
+ */
+static int vmap_page_range(unsigned long addr, unsigned long end,
+ pgprot_t prot, struct page **pages)
{
pgd_t *pgd;
unsigned long next;
- unsigned long addr = (unsigned long) area->addr;
- unsigned long end = addr + area->size - PAGE_SIZE;
- int err;
+ int err = 0;
+ int nr = 0;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
- err = vmap_pud_range(pgd, addr, next, prot, pages);
+ err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
if (err)
break;
} while (pgd++, addr = next, addr != end);
- flush_cache_vmap((unsigned long) area->addr, end);
- return err;
+ flush_cache_vmap(addr, end);
+
+ if (unlikely(err))
+ return err;
+ return nr;
+}
+
+static inline int is_vmalloc_or_module_addr(const void *x)
+{
+ /*
+ * x86-64 and sparc64 put modules in a special place,
+ * and fall back on vmalloc() if that fails. Others
+ * just put it in the vmalloc space.
+ */
+#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
+ unsigned long addr = (unsigned long)x;
+ if (addr >= MODULES_VADDR && addr < MODULES_END)
+ return 1;
+#endif
+ return is_vmalloc_addr(x);
}
-EXPORT_SYMBOL_GPL(map_vm_area);
/*
- * Map a vmalloc()-space virtual address to the physical page.
+ * Walk a vmap address to the struct page it maps.
*/
struct page *vmalloc_to_page(const void *vmalloc_addr)
{
unsigned long addr = (unsigned long) vmalloc_addr;
struct page *page = NULL;
pgd_t *pgd = pgd_offset_k(addr);
- pud_t *pud;
- pmd_t *pmd;
- pte_t *ptep, pte;
+
+ /*
+ * XXX we might need to change this if we add VIRTUAL_BUG_ON for
+ * architectures that do not vmalloc module space
+ */
+ VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
if (!pgd_none(*pgd)) {
- pud = pud_offset(pgd, addr);
+ pud_t *pud = pud_offset(pgd, addr);
if (!pud_none(*pud)) {
- pmd = pmd_offset(pud, addr);
+ pmd_t *pmd = pmd_offset(pud, addr);
if (!pmd_none(*pmd)) {
+ pte_t *ptep, pte;
+
ptep = pte_offset_map(pmd, addr);
pte = *ptep;
if (pte_present(pte))
@@ -206,13 +233,751 @@ unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
}
EXPORT_SYMBOL(vmalloc_to_pfn);
-static struct vm_struct *
-__get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
- unsigned long end, int node, gfp_t gfp_mask, void *caller)
+
+/*** Global kva allocator ***/
+
+#define VM_LAZY_FREE 0x01
+#define VM_LAZY_FREEING 0x02
+#define VM_VM_AREA 0x04
+
+struct vmap_area {
+ unsigned long va_start;
+ unsigned long va_end;
+ unsigned long flags;
+ struct rb_node rb_node; /* address sorted rbtree */
+ struct list_head list; /* address sorted list */
+ struct list_head purge_list; /* "lazy purge" list */
+ void *private;
+ struct rcu_head rcu_head;
+};
+
+static DEFINE_SPINLOCK(vmap_area_lock);
+static struct rb_root vmap_area_root = RB_ROOT;
+static LIST_HEAD(vmap_area_list);
+
+static struct vmap_area *__find_vmap_area(unsigned long addr)
{
- struct vm_struct **p, *tmp, *area;
- unsigned long align = 1;
+ struct rb_node *n = vmap_area_root.rb_node;
+
+ while (n) {
+ struct vmap_area *va;
+
+ va = rb_entry(n, struct vmap_area, rb_node);
+ if (addr < va->va_start)
+ n = n->rb_left;
+ else if (addr > va->va_start)
+ n = n->rb_right;
+ else
+ return va;
+ }
+
+ return NULL;
+}
+
+static void __insert_vmap_area(struct vmap_area *va)
+{
+ struct rb_node **p = &vmap_area_root.rb_node;
+ struct rb_node *parent = NULL;
+ struct rb_node *tmp;
+
+ while (*p) {
+ struct vmap_area *tmp;
+
+ parent = *p;
+ tmp = rb_entry(parent, struct vmap_area, rb_node);
+ if (va->va_start < tmp->va_end)
+ p = &(*p)->rb_left;
+ else if (va->va_end > tmp->va_start)
+ p = &(*p)->rb_right;
+ else
+ BUG();
+ }
+
+ rb_link_node(&va->rb_node, parent, p);
+ rb_insert_color(&va->rb_node, &vmap_area_root);
+
+ /* address-sort this list so it is usable like the vmlist */
+ tmp = rb_prev(&va->rb_node);
+ if (tmp) {
+ struct vmap_area *prev;
+ prev = rb_entry(tmp, struct vmap_area, rb_node);
+ list_add_rcu(&va->list, &prev->list);
+ } else
+ list_add_rcu(&va->list, &vmap_area_list);
+}
+
+static void purge_vmap_area_lazy(void);
+
+/*
+ * Allocate a region of KVA of the specified size and alignment, within the
+ * vstart and vend.
+ */
+static struct vmap_area *alloc_vmap_area(unsigned long size,
+ unsigned long align,
+ unsigned long vstart, unsigned long vend,
+ int node, gfp_t gfp_mask)
+{
+ struct vmap_area *va;
+ struct rb_node *n;
+ unsigned long addr;
+ int purged = 0;
+
+ BUG_ON(size & ~PAGE_MASK);
+
+ addr = ALIGN(vstart, align);
+
+ va = kmalloc_node(sizeof(struct vmap_area),
+ gfp_mask & GFP_RECLAIM_MASK, node);
+ if (unlikely(!va))
+ return ERR_PTR(-ENOMEM);
+
+retry:
+ spin_lock(&vmap_area_lock);
+ /* XXX: could have a last_hole cache */
+ n = vmap_area_root.rb_node;
+ if (n) {
+ struct vmap_area *first = NULL;
+
+ do {
+ struct vmap_area *tmp;
+ tmp = rb_entry(n, struct vmap_area, rb_node);
+ if (tmp->va_end >= addr) {
+ if (!first && tmp->va_start < addr + size)
+ first = tmp;
+ n = n->rb_left;
+ } else {
+ first = tmp;
+ n = n->rb_right;
+ }
+ } while (n);
+
+ if (!first)
+ goto found;
+
+ if (first->va_end < addr) {
+ n = rb_next(&first->rb_node);
+ if (n)
+ first = rb_entry(n, struct vmap_area, rb_node);
+ else
+ goto found;
+ }
+
+ while (addr + size >= first->va_start && addr + size <= vend) {
+ addr = ALIGN(first->va_end + PAGE_SIZE, align);
+
+ n = rb_next(&first->rb_node);
+ if (n)
+ first = rb_entry(n, struct vmap_area, rb_node);
+ else
+ goto found;
+ }
+ }
+found:
+ if (addr + size > vend) {
+ spin_unlock(&vmap_area_lock);
+ if (!purged) {
+ purge_vmap_area_lazy();
+ purged = 1;
+ goto retry;
+ }
+ if (printk_ratelimit())
+ printk(KERN_WARNING "vmap allocation failed: "
+ "use vmalloc=<size> to increase size.\n");
+ return ERR_PTR(-EBUSY);
+ }
+
+ BUG_ON(addr & (align-1));
+
+ va->va_start = addr;
+ va->va_end = addr + size;
+ va->flags = 0;
+ __insert_vmap_area(va);
+ spin_unlock(&vmap_area_lock);
+
+ return va;
+}
+
+static void rcu_free_va(struct rcu_head *head)
+{
+ struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
+
+ kfree(va);
+}
+
+static void __free_vmap_area(struct vmap_area *va)
+{
+ BUG_ON(RB_EMPTY_NODE(&va->rb_node));
+ rb_erase(&va->rb_node, &vmap_area_root);
+ RB_CLEAR_NODE(&va->rb_node);
+ list_del_rcu(&va->list);
+
+ call_rcu(&va->rcu_head, rcu_free_va);
+}
+
+/*
+ * Free a region of KVA allocated by alloc_vmap_area
+ */
+static void free_vmap_area(struct vmap_area *va)
+{
+ spin_lock(&vmap_area_lock);
+ __free_vmap_area(va);
+ spin_unlock(&vmap_area_lock);
+}
+
+/*
+ * Clear the pagetable entries of a given vmap_area
+ */
+static void unmap_vmap_area(struct vmap_area *va)
+{
+ vunmap_page_range(va->va_start, va->va_end);
+}
+
+/*
+ * lazy_max_pages is the maximum amount of virtual address space we gather up
+ * before attempting to purge with a TLB flush.
+ *
+ * There is a tradeoff here: a larger number will cover more kernel page tables
+ * and take slightly longer to purge, but it will linearly reduce the number of
+ * global TLB flushes that must be performed. It would seem natural to scale
+ * this number up linearly with the number of CPUs (because vmapping activity
+ * could also scale linearly with the number of CPUs), however it is likely
+ * that in practice, workloads might be constrained in other ways that mean
+ * vmap activity will not scale linearly with CPUs. Also, I want to be
+ * conservative and not introduce a big latency on huge systems, so go with
+ * a less aggressive log scale. It will still be an improvement over the old
+ * code, and it will be simple to change the scale factor if we find that it
+ * becomes a problem on bigger systems.
+ */
+static unsigned long lazy_max_pages(void)
+{
+ unsigned int log;
+
+ log = fls(num_online_cpus());
+
+ return log * (32UL * 1024 * 1024 / PAGE_SIZE);
+}
+
+static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
+
+/*
+ * Purges all lazily-freed vmap areas.
+ *
+ * If sync is 0 then don't purge if there is already a purge in progress.
+ * If force_flush is 1, then flush kernel TLBs between *start and *end even
+ * if we found no lazy vmap areas to unmap (callers can use this to optimise
+ * their own TLB flushing).
+ * Returns with *start = min(*start, lowest purged address)
+ * *end = max(*end, highest purged address)
+ */
+static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
+ int sync, int force_flush)
+{
+ static DEFINE_SPINLOCK(purge_lock);
+ LIST_HEAD(valist);
+ struct vmap_area *va;
+ int nr = 0;
+
+ /*
+ * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
+ * should not expect such behaviour. This just simplifies locking for
+ * the case that isn't actually used at the moment anyway.
+ */
+ if (!sync && !force_flush) {
+ if (!spin_trylock(&purge_lock))
+ return;
+ } else
+ spin_lock(&purge_lock);
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(va, &vmap_area_list, list) {
+ if (va->flags & VM_LAZY_FREE) {
+ if (va->va_start < *start)
+ *start = va->va_start;
+ if (va->va_end > *end)
+ *end = va->va_end;
+ nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
+ unmap_vmap_area(va);
+ list_add_tail(&va->purge_list, &valist);
+ va->flags |= VM_LAZY_FREEING;
+ va->flags &= ~VM_LAZY_FREE;
+ }
+ }
+ rcu_read_unlock();
+
+ if (nr) {
+ BUG_ON(nr > atomic_read(&vmap_lazy_nr));
+ atomic_sub(nr, &vmap_lazy_nr);
+ }
+
+ if (nr || force_flush)
+ flush_tlb_kernel_range(*start, *end);
+
+ if (nr) {
+ spin_lock(&vmap_area_lock);
+ list_for_each_entry(va, &valist, purge_list)
+ __free_vmap_area(va);
+ spin_unlock(&vmap_area_lock);
+ }
+ spin_unlock(&purge_lock);
+}
+
+/*
+ * Kick off a purge of the outstanding lazy areas.
+ */
+static void purge_vmap_area_lazy(void)
+{
+ unsigned long start = ULONG_MAX, end = 0;
+
+ __purge_vmap_area_lazy(&start, &end, 0, 0);
+}
+
+/*
+ * Free and unmap a vmap area
+ */
+static void free_unmap_vmap_area(struct vmap_area *va)
+{
+ va->flags |= VM_LAZY_FREE;
+ atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
+ if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
+ purge_vmap_area_lazy();
+}
+
+static struct vmap_area *find_vmap_area(unsigned long addr)
+{
+ struct vmap_area *va;
+
+ spin_lock(&vmap_area_lock);
+ va = __find_vmap_area(addr);
+ spin_unlock(&vmap_area_lock);
+
+ return va;
+}
+
+static void free_unmap_vmap_area_addr(unsigned long addr)
+{
+ struct vmap_area *va;
+
+ va = find_vmap_area(addr);
+ BUG_ON(!va);
+ free_unmap_vmap_area(va);
+}
+
+
+/*** Per cpu kva allocator ***/
+
+/*
+ * vmap space is limited especially on 32 bit architectures. Ensure there is
+ * room for at least 16 percpu vmap blocks per CPU.
+ */
+/*
+ * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
+ * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
+ * instead (we just need a rough idea)
+ */
+#if BITS_PER_LONG == 32
+#define VMALLOC_SPACE (128UL*1024*1024)
+#else
+#define VMALLOC_SPACE (128UL*1024*1024*1024)
+#endif
+
+#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
+#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
+#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
+#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
+#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
+#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
+#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
+ VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
+ VMALLOC_PAGES / NR_CPUS / 16))
+
+#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
+
+struct vmap_block_queue {
+ spinlock_t lock;
+ struct list_head free;
+ struct list_head dirty;
+ unsigned int nr_dirty;
+};
+
+struct vmap_block {
+ spinlock_t lock;
+ struct vmap_area *va;
+ struct vmap_block_queue *vbq;
+ unsigned long free, dirty;
+ DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
+ DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
+ union {
+ struct {
+ struct list_head free_list;
+ struct list_head dirty_list;
+ };
+ struct rcu_head rcu_head;
+ };
+};
+
+/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
+static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
+
+/*
+ * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
+ * in the free path. Could get rid of this if we change the API to return a
+ * "cookie" from alloc, to be passed to free. But no big deal yet.
+ */
+static DEFINE_SPINLOCK(vmap_block_tree_lock);
+static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
+
+/*
+ * We should probably have a fallback mechanism to allocate virtual memory
+ * out of partially filled vmap blocks. However vmap block sizing should be
+ * fairly reasonable according to the vmalloc size, so it shouldn't be a
+ * big problem.
+ */
+
+static unsigned long addr_to_vb_idx(unsigned long addr)
+{
+ addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
+ addr /= VMAP_BLOCK_SIZE;
+ return addr;
+}
+
+static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
+{
+ struct vmap_block_queue *vbq;
+ struct vmap_block *vb;
+ struct vmap_area *va;
+ unsigned long vb_idx;
+ int node, err;
+
+ node = numa_node_id();
+
+ vb = kmalloc_node(sizeof(struct vmap_block),
+ gfp_mask & GFP_RECLAIM_MASK, node);
+ if (unlikely(!vb))
+ return ERR_PTR(-ENOMEM);
+
+ va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
+ VMALLOC_START, VMALLOC_END,
+ node, gfp_mask);
+ if (unlikely(IS_ERR(va))) {
+ kfree(vb);
+ return ERR_PTR(PTR_ERR(va));
+ }
+
+ err = radix_tree_preload(gfp_mask);
+ if (unlikely(err)) {
+ kfree(vb);
+ free_vmap_area(va);
+ return ERR_PTR(err);
+ }
+
+ spin_lock_init(&vb->lock);
+ vb->va = va;
+ vb->free = VMAP_BBMAP_BITS;
+ vb->dirty = 0;
+ bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
+ bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
+ INIT_LIST_HEAD(&vb->free_list);
+ INIT_LIST_HEAD(&vb->dirty_list);
+
+ vb_idx = addr_to_vb_idx(va->va_start);
+ spin_lock(&vmap_block_tree_lock);
+ err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
+ spin_unlock(&vmap_block_tree_lock);
+ BUG_ON(err);
+ radix_tree_preload_end();
+
+ vbq = &get_cpu_var(vmap_block_queue);
+ vb->vbq = vbq;
+ spin_lock(&vbq->lock);
+ list_add(&vb->free_list, &vbq->free);
+ spin_unlock(&vbq->lock);
+ put_cpu_var(vmap_cpu_blocks);
+
+ return vb;
+}
+
+static void rcu_free_vb(struct rcu_head *head)
+{
+ struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
+
+ kfree(vb);
+}
+
+static void free_vmap_block(struct vmap_block *vb)
+{
+ struct vmap_block *tmp;
+ unsigned long vb_idx;
+
+ spin_lock(&vb->vbq->lock);
+ if (!list_empty(&vb->free_list))
+ list_del(&vb->free_list);
+ if (!list_empty(&vb->dirty_list))
+ list_del(&vb->dirty_list);
+ spin_unlock(&vb->vbq->lock);
+
+ vb_idx = addr_to_vb_idx(vb->va->va_start);
+ spin_lock(&vmap_block_tree_lock);
+ tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
+ spin_unlock(&vmap_block_tree_lock);
+ BUG_ON(tmp != vb);
+
+ free_unmap_vmap_area(vb->va);
+ call_rcu(&vb->rcu_head, rcu_free_vb);
+}
+
+static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
+{
+ struct vmap_block_queue *vbq;
+ struct vmap_block *vb;
+ unsigned long addr = 0;
+ unsigned int order;
+
+ BUG_ON(size & ~PAGE_MASK);
+ BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
+ order = get_order(size);
+
+again:
+ rcu_read_lock();
+ vbq = &get_cpu_var(vmap_block_queue);
+ list_for_each_entry_rcu(vb, &vbq->free, free_list) {
+ int i;
+
+ spin_lock(&vb->lock);
+ i = bitmap_find_free_region(vb->alloc_map,
+ VMAP_BBMAP_BITS, order);
+
+ if (i >= 0) {
+ addr = vb->va->va_start + (i << PAGE_SHIFT);
+ BUG_ON(addr_to_vb_idx(addr) !=
+ addr_to_vb_idx(vb->va->va_start));
+ vb->free -= 1UL << order;
+ if (vb->free == 0) {
+ spin_lock(&vbq->lock);
+ list_del_init(&vb->free_list);
+ spin_unlock(&vbq->lock);
+ }
+ spin_unlock(&vb->lock);
+ break;
+ }
+ spin_unlock(&vb->lock);
+ }
+ put_cpu_var(vmap_cpu_blocks);
+ rcu_read_unlock();
+
+ if (!addr) {
+ vb = new_vmap_block(gfp_mask);
+ if (IS_ERR(vb))
+ return vb;
+ goto again;
+ }
+
+ return (void *)addr;
+}
+
+static void vb_free(const void *addr, unsigned long size)
+{
+ unsigned long offset;
+ unsigned long vb_idx;
+ unsigned int order;
+ struct vmap_block *vb;
+
+ BUG_ON(size & ~PAGE_MASK);
+ BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
+ order = get_order(size);
+
+ offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
+
+ vb_idx = addr_to_vb_idx((unsigned long)addr);
+ rcu_read_lock();
+ vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
+ rcu_read_unlock();
+ BUG_ON(!vb);
+
+ spin_lock(&vb->lock);
+ bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
+ if (!vb->dirty) {
+ spin_lock(&vb->vbq->lock);
+ list_add(&vb->dirty_list, &vb->vbq->dirty);
+ spin_unlock(&vb->vbq->lock);
+ }
+ vb->dirty += 1UL << order;
+ if (vb->dirty == VMAP_BBMAP_BITS) {
+ BUG_ON(vb->free || !list_empty(&vb->free_list));
+ spin_unlock(&vb->lock);
+ free_vmap_block(vb);
+ } else
+ spin_unlock(&vb->lock);
+}
+
+/**
+ * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
+ *
+ * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
+ * to amortize TLB flushing overheads. What this means is that any page you
+ * have now, may, in a former life, have been mapped into kernel virtual
+ * address by the vmap layer and so there might be some CPUs with TLB entries
+ * still referencing that page (additional to the regular 1:1 kernel mapping).
+ *
+ * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
+ * be sure that none of the pages we have control over will have any aliases
+ * from the vmap layer.
+ */
+void vm_unmap_aliases(void)
+{
+ unsigned long start = ULONG_MAX, end = 0;
+ int cpu;
+ int flush = 0;
+
+ for_each_possible_cpu(cpu) {
+ struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
+ struct vmap_block *vb;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(vb, &vbq->free, free_list) {
+ int i;
+
+ spin_lock(&vb->lock);
+ i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
+ while (i < VMAP_BBMAP_BITS) {
+ unsigned long s, e;
+ int j;
+ j = find_next_zero_bit(vb->dirty_map,
+ VMAP_BBMAP_BITS, i);
+
+ s = vb->va->va_start + (i << PAGE_SHIFT);
+ e = vb->va->va_start + (j << PAGE_SHIFT);
+ vunmap_page_range(s, e);
+ flush = 1;
+
+ if (s < start)
+ start = s;
+ if (e > end)
+ end = e;
+
+ i = j;
+ i = find_next_bit(vb->dirty_map,
+ VMAP_BBMAP_BITS, i);
+ }
+ spin_unlock(&vb->lock);
+ }
+ rcu_read_unlock();
+ }
+
+ __purge_vmap_area_lazy(&start, &end, 1, flush);
+}
+EXPORT_SYMBOL_GPL(vm_unmap_aliases);
+
+/**
+ * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
+ * @mem: the pointer returned by vm_map_ram
+ * @count: the count passed to that vm_map_ram call (cannot unmap partial)
+ */
+void vm_unmap_ram(const void *mem, unsigned int count)
+{
+ unsigned long size = count << PAGE_SHIFT;
+ unsigned long addr = (unsigned long)mem;
+
+ BUG_ON(!addr);
+ BUG_ON(addr < VMALLOC_START);
+ BUG_ON(addr > VMALLOC_END);
+ BUG_ON(addr & (PAGE_SIZE-1));
+
+ debug_check_no_locks_freed(mem, size);
+
+ if (likely(count <= VMAP_MAX_ALLOC))
+ vb_free(mem, size);
+ else
+ free_unmap_vmap_area_addr(addr);
+}
+EXPORT_SYMBOL(vm_unmap_ram);
+
+/**
+ * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
+ * @pages: an array of pointers to the pages to be mapped
+ * @count: number of pages
+ * @node: prefer to allocate data structures on this node
+ * @prot: memory protection to use. PAGE_KERNEL for regular RAM
+ * @returns: a pointer to the address that has been mapped, or NULL on failure
+ */
+void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
+{
+ unsigned long size = count << PAGE_SHIFT;
unsigned long addr;
+ void *mem;
+
+ if (likely(count <= VMAP_MAX_ALLOC)) {
+ mem = vb_alloc(size, GFP_KERNEL);
+ if (IS_ERR(mem))
+ return NULL;
+ addr = (unsigned long)mem;
+ } else {
+ struct vmap_area *va;
+ va = alloc_vmap_area(size, PAGE_SIZE,
+ VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
+ if (IS_ERR(va))
+ return NULL;
+
+ addr = va->va_start;
+ mem = (void *)addr;
+ }
+ if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
+ vm_unmap_ram(mem, count);
+ return NULL;
+ }
+ return mem;
+}
+EXPORT_SYMBOL(vm_map_ram);
+
+void __init vmalloc_init(void)
+{
+ int i;
+
+ for_each_possible_cpu(i) {
+ struct vmap_block_queue *vbq;
+
+ vbq = &per_cpu(vmap_block_queue, i);
+ spin_lock_init(&vbq->lock);
+ INIT_LIST_HEAD(&vbq->free);
+ INIT_LIST_HEAD(&vbq->dirty);
+ vbq->nr_dirty = 0;
+ }
+}
+
+void unmap_kernel_range(unsigned long addr, unsigned long size)
+{
+ unsigned long end = addr + size;
+ vunmap_page_range(addr, end);
+ flush_tlb_kernel_range(addr, end);
+}
+
+int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
+{
+ unsigned long addr = (unsigned long)area->addr;
+ unsigned long end = addr + area->size - PAGE_SIZE;
+ int err;
+
+ err = vmap_page_range(addr, end, prot, *pages);
+ if (err > 0) {
+ *pages += err;
+ err = 0;
+ }
+
+ return err;
+}
+EXPORT_SYMBOL_GPL(map_vm_area);
+
+/*** Old vmalloc interfaces ***/
+DEFINE_RWLOCK(vmlist_lock);
+struct vm_struct *vmlist;
+
+static struct vm_struct *__get_vm_area_node(unsigned long size,
+ unsigned long flags, unsigned long start, unsigned long end,
+ int node, gfp_t gfp_mask, void *caller)
+{
+ static struct vmap_area *va;
+ struct vm_struct *area;
+ struct vm_struct *tmp, **p;
+ unsigned long align = 1;
BUG_ON(in_interrupt());
if (flags & VM_IOREMAP) {
@@ -225,13 +990,12 @@ __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
align = 1ul << bit;
}
- addr = ALIGN(start, align);
+
size = PAGE_ALIGN(size);
if (unlikely(!size))
return NULL;
area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
-
if (unlikely(!area))
return NULL;
@@ -240,48 +1004,32 @@ __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
*/
size += PAGE_SIZE;
- write_lock(&vmlist_lock);
- for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
- if ((unsigned long)tmp->addr < addr) {
- if((unsigned long)tmp->addr + tmp->size >= addr)
- addr = ALIGN(tmp->size +
- (unsigned long)tmp->addr, align);
- continue;
- }
- if ((size + addr) < addr)
- goto out;
- if (size + addr <= (unsigned long)tmp->addr)
- goto found;
- addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
- if (addr > end - size)
- goto out;
+ va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
+ if (IS_ERR(va)) {
+ kfree(area);
+ return NULL;
}
- if ((size + addr) < addr)
- goto out;
- if (addr > end - size)
- goto out;
-
-found:
- area->next = *p;
- *p = area;
area->flags = flags;
- area->addr = (void *)addr;
+ area->addr = (void *)va->va_start;
area->size = size;
area->pages = NULL;
area->nr_pages = 0;
area->phys_addr = 0;
area->caller = caller;
+ va->private = area;
+ va->flags |= VM_VM_AREA;
+
+ write_lock(&vmlist_lock);
+ for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
+ if (tmp->addr >= area->addr)
+ break;
+ }
+ area->next = *p;
+ *p = area;
write_unlock(&vmlist_lock);
return area;
-
-out:
- write_unlock(&vmlist_lock);
- kfree(area);
- if (printk_ratelimit())
- printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
- return NULL;
}
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
@@ -321,39 +1069,15 @@ struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
gfp_mask, __builtin_return_address(0));
}
-/* Caller must hold vmlist_lock */
-static struct vm_struct *__find_vm_area(const void *addr)
+static struct vm_struct *find_vm_area(const void *addr)
{
- struct vm_struct *tmp;
+ struct vmap_area *va;
- for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
- if (tmp->addr == addr)
- break;
- }
+ va = find_vmap_area((unsigned long)addr);
+ if (va && va->flags & VM_VM_AREA)
+ return va->private;
- return tmp;
-}
-
-/* Caller must hold vmlist_lock */
-static struct vm_struct *__remove_vm_area(const void *addr)
-{
- struct vm_struct **p, *tmp;
-
- for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
- if (tmp->addr == addr)
- goto found;
- }
return NULL;
-
-found:
- unmap_vm_area(tmp);
- *p = tmp->next;
-
- /*
- * Remove the guard page.
- */
- tmp->size -= PAGE_SIZE;
- return tmp;
}
/**
@@ -366,11 +1090,24 @@ found:
*/
struct vm_struct *remove_vm_area(const void *addr)
{
- struct vm_struct *v;
- write_lock(&vmlist_lock);
- v = __remove_vm_area(addr);
- write_unlock(&vmlist_lock);
- return v;
+ struct vmap_area *va;
+
+ va = find_vmap_area((unsigned long)addr);
+ if (va && va->flags & VM_VM_AREA) {
+ struct vm_struct *vm = va->private;
+ struct vm_struct *tmp, **p;
+ free_unmap_vmap_area(va);
+ vm->size -= PAGE_SIZE;
+
+ write_lock(&vmlist_lock);
+ for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
+ ;
+ *p = tmp->next;
+ write_unlock(&vmlist_lock);
+
+ return vm;
+ }
+ return NULL;
}
static void __vunmap(const void *addr, int deallocate_pages)
@@ -381,16 +1118,14 @@ static void __vunmap(const void *addr, int deallocate_pages)
return;
if ((PAGE_SIZE-1) & (unsigned long)addr) {
- printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
- WARN_ON(1);
+ WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
return;
}
area = remove_vm_area(addr);
if (unlikely(!area)) {
- printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
+ WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
addr);
- WARN_ON(1);
return;
}
@@ -482,6 +1217,8 @@ void *vmap(struct page **pages, unsigned int count,
}
EXPORT_SYMBOL(vmap);
+static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
+ int node, void *caller);
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
pgprot_t prot, int node, void *caller)
{
@@ -608,10 +1345,8 @@ void *vmalloc_user(unsigned long size)
ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
if (ret) {
- write_lock(&vmlist_lock);
- area = __find_vm_area(ret);
+ area = find_vm_area(ret);
area->flags |= VM_USERMAP;
- write_unlock(&vmlist_lock);
}
return ret;
}
@@ -691,10 +1426,8 @@ void *vmalloc_32_user(unsigned long size)
ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
if (ret) {
- write_lock(&vmlist_lock);
- area = __find_vm_area(ret);
+ area = find_vm_area(ret);
area->flags |= VM_USERMAP;
- write_unlock(&vmlist_lock);
}
return ret;
}
@@ -795,26 +1528,25 @@ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
struct vm_struct *area;
unsigned long uaddr = vma->vm_start;
unsigned long usize = vma->vm_end - vma->vm_start;
- int ret;
if ((PAGE_SIZE-1) & (unsigned long)addr)
return -EINVAL;
- read_lock(&vmlist_lock);
- area = __find_vm_area(addr);
+ area = find_vm_area(addr);
if (!area)
- goto out_einval_locked;
+ return -EINVAL;
if (!(area->flags & VM_USERMAP))
- goto out_einval_locked;
+ return -EINVAL;
if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
- goto out_einval_locked;
- read_unlock(&vmlist_lock);
+ return -EINVAL;
addr += pgoff << PAGE_SHIFT;
do {
struct page *page = vmalloc_to_page(addr);
+ int ret;
+
ret = vm_insert_page(vma, uaddr, page);
if (ret)
return ret;
@@ -827,11 +1559,7 @@ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
/* Prevent "things" like memory migration? VM_flags need a cleanup... */
vma->vm_flags |= VM_RESERVED;
- return ret;
-
-out_einval_locked:
- read_unlock(&vmlist_lock);
- return -EINVAL;
+ return 0;
}
EXPORT_SYMBOL(remap_vmalloc_range);
@@ -931,6 +1659,25 @@ static void s_stop(struct seq_file *m, void *p)
read_unlock(&vmlist_lock);
}
+static void show_numa_info(struct seq_file *m, struct vm_struct *v)
+{
+ if (NUMA_BUILD) {
+ unsigned int nr, *counters = m->private;
+
+ if (!counters)
+ return;
+
+ memset(counters, 0, nr_node_ids * sizeof(unsigned int));
+
+ for (nr = 0; nr < v->nr_pages; nr++)
+ counters[page_to_nid(v->pages[nr])]++;
+
+ for_each_node_state(nr, N_HIGH_MEMORY)
+ if (counters[nr])
+ seq_printf(m, " N%u=%u", nr, counters[nr]);
+ }
+}
+
static int s_show(struct seq_file *m, void *p)
{
struct vm_struct *v = p;
@@ -967,15 +1714,46 @@ static int s_show(struct seq_file *m, void *p)
if (v->flags & VM_VPAGES)
seq_printf(m, " vpages");
+ show_numa_info(m, v);
seq_putc(m, '\n');
return 0;
}
-const struct seq_operations vmalloc_op = {
+static const struct seq_operations vmalloc_op = {
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
+
+static int vmalloc_open(struct inode *inode, struct file *file)
+{
+ unsigned int *ptr = NULL;
+ int ret;
+
+ if (NUMA_BUILD)
+ ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
+ ret = seq_open(file, &vmalloc_op);
+ if (!ret) {
+ struct seq_file *m = file->private_data;
+ m->private = ptr;
+ } else
+ kfree(ptr);
+ return ret;
+}
+
+static const struct file_operations proc_vmalloc_operations = {
+ .open = vmalloc_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release_private,
+};
+
+static int __init proc_vmalloc_init(void)
+{
+ proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
+ return 0;
+}
+module_init(proc_vmalloc_init);
#endif
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 967d30ccd92b..3b5860294bb6 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -38,6 +38,8 @@
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/memcontrol.h>
+#include <linux/delayacct.h>
+#include <linux/sysctl.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
@@ -77,7 +79,7 @@ struct scan_control {
unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
unsigned long *scanned, int order, int mode,
struct zone *z, struct mem_cgroup *mem_cont,
- int active);
+ int active, int file);
};
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
@@ -390,17 +392,15 @@ static pageout_t pageout(struct page *page, struct address_space *mapping,
}
/*
- * Attempt to detach a locked page from its ->mapping. If it is dirty or if
- * someone else has a ref on the page, abort and return 0. If it was
- * successfully detached, return 1. Assumes the caller has a single ref on
- * this page.
+ * Same as remove_mapping, but if the page is removed from the mapping, it
+ * gets returned with a refcount of 0.
*/
-int remove_mapping(struct address_space *mapping, struct page *page)
+static int __remove_mapping(struct address_space *mapping, struct page *page)
{
BUG_ON(!PageLocked(page));
BUG_ON(mapping != page_mapping(page));
- write_lock_irq(&mapping->tree_lock);
+ spin_lock_irq(&mapping->tree_lock);
/*
* The non racy check for a busy page.
*
@@ -426,32 +426,131 @@ int remove_mapping(struct address_space *mapping, struct page *page)
* Note that if SetPageDirty is always performed via set_page_dirty,
* and thus under tree_lock, then this ordering is not required.
*/
- if (unlikely(page_count(page) != 2))
+ if (!page_freeze_refs(page, 2))
goto cannot_free;
- smp_rmb();
- if (unlikely(PageDirty(page)))
+ /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
+ if (unlikely(PageDirty(page))) {
+ page_unfreeze_refs(page, 2);
goto cannot_free;
+ }
if (PageSwapCache(page)) {
swp_entry_t swap = { .val = page_private(page) };
__delete_from_swap_cache(page);
- write_unlock_irq(&mapping->tree_lock);
+ spin_unlock_irq(&mapping->tree_lock);
swap_free(swap);
- __put_page(page); /* The pagecache ref */
- return 1;
+ } else {
+ __remove_from_page_cache(page);
+ spin_unlock_irq(&mapping->tree_lock);
}
- __remove_from_page_cache(page);
- write_unlock_irq(&mapping->tree_lock);
- __put_page(page);
return 1;
cannot_free:
- write_unlock_irq(&mapping->tree_lock);
+ spin_unlock_irq(&mapping->tree_lock);
return 0;
}
/*
+ * Attempt to detach a locked page from its ->mapping. If it is dirty or if
+ * someone else has a ref on the page, abort and return 0. If it was
+ * successfully detached, return 1. Assumes the caller has a single ref on
+ * this page.
+ */
+int remove_mapping(struct address_space *mapping, struct page *page)
+{
+ if (__remove_mapping(mapping, page)) {
+ /*
+ * Unfreezing the refcount with 1 rather than 2 effectively
+ * drops the pagecache ref for us without requiring another
+ * atomic operation.
+ */
+ page_unfreeze_refs(page, 1);
+ return 1;
+ }
+ return 0;
+}
+
+/**
+ * putback_lru_page - put previously isolated page onto appropriate LRU list
+ * @page: page to be put back to appropriate lru list
+ *
+ * Add previously isolated @page to appropriate LRU list.
+ * Page may still be unevictable for other reasons.
+ *
+ * lru_lock must not be held, interrupts must be enabled.
+ */
+#ifdef CONFIG_UNEVICTABLE_LRU
+void putback_lru_page(struct page *page)
+{
+ int lru;
+ int active = !!TestClearPageActive(page);
+ int was_unevictable = PageUnevictable(page);
+
+ VM_BUG_ON(PageLRU(page));
+
+redo:
+ ClearPageUnevictable(page);
+
+ if (page_evictable(page, NULL)) {
+ /*
+ * For evictable pages, we can use the cache.
+ * In event of a race, worst case is we end up with an
+ * unevictable page on [in]active list.
+ * We know how to handle that.
+ */
+ lru = active + page_is_file_cache(page);
+ lru_cache_add_lru(page, lru);
+ } else {
+ /*
+ * Put unevictable pages directly on zone's unevictable
+ * list.
+ */
+ lru = LRU_UNEVICTABLE;
+ add_page_to_unevictable_list(page);
+ }
+ mem_cgroup_move_lists(page, lru);
+
+ /*
+ * page's status can change while we move it among lru. If an evictable
+ * page is on unevictable list, it never be freed. To avoid that,
+ * check after we added it to the list, again.
+ */
+ if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
+ if (!isolate_lru_page(page)) {
+ put_page(page);
+ goto redo;
+ }
+ /* This means someone else dropped this page from LRU
+ * So, it will be freed or putback to LRU again. There is
+ * nothing to do here.
+ */
+ }
+
+ if (was_unevictable && lru != LRU_UNEVICTABLE)
+ count_vm_event(UNEVICTABLE_PGRESCUED);
+ else if (!was_unevictable && lru == LRU_UNEVICTABLE)
+ count_vm_event(UNEVICTABLE_PGCULLED);
+
+ put_page(page); /* drop ref from isolate */
+}
+
+#else /* CONFIG_UNEVICTABLE_LRU */
+
+void putback_lru_page(struct page *page)
+{
+ int lru;
+ VM_BUG_ON(PageLRU(page));
+
+ lru = !!TestClearPageActive(page) + page_is_file_cache(page);
+ lru_cache_add_lru(page, lru);
+ mem_cgroup_move_lists(page, lru);
+ put_page(page);
+}
+#endif /* CONFIG_UNEVICTABLE_LRU */
+
+
+/*
* shrink_page_list() returns the number of reclaimed pages
*/
static unsigned long shrink_page_list(struct list_head *page_list,
@@ -477,13 +576,16 @@ static unsigned long shrink_page_list(struct list_head *page_list,
page = lru_to_page(page_list);
list_del(&page->lru);
- if (TestSetPageLocked(page))
+ if (!trylock_page(page))
goto keep;
VM_BUG_ON(PageActive(page));
sc->nr_scanned++;
+ if (unlikely(!page_evictable(page, NULL)))
+ goto cull_mlocked;
+
if (!sc->may_swap && page_mapped(page))
goto keep_locked;
@@ -520,9 +622,19 @@ static unsigned long shrink_page_list(struct list_head *page_list,
* Anonymous process memory has backing store?
* Try to allocate it some swap space here.
*/
- if (PageAnon(page) && !PageSwapCache(page))
+ if (PageAnon(page) && !PageSwapCache(page)) {
+ switch (try_to_munlock(page)) {
+ case SWAP_FAIL: /* shouldn't happen */
+ case SWAP_AGAIN:
+ goto keep_locked;
+ case SWAP_MLOCK:
+ goto cull_mlocked;
+ case SWAP_SUCCESS:
+ ; /* fall thru'; add to swap cache */
+ }
if (!add_to_swap(page, GFP_ATOMIC))
goto activate_locked;
+ }
#endif /* CONFIG_SWAP */
mapping = page_mapping(page);
@@ -537,6 +649,8 @@ static unsigned long shrink_page_list(struct list_head *page_list,
goto activate_locked;
case SWAP_AGAIN:
goto keep_locked;
+ case SWAP_MLOCK:
+ goto cull_mlocked;
case SWAP_SUCCESS:
; /* try to free the page below */
}
@@ -563,7 +677,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
* A synchronous write - probably a ramdisk. Go
* ahead and try to reclaim the page.
*/
- if (TestSetPageLocked(page))
+ if (!trylock_page(page))
goto keep;
if (PageDirty(page) || PageWriteback(page))
goto keep_locked;
@@ -583,7 +697,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
* possible for a page to have PageDirty set, but it is actually
* clean (all its buffers are clean). This happens if the
* buffers were written out directly, with submit_bh(). ext3
- * will do this, as well as the blockdev mapping.
+ * will do this, as well as the blockdev mapping.
* try_to_release_page() will discover that cleanness and will
* drop the buffers and mark the page clean - it can be freed.
*
@@ -597,32 +711,64 @@ static unsigned long shrink_page_list(struct list_head *page_list,
if (PagePrivate(page)) {
if (!try_to_release_page(page, sc->gfp_mask))
goto activate_locked;
- if (!mapping && page_count(page) == 1)
- goto free_it;
+ if (!mapping && page_count(page) == 1) {
+ unlock_page(page);
+ if (put_page_testzero(page))
+ goto free_it;
+ else {
+ /*
+ * rare race with speculative reference.
+ * the speculative reference will free
+ * this page shortly, so we may
+ * increment nr_reclaimed here (and
+ * leave it off the LRU).
+ */
+ nr_reclaimed++;
+ continue;
+ }
+ }
}
- if (!mapping || !remove_mapping(mapping, page))
+ if (!mapping || !__remove_mapping(mapping, page))
goto keep_locked;
+ /*
+ * At this point, we have no other references and there is
+ * no way to pick any more up (removed from LRU, removed
+ * from pagecache). Can use non-atomic bitops now (and
+ * we obviously don't have to worry about waking up a process
+ * waiting on the page lock, because there are no references.
+ */
+ __clear_page_locked(page);
free_it:
- unlock_page(page);
nr_reclaimed++;
- if (!pagevec_add(&freed_pvec, page))
- __pagevec_release_nonlru(&freed_pvec);
+ if (!pagevec_add(&freed_pvec, page)) {
+ __pagevec_free(&freed_pvec);
+ pagevec_reinit(&freed_pvec);
+ }
+ continue;
+
+cull_mlocked:
+ unlock_page(page);
+ putback_lru_page(page);
continue;
activate_locked:
+ /* Not a candidate for swapping, so reclaim swap space. */
+ if (PageSwapCache(page) && vm_swap_full())
+ remove_exclusive_swap_page_ref(page);
+ VM_BUG_ON(PageActive(page));
SetPageActive(page);
pgactivate++;
keep_locked:
unlock_page(page);
keep:
list_add(&page->lru, &ret_pages);
- VM_BUG_ON(PageLRU(page));
+ VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
}
list_splice(&ret_pages, page_list);
if (pagevec_count(&freed_pvec))
- __pagevec_release_nonlru(&freed_pvec);
+ __pagevec_free(&freed_pvec);
count_vm_events(PGACTIVATE, pgactivate);
return nr_reclaimed;
}
@@ -642,7 +788,7 @@ keep:
*
* returns 0 on success, -ve errno on failure.
*/
-int __isolate_lru_page(struct page *page, int mode)
+int __isolate_lru_page(struct page *page, int mode, int file)
{
int ret = -EINVAL;
@@ -658,6 +804,17 @@ int __isolate_lru_page(struct page *page, int mode)
if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
return ret;
+ if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
+ return ret;
+
+ /*
+ * When this function is being called for lumpy reclaim, we
+ * initially look into all LRU pages, active, inactive and
+ * unevictable; only give shrink_page_list evictable pages.
+ */
+ if (PageUnevictable(page))
+ return ret;
+
ret = -EBUSY;
if (likely(get_page_unless_zero(page))) {
/*
@@ -688,12 +845,13 @@ int __isolate_lru_page(struct page *page, int mode)
* @scanned: The number of pages that were scanned.
* @order: The caller's attempted allocation order
* @mode: One of the LRU isolation modes
+ * @file: True [1] if isolating file [!anon] pages
*
* returns how many pages were moved onto *@dst.
*/
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
struct list_head *src, struct list_head *dst,
- unsigned long *scanned, int order, int mode)
+ unsigned long *scanned, int order, int mode, int file)
{
unsigned long nr_taken = 0;
unsigned long scan;
@@ -710,7 +868,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
VM_BUG_ON(!PageLRU(page));
- switch (__isolate_lru_page(page, mode)) {
+ switch (__isolate_lru_page(page, mode, file)) {
case 0:
list_move(&page->lru, dst);
nr_taken++;
@@ -753,10 +911,11 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
break;
cursor_page = pfn_to_page(pfn);
+
/* Check that we have not crossed a zone boundary. */
if (unlikely(page_zone_id(cursor_page) != zone_id))
continue;
- switch (__isolate_lru_page(cursor_page, mode)) {
+ switch (__isolate_lru_page(cursor_page, mode, file)) {
case 0:
list_move(&cursor_page->lru, dst);
nr_taken++;
@@ -767,7 +926,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
/* else it is being freed elsewhere */
list_move(&cursor_page->lru, src);
default:
- break;
+ break; /* ! on LRU or wrong list */
}
}
}
@@ -781,40 +940,93 @@ static unsigned long isolate_pages_global(unsigned long nr,
unsigned long *scanned, int order,
int mode, struct zone *z,
struct mem_cgroup *mem_cont,
- int active)
+ int active, int file)
{
+ int lru = LRU_BASE;
if (active)
- return isolate_lru_pages(nr, &z->active_list, dst,
- scanned, order, mode);
- else
- return isolate_lru_pages(nr, &z->inactive_list, dst,
- scanned, order, mode);
+ lru += LRU_ACTIVE;
+ if (file)
+ lru += LRU_FILE;
+ return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
+ mode, !!file);
}
/*
* clear_active_flags() is a helper for shrink_active_list(), clearing
* any active bits from the pages in the list.
*/
-static unsigned long clear_active_flags(struct list_head *page_list)
+static unsigned long clear_active_flags(struct list_head *page_list,
+ unsigned int *count)
{
int nr_active = 0;
+ int lru;
struct page *page;
- list_for_each_entry(page, page_list, lru)
+ list_for_each_entry(page, page_list, lru) {
+ lru = page_is_file_cache(page);
if (PageActive(page)) {
+ lru += LRU_ACTIVE;
ClearPageActive(page);
nr_active++;
}
+ count[lru]++;
+ }
return nr_active;
}
+/**
+ * isolate_lru_page - tries to isolate a page from its LRU list
+ * @page: page to isolate from its LRU list
+ *
+ * Isolates a @page from an LRU list, clears PageLRU and adjusts the
+ * vmstat statistic corresponding to whatever LRU list the page was on.
+ *
+ * Returns 0 if the page was removed from an LRU list.
+ * Returns -EBUSY if the page was not on an LRU list.
+ *
+ * The returned page will have PageLRU() cleared. If it was found on
+ * the active list, it will have PageActive set. If it was found on
+ * the unevictable list, it will have the PageUnevictable bit set. That flag
+ * may need to be cleared by the caller before letting the page go.
+ *
+ * The vmstat statistic corresponding to the list on which the page was
+ * found will be decremented.
+ *
+ * Restrictions:
+ * (1) Must be called with an elevated refcount on the page. This is a
+ * fundamentnal difference from isolate_lru_pages (which is called
+ * without a stable reference).
+ * (2) the lru_lock must not be held.
+ * (3) interrupts must be enabled.
+ */
+int isolate_lru_page(struct page *page)
+{
+ int ret = -EBUSY;
+
+ if (PageLRU(page)) {
+ struct zone *zone = page_zone(page);
+
+ spin_lock_irq(&zone->lru_lock);
+ if (PageLRU(page) && get_page_unless_zero(page)) {
+ int lru = page_lru(page);
+ ret = 0;
+ ClearPageLRU(page);
+
+ del_page_from_lru_list(zone, page, lru);
+ }
+ spin_unlock_irq(&zone->lru_lock);
+ }
+ return ret;
+}
+
/*
* shrink_inactive_list() is a helper for shrink_zone(). It returns the number
* of reclaimed pages
*/
static unsigned long shrink_inactive_list(unsigned long max_scan,
- struct zone *zone, struct scan_control *sc)
+ struct zone *zone, struct scan_control *sc,
+ int priority, int file)
{
LIST_HEAD(page_list);
struct pagevec pvec;
@@ -831,20 +1043,43 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
unsigned long nr_scan;
unsigned long nr_freed;
unsigned long nr_active;
+ unsigned int count[NR_LRU_LISTS] = { 0, };
+ int mode = ISOLATE_INACTIVE;
+
+ /*
+ * If we need a large contiguous chunk of memory, or have
+ * trouble getting a small set of contiguous pages, we
+ * will reclaim both active and inactive pages.
+ *
+ * We use the same threshold as pageout congestion_wait below.
+ */
+ if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
+ mode = ISOLATE_BOTH;
+ else if (sc->order && priority < DEF_PRIORITY - 2)
+ mode = ISOLATE_BOTH;
nr_taken = sc->isolate_pages(sc->swap_cluster_max,
- &page_list, &nr_scan, sc->order,
- (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
- ISOLATE_BOTH : ISOLATE_INACTIVE,
- zone, sc->mem_cgroup, 0);
- nr_active = clear_active_flags(&page_list);
+ &page_list, &nr_scan, sc->order, mode,
+ zone, sc->mem_cgroup, 0, file);
+ nr_active = clear_active_flags(&page_list, count);
__count_vm_events(PGDEACTIVATE, nr_active);
- __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
- __mod_zone_page_state(zone, NR_INACTIVE,
- -(nr_taken - nr_active));
- if (scan_global_lru(sc))
+ __mod_zone_page_state(zone, NR_ACTIVE_FILE,
+ -count[LRU_ACTIVE_FILE]);
+ __mod_zone_page_state(zone, NR_INACTIVE_FILE,
+ -count[LRU_INACTIVE_FILE]);
+ __mod_zone_page_state(zone, NR_ACTIVE_ANON,
+ -count[LRU_ACTIVE_ANON]);
+ __mod_zone_page_state(zone, NR_INACTIVE_ANON,
+ -count[LRU_INACTIVE_ANON]);
+
+ if (scan_global_lru(sc)) {
zone->pages_scanned += nr_scan;
+ zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
+ zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
+ zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
+ zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
+ }
spin_unlock_irq(&zone->lru_lock);
nr_scanned += nr_scan;
@@ -864,7 +1099,7 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
* The attempt at page out may have made some
* of the pages active, mark them inactive again.
*/
- nr_active = clear_active_flags(&page_list);
+ nr_active = clear_active_flags(&page_list, count);
count_vm_events(PGDEACTIVATE, nr_active);
nr_freed += shrink_page_list(&page_list, sc,
@@ -889,14 +1124,24 @@ static unsigned long shrink_inactive_list(unsigned long max_scan,
* Put back any unfreeable pages.
*/
while (!list_empty(&page_list)) {
+ int lru;
page = lru_to_page(&page_list);
VM_BUG_ON(PageLRU(page));
- SetPageLRU(page);
list_del(&page->lru);
- if (PageActive(page))
- add_page_to_active_list(zone, page);
- else
- add_page_to_inactive_list(zone, page);
+ if (unlikely(!page_evictable(page, NULL))) {
+ spin_unlock_irq(&zone->lru_lock);
+ putback_lru_page(page);
+ spin_lock_irq(&zone->lru_lock);
+ continue;
+ }
+ SetPageLRU(page);
+ lru = page_lru(page);
+ add_page_to_lru_list(zone, page, lru);
+ mem_cgroup_move_lists(page, lru);
+ if (PageActive(page) && scan_global_lru(sc)) {
+ int file = !!page_is_file_cache(page);
+ zone->recent_rotated[file]++;
+ }
if (!pagevec_add(&pvec, page)) {
spin_unlock_irq(&zone->lru_lock);
__pagevec_release(&pvec);
@@ -927,115 +1172,7 @@ static inline void note_zone_scanning_priority(struct zone *zone, int priority)
static inline int zone_is_near_oom(struct zone *zone)
{
- return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
- + zone_page_state(zone, NR_INACTIVE))*3;
-}
-
-/*
- * Determine we should try to reclaim mapped pages.
- * This is called only when sc->mem_cgroup is NULL.
- */
-static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
- int priority)
-{
- long mapped_ratio;
- long distress;
- long swap_tendency;
- long imbalance;
- int reclaim_mapped = 0;
- int prev_priority;
-
- if (scan_global_lru(sc) && zone_is_near_oom(zone))
- return 1;
- /*
- * `distress' is a measure of how much trouble we're having
- * reclaiming pages. 0 -> no problems. 100 -> great trouble.
- */
- if (scan_global_lru(sc))
- prev_priority = zone->prev_priority;
- else
- prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
-
- distress = 100 >> min(prev_priority, priority);
-
- /*
- * The point of this algorithm is to decide when to start
- * reclaiming mapped memory instead of just pagecache. Work out
- * how much memory
- * is mapped.
- */
- if (scan_global_lru(sc))
- mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
- global_page_state(NR_ANON_PAGES)) * 100) /
- vm_total_pages;
- else
- mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
-
- /*
- * Now decide how much we really want to unmap some pages. The
- * mapped ratio is downgraded - just because there's a lot of
- * mapped memory doesn't necessarily mean that page reclaim
- * isn't succeeding.
- *
- * The distress ratio is important - we don't want to start
- * going oom.
- *
- * A 100% value of vm_swappiness overrides this algorithm
- * altogether.
- */
- swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
-
- /*
- * If there's huge imbalance between active and inactive
- * (think active 100 times larger than inactive) we should
- * become more permissive, or the system will take too much
- * cpu before it start swapping during memory pressure.
- * Distress is about avoiding early-oom, this is about
- * making swappiness graceful despite setting it to low
- * values.
- *
- * Avoid div by zero with nr_inactive+1, and max resulting
- * value is vm_total_pages.
- */
- if (scan_global_lru(sc)) {
- imbalance = zone_page_state(zone, NR_ACTIVE);
- imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
- } else
- imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
-
- /*
- * Reduce the effect of imbalance if swappiness is low,
- * this means for a swappiness very low, the imbalance
- * must be much higher than 100 for this logic to make
- * the difference.
- *
- * Max temporary value is vm_total_pages*100.
- */
- imbalance *= (vm_swappiness + 1);
- imbalance /= 100;
-
- /*
- * If not much of the ram is mapped, makes the imbalance
- * less relevant, it's high priority we refill the inactive
- * list with mapped pages only in presence of high ratio of
- * mapped pages.
- *
- * Max temporary value is vm_total_pages*100.
- */
- imbalance *= mapped_ratio;
- imbalance /= 100;
-
- /* apply imbalance feedback to swap_tendency */
- swap_tendency += imbalance;
-
- /*
- * Now use this metric to decide whether to start moving mapped
- * memory onto the inactive list.
- */
- if (swap_tendency >= 100)
- reclaim_mapped = 1;
-
- return reclaim_mapped;
+ return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
}
/*
@@ -1058,53 +1195,71 @@ static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
- struct scan_control *sc, int priority)
+ struct scan_control *sc, int priority, int file)
{
unsigned long pgmoved;
int pgdeactivate = 0;
unsigned long pgscanned;
LIST_HEAD(l_hold); /* The pages which were snipped off */
- LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
- LIST_HEAD(l_active); /* Pages to go onto the active_list */
+ LIST_HEAD(l_inactive);
struct page *page;
struct pagevec pvec;
- int reclaim_mapped = 0;
-
- if (sc->may_swap)
- reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
+ enum lru_list lru;
lru_add_drain();
spin_lock_irq(&zone->lru_lock);
pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
ISOLATE_ACTIVE, zone,
- sc->mem_cgroup, 1);
+ sc->mem_cgroup, 1, file);
/*
* zone->pages_scanned is used for detect zone's oom
* mem_cgroup remembers nr_scan by itself.
*/
- if (scan_global_lru(sc))
+ if (scan_global_lru(sc)) {
zone->pages_scanned += pgscanned;
+ zone->recent_scanned[!!file] += pgmoved;
+ }
- __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
+ if (file)
+ __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
+ else
+ __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
spin_unlock_irq(&zone->lru_lock);
+ pgmoved = 0;
while (!list_empty(&l_hold)) {
cond_resched();
page = lru_to_page(&l_hold);
list_del(&page->lru);
- if (page_mapped(page)) {
- if (!reclaim_mapped ||
- (total_swap_pages == 0 && PageAnon(page)) ||
- page_referenced(page, 0, sc->mem_cgroup)) {
- list_add(&page->lru, &l_active);
- continue;
- }
+
+ if (unlikely(!page_evictable(page, NULL))) {
+ putback_lru_page(page);
+ continue;
}
+
+ /* page_referenced clears PageReferenced */
+ if (page_mapping_inuse(page) &&
+ page_referenced(page, 0, sc->mem_cgroup))
+ pgmoved++;
+
list_add(&page->lru, &l_inactive);
}
+ /*
+ * Count referenced pages from currently used mappings as
+ * rotated, even though they are moved to the inactive list.
+ * This helps balance scan pressure between file and anonymous
+ * pages in get_scan_ratio.
+ */
+ zone->recent_rotated[!!file] += pgmoved;
+
+ /*
+ * Move the pages to the [file or anon] inactive list.
+ */
pagevec_init(&pvec, 1);
+
pgmoved = 0;
+ lru = LRU_BASE + file * LRU_FILE;
spin_lock_irq(&zone->lru_lock);
while (!list_empty(&l_inactive)) {
page = lru_to_page(&l_inactive);
@@ -1114,11 +1269,11 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
VM_BUG_ON(!PageActive(page));
ClearPageActive(page);
- list_move(&page->lru, &zone->inactive_list);
- mem_cgroup_move_lists(page, false);
+ list_move(&page->lru, &zone->lru[lru].list);
+ mem_cgroup_move_lists(page, lru);
pgmoved++;
if (!pagevec_add(&pvec, page)) {
- __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
+ __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
spin_unlock_irq(&zone->lru_lock);
pgdeactivate += pgmoved;
pgmoved = 0;
@@ -1128,104 +1283,189 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
spin_lock_irq(&zone->lru_lock);
}
}
- __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
+ __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
pgdeactivate += pgmoved;
if (buffer_heads_over_limit) {
spin_unlock_irq(&zone->lru_lock);
pagevec_strip(&pvec);
spin_lock_irq(&zone->lru_lock);
}
-
- pgmoved = 0;
- while (!list_empty(&l_active)) {
- page = lru_to_page(&l_active);
- prefetchw_prev_lru_page(page, &l_active, flags);
- VM_BUG_ON(PageLRU(page));
- SetPageLRU(page);
- VM_BUG_ON(!PageActive(page));
-
- list_move(&page->lru, &zone->active_list);
- mem_cgroup_move_lists(page, true);
- pgmoved++;
- if (!pagevec_add(&pvec, page)) {
- __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
- pgmoved = 0;
- spin_unlock_irq(&zone->lru_lock);
- __pagevec_release(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- }
- __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
-
__count_zone_vm_events(PGREFILL, zone, pgscanned);
__count_vm_events(PGDEACTIVATE, pgdeactivate);
spin_unlock_irq(&zone->lru_lock);
+ if (vm_swap_full())
+ pagevec_swap_free(&pvec);
pagevec_release(&pvec);
}
+static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
+ struct zone *zone, struct scan_control *sc, int priority)
+{
+ int file = is_file_lru(lru);
+
+ if (lru == LRU_ACTIVE_FILE) {
+ shrink_active_list(nr_to_scan, zone, sc, priority, file);
+ return 0;
+ }
+
+ if (lru == LRU_ACTIVE_ANON &&
+ (!scan_global_lru(sc) || inactive_anon_is_low(zone))) {
+ shrink_active_list(nr_to_scan, zone, sc, priority, file);
+ return 0;
+ }
+ return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
+}
+
+/*
+ * Determine how aggressively the anon and file LRU lists should be
+ * scanned. The relative value of each set of LRU lists is determined
+ * by looking at the fraction of the pages scanned we did rotate back
+ * onto the active list instead of evict.
+ *
+ * percent[0] specifies how much pressure to put on ram/swap backed
+ * memory, while percent[1] determines pressure on the file LRUs.
+ */
+static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
+ unsigned long *percent)
+{
+ unsigned long anon, file, free;
+ unsigned long anon_prio, file_prio;
+ unsigned long ap, fp;
+
+ anon = zone_page_state(zone, NR_ACTIVE_ANON) +
+ zone_page_state(zone, NR_INACTIVE_ANON);
+ file = zone_page_state(zone, NR_ACTIVE_FILE) +
+ zone_page_state(zone, NR_INACTIVE_FILE);
+ free = zone_page_state(zone, NR_FREE_PAGES);
+
+ /* If we have no swap space, do not bother scanning anon pages. */
+ if (nr_swap_pages <= 0) {
+ percent[0] = 0;
+ percent[1] = 100;
+ return;
+ }
+
+ /* If we have very few page cache pages, force-scan anon pages. */
+ if (unlikely(file + free <= zone->pages_high)) {
+ percent[0] = 100;
+ percent[1] = 0;
+ return;
+ }
+
+ /*
+ * OK, so we have swap space and a fair amount of page cache
+ * pages. We use the recently rotated / recently scanned
+ * ratios to determine how valuable each cache is.
+ *
+ * Because workloads change over time (and to avoid overflow)
+ * we keep these statistics as a floating average, which ends
+ * up weighing recent references more than old ones.
+ *
+ * anon in [0], file in [1]
+ */
+ if (unlikely(zone->recent_scanned[0] > anon / 4)) {
+ spin_lock_irq(&zone->lru_lock);
+ zone->recent_scanned[0] /= 2;
+ zone->recent_rotated[0] /= 2;
+ spin_unlock_irq(&zone->lru_lock);
+ }
+
+ if (unlikely(zone->recent_scanned[1] > file / 4)) {
+ spin_lock_irq(&zone->lru_lock);
+ zone->recent_scanned[1] /= 2;
+ zone->recent_rotated[1] /= 2;
+ spin_unlock_irq(&zone->lru_lock);
+ }
+
+ /*
+ * With swappiness at 100, anonymous and file have the same priority.
+ * This scanning priority is essentially the inverse of IO cost.
+ */
+ anon_prio = sc->swappiness;
+ file_prio = 200 - sc->swappiness;
+
+ /*
+ * anon recent_rotated[0]
+ * %anon = 100 * ----------- / ----------------- * IO cost
+ * anon + file rotate_sum
+ */
+ ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
+ ap /= zone->recent_rotated[0] + 1;
+
+ fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
+ fp /= zone->recent_rotated[1] + 1;
+
+ /* Normalize to percentages */
+ percent[0] = 100 * ap / (ap + fp + 1);
+ percent[1] = 100 - percent[0];
+}
+
+
/*
* This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
*/
static unsigned long shrink_zone(int priority, struct zone *zone,
struct scan_control *sc)
{
- unsigned long nr_active;
- unsigned long nr_inactive;
+ unsigned long nr[NR_LRU_LISTS];
unsigned long nr_to_scan;
unsigned long nr_reclaimed = 0;
+ unsigned long percent[2]; /* anon @ 0; file @ 1 */
+ enum lru_list l;
- if (scan_global_lru(sc)) {
- /*
- * Add one to nr_to_scan just to make sure that the kernel
- * will slowly sift through the active list.
- */
- zone->nr_scan_active +=
- (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
- nr_active = zone->nr_scan_active;
- zone->nr_scan_inactive +=
- (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
- nr_inactive = zone->nr_scan_inactive;
- if (nr_inactive >= sc->swap_cluster_max)
- zone->nr_scan_inactive = 0;
- else
- nr_inactive = 0;
-
- if (nr_active >= sc->swap_cluster_max)
- zone->nr_scan_active = 0;
- else
- nr_active = 0;
- } else {
- /*
- * This reclaim occurs not because zone memory shortage but
- * because memory controller hits its limit.
- * Then, don't modify zone reclaim related data.
- */
- nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
- zone, priority);
-
- nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
- zone, priority);
- }
+ get_scan_ratio(zone, sc, percent);
+ for_each_evictable_lru(l) {
+ if (scan_global_lru(sc)) {
+ int file = is_file_lru(l);
+ int scan;
- while (nr_active || nr_inactive) {
- if (nr_active) {
- nr_to_scan = min(nr_active,
- (unsigned long)sc->swap_cluster_max);
- nr_active -= nr_to_scan;
- shrink_active_list(nr_to_scan, zone, sc, priority);
+ scan = zone_page_state(zone, NR_LRU_BASE + l);
+ if (priority) {
+ scan >>= priority;
+ scan = (scan * percent[file]) / 100;
+ }
+ zone->lru[l].nr_scan += scan;
+ nr[l] = zone->lru[l].nr_scan;
+ if (nr[l] >= sc->swap_cluster_max)
+ zone->lru[l].nr_scan = 0;
+ else
+ nr[l] = 0;
+ } else {
+ /*
+ * This reclaim occurs not because zone memory shortage
+ * but because memory controller hits its limit.
+ * Don't modify zone reclaim related data.
+ */
+ nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
+ priority, l);
}
+ }
- if (nr_inactive) {
- nr_to_scan = min(nr_inactive,
+ while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
+ nr[LRU_INACTIVE_FILE]) {
+ for_each_evictable_lru(l) {
+ if (nr[l]) {
+ nr_to_scan = min(nr[l],
(unsigned long)sc->swap_cluster_max);
- nr_inactive -= nr_to_scan;
- nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
- sc);
+ nr[l] -= nr_to_scan;
+
+ nr_reclaimed += shrink_list(l, nr_to_scan,
+ zone, sc, priority);
+ }
}
}
+ /*
+ * Even if we did not try to evict anon pages at all, we want to
+ * rebalance the anon lru active/inactive ratio.
+ */
+ if (!scan_global_lru(sc) || inactive_anon_is_low(zone))
+ shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
+ else if (!scan_global_lru(sc))
+ shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
+
throttle_vm_writeout(sc->gfp_mask);
return nr_reclaimed;
}
@@ -1286,7 +1526,7 @@ static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
return nr_reclaimed;
}
-
+
/*
* This is the main entry point to direct page reclaim.
*
@@ -1316,6 +1556,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
struct zone *zone;
enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
+ delayacct_freepages_start();
+
if (scan_global_lru(sc))
count_vm_event(ALLOCSTALL);
/*
@@ -1327,8 +1569,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
continue;
- lru_pages += zone_page_state(zone, NR_ACTIVE)
- + zone_page_state(zone, NR_INACTIVE);
+ lru_pages += zone_lru_pages(zone);
}
}
@@ -1371,7 +1612,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
congestion_wait(WRITE, HZ/10);
}
- /* top priority shrink_caches still had more to do? don't OOM, then */
+ /* top priority shrink_zones still had more to do? don't OOM, then */
if (!sc->all_unreclaimable && scan_global_lru(sc))
ret = nr_reclaimed;
out:
@@ -1396,6 +1637,8 @@ out:
} else
mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
+ delayacct_freepages_end();
+
return ret;
}
@@ -1516,6 +1759,14 @@ loop_again:
priority != DEF_PRIORITY)
continue;
+ /*
+ * Do some background aging of the anon list, to give
+ * pages a chance to be referenced before reclaiming.
+ */
+ if (inactive_anon_is_low(zone))
+ shrink_active_list(SWAP_CLUSTER_MAX, zone,
+ &sc, priority, 0);
+
if (!zone_watermark_ok(zone, order, zone->pages_high,
0, 0)) {
end_zone = i;
@@ -1528,8 +1779,7 @@ loop_again:
for (i = 0; i <= end_zone; i++) {
struct zone *zone = pgdat->node_zones + i;
- lru_pages += zone_page_state(zone, NR_ACTIVE)
- + zone_page_state(zone, NR_INACTIVE);
+ lru_pages += zone_lru_pages(zone);
}
/*
@@ -1573,8 +1823,7 @@ loop_again:
if (zone_is_all_unreclaimable(zone))
continue;
if (nr_slab == 0 && zone->pages_scanned >=
- (zone_page_state(zone, NR_ACTIVE)
- + zone_page_state(zone, NR_INACTIVE)) * 6)
+ (zone_lru_pages(zone) * 6))
zone_set_flag(zone,
ZONE_ALL_UNRECLAIMABLE);
/*
@@ -1628,7 +1877,7 @@ out:
/*
* The background pageout daemon, started as a kernel thread
- * from the init process.
+ * from the init process.
*
* This basically trickles out pages so that we have _some_
* free memory available even if there is no other activity
@@ -1722,6 +1971,14 @@ void wakeup_kswapd(struct zone *zone, int order)
wake_up_interruptible(&pgdat->kswapd_wait);
}
+unsigned long global_lru_pages(void)
+{
+ return global_page_state(NR_ACTIVE_ANON)
+ + global_page_state(NR_ACTIVE_FILE)
+ + global_page_state(NR_INACTIVE_ANON)
+ + global_page_state(NR_INACTIVE_FILE);
+}
+
#ifdef CONFIG_PM
/*
* Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
@@ -1735,6 +1992,7 @@ static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
{
struct zone *zone;
unsigned long nr_to_scan, ret = 0;
+ enum lru_list l;
for_each_zone(zone) {
@@ -1744,38 +2002,31 @@ static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
continue;
- /* For pass = 0 we don't shrink the active list */
- if (pass > 0) {
- zone->nr_scan_active +=
- (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
- if (zone->nr_scan_active >= nr_pages || pass > 3) {
- zone->nr_scan_active = 0;
+ for_each_evictable_lru(l) {
+ /* For pass = 0, we don't shrink the active list */
+ if (pass == 0 &&
+ (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
+ continue;
+
+ zone->lru[l].nr_scan +=
+ (zone_page_state(zone, NR_LRU_BASE + l)
+ >> prio) + 1;
+ if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
+ zone->lru[l].nr_scan = 0;
nr_to_scan = min(nr_pages,
- zone_page_state(zone, NR_ACTIVE));
- shrink_active_list(nr_to_scan, zone, sc, prio);
+ zone_page_state(zone,
+ NR_LRU_BASE + l));
+ ret += shrink_list(l, nr_to_scan, zone,
+ sc, prio);
+ if (ret >= nr_pages)
+ return ret;
}
}
-
- zone->nr_scan_inactive +=
- (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
- if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
- zone->nr_scan_inactive = 0;
- nr_to_scan = min(nr_pages,
- zone_page_state(zone, NR_INACTIVE));
- ret += shrink_inactive_list(nr_to_scan, zone, sc);
- if (ret >= nr_pages)
- return ret;
- }
}
return ret;
}
-static unsigned long count_lru_pages(void)
-{
- return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
-}
-
/*
* Try to free `nr_pages' of memory, system-wide, and return the number of
* freed pages.
@@ -1801,7 +2052,7 @@ unsigned long shrink_all_memory(unsigned long nr_pages)
current->reclaim_state = &reclaim_state;
- lru_pages = count_lru_pages();
+ lru_pages = global_lru_pages();
nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
/* If slab caches are huge, it's better to hit them first */
while (nr_slab >= lru_pages) {
@@ -1844,7 +2095,7 @@ unsigned long shrink_all_memory(unsigned long nr_pages)
reclaim_state.reclaimed_slab = 0;
shrink_slab(sc.nr_scanned, sc.gfp_mask,
- count_lru_pages());
+ global_lru_pages());
ret += reclaim_state.reclaimed_slab;
if (ret >= nr_pages)
goto out;
@@ -1861,7 +2112,7 @@ unsigned long shrink_all_memory(unsigned long nr_pages)
if (!ret) {
do {
reclaim_state.reclaimed_slab = 0;
- shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
+ shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
ret += reclaim_state.reclaimed_slab;
} while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
}
@@ -1940,7 +2191,7 @@ module_init(kswapd_init)
int zone_reclaim_mode __read_mostly;
#define RECLAIM_OFF 0
-#define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
+#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
@@ -2089,3 +2340,285 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
return ret;
}
#endif
+
+#ifdef CONFIG_UNEVICTABLE_LRU
+/*
+ * page_evictable - test whether a page is evictable
+ * @page: the page to test
+ * @vma: the VMA in which the page is or will be mapped, may be NULL
+ *
+ * Test whether page is evictable--i.e., should be placed on active/inactive
+ * lists vs unevictable list. The vma argument is !NULL when called from the
+ * fault path to determine how to instantate a new page.
+ *
+ * Reasons page might not be evictable:
+ * (1) page's mapping marked unevictable
+ * (2) page is part of an mlocked VMA
+ *
+ */
+int page_evictable(struct page *page, struct vm_area_struct *vma)
+{
+
+ if (mapping_unevictable(page_mapping(page)))
+ return 0;
+
+ if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
+ return 0;
+
+ return 1;
+}
+
+static void show_page_path(struct page *page)
+{
+ char buf[256];
+ if (page_is_file_cache(page)) {
+ struct address_space *mapping = page->mapping;
+ struct dentry *dentry;
+ pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
+
+ spin_lock(&mapping->i_mmap_lock);
+ dentry = d_find_alias(mapping->host);
+ printk(KERN_INFO "rescued: %s %lu\n",
+ dentry_path(dentry, buf, 256), pgoff);
+ spin_unlock(&mapping->i_mmap_lock);
+ } else {
+#if defined(CONFIG_MM_OWNER) && defined(CONFIG_MMU)
+ struct anon_vma *anon_vma;
+ struct vm_area_struct *vma;
+
+ anon_vma = page_lock_anon_vma(page);
+ if (!anon_vma)
+ return;
+
+ list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
+ printk(KERN_INFO "rescued: anon %s\n",
+ vma->vm_mm->owner->comm);
+ break;
+ }
+ page_unlock_anon_vma(anon_vma);
+#endif
+ }
+}
+
+
+/**
+ * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
+ * @page: page to check evictability and move to appropriate lru list
+ * @zone: zone page is in
+ *
+ * Checks a page for evictability and moves the page to the appropriate
+ * zone lru list.
+ *
+ * Restrictions: zone->lru_lock must be held, page must be on LRU and must
+ * have PageUnevictable set.
+ */
+static void check_move_unevictable_page(struct page *page, struct zone *zone)
+{
+ VM_BUG_ON(PageActive(page));
+
+retry:
+ ClearPageUnevictable(page);
+ if (page_evictable(page, NULL)) {
+ enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
+
+ show_page_path(page);
+
+ __dec_zone_state(zone, NR_UNEVICTABLE);
+ list_move(&page->lru, &zone->lru[l].list);
+ __inc_zone_state(zone, NR_INACTIVE_ANON + l);
+ __count_vm_event(UNEVICTABLE_PGRESCUED);
+ } else {
+ /*
+ * rotate unevictable list
+ */
+ SetPageUnevictable(page);
+ list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
+ if (page_evictable(page, NULL))
+ goto retry;
+ }
+}
+
+/**
+ * scan_mapping_unevictable_pages - scan an address space for evictable pages
+ * @mapping: struct address_space to scan for evictable pages
+ *
+ * Scan all pages in mapping. Check unevictable pages for
+ * evictability and move them to the appropriate zone lru list.
+ */
+void scan_mapping_unevictable_pages(struct address_space *mapping)
+{
+ pgoff_t next = 0;
+ pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
+ PAGE_CACHE_SHIFT;
+ struct zone *zone;
+ struct pagevec pvec;
+
+ if (mapping->nrpages == 0)
+ return;
+
+ pagevec_init(&pvec, 0);
+ while (next < end &&
+ pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
+ int i;
+ int pg_scanned = 0;
+
+ zone = NULL;
+
+ for (i = 0; i < pagevec_count(&pvec); i++) {
+ struct page *page = pvec.pages[i];
+ pgoff_t page_index = page->index;
+ struct zone *pagezone = page_zone(page);
+
+ pg_scanned++;
+ if (page_index > next)
+ next = page_index;
+ next++;
+
+ if (pagezone != zone) {
+ if (zone)
+ spin_unlock_irq(&zone->lru_lock);
+ zone = pagezone;
+ spin_lock_irq(&zone->lru_lock);
+ }
+
+ if (PageLRU(page) && PageUnevictable(page))
+ check_move_unevictable_page(page, zone);
+ }
+ if (zone)
+ spin_unlock_irq(&zone->lru_lock);
+ pagevec_release(&pvec);
+
+ count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
+ }
+
+}
+
+/**
+ * scan_zone_unevictable_pages - check unevictable list for evictable pages
+ * @zone - zone of which to scan the unevictable list
+ *
+ * Scan @zone's unevictable LRU lists to check for pages that have become
+ * evictable. Move those that have to @zone's inactive list where they
+ * become candidates for reclaim, unless shrink_inactive_zone() decides
+ * to reactivate them. Pages that are still unevictable are rotated
+ * back onto @zone's unevictable list.
+ */
+#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
+void scan_zone_unevictable_pages(struct zone *zone)
+{
+ struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
+ unsigned long scan;
+ unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
+
+ while (nr_to_scan > 0) {
+ unsigned long batch_size = min(nr_to_scan,
+ SCAN_UNEVICTABLE_BATCH_SIZE);
+
+ spin_lock_irq(&zone->lru_lock);
+ for (scan = 0; scan < batch_size; scan++) {
+ struct page *page = lru_to_page(l_unevictable);
+
+ if (!trylock_page(page))
+ continue;
+
+ prefetchw_prev_lru_page(page, l_unevictable, flags);
+
+ if (likely(PageLRU(page) && PageUnevictable(page)))
+ check_move_unevictable_page(page, zone);
+
+ unlock_page(page);
+ }
+ spin_unlock_irq(&zone->lru_lock);
+
+ nr_to_scan -= batch_size;
+ }
+}
+
+
+/**
+ * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
+ *
+ * A really big hammer: scan all zones' unevictable LRU lists to check for
+ * pages that have become evictable. Move those back to the zones'
+ * inactive list where they become candidates for reclaim.
+ * This occurs when, e.g., we have unswappable pages on the unevictable lists,
+ * and we add swap to the system. As such, it runs in the context of a task
+ * that has possibly/probably made some previously unevictable pages
+ * evictable.
+ */
+void scan_all_zones_unevictable_pages(void)
+{
+ struct zone *zone;
+
+ for_each_zone(zone) {
+ scan_zone_unevictable_pages(zone);
+ }
+}
+
+/*
+ * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
+ * all nodes' unevictable lists for evictable pages
+ */
+unsigned long scan_unevictable_pages;
+
+int scan_unevictable_handler(struct ctl_table *table, int write,
+ struct file *file, void __user *buffer,
+ size_t *length, loff_t *ppos)
+{
+ proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
+
+ if (write && *(unsigned long *)table->data)
+ scan_all_zones_unevictable_pages();
+
+ scan_unevictable_pages = 0;
+ return 0;
+}
+
+/*
+ * per node 'scan_unevictable_pages' attribute. On demand re-scan of
+ * a specified node's per zone unevictable lists for evictable pages.
+ */
+
+static ssize_t read_scan_unevictable_node(struct sys_device *dev,
+ struct sysdev_attribute *attr,
+ char *buf)
+{
+ return sprintf(buf, "0\n"); /* always zero; should fit... */
+}
+
+static ssize_t write_scan_unevictable_node(struct sys_device *dev,
+ struct sysdev_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
+ struct zone *zone;
+ unsigned long res;
+ unsigned long req = strict_strtoul(buf, 10, &res);
+
+ if (!req)
+ return 1; /* zero is no-op */
+
+ for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
+ if (!populated_zone(zone))
+ continue;
+ scan_zone_unevictable_pages(zone);
+ }
+ return 1;
+}
+
+
+static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
+ read_scan_unevictable_node,
+ write_scan_unevictable_node);
+
+int scan_unevictable_register_node(struct node *node)
+{
+ return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
+}
+
+void scan_unevictable_unregister_node(struct node *node)
+{
+ sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
+}
+
+#endif
diff --git a/mm/vmstat.c b/mm/vmstat.c
index db9eabb2c5b3..c3ccfda23adc 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -8,11 +8,12 @@
* Copyright (C) 2006 Silicon Graphics, Inc.,
* Christoph Lameter <christoph@lameter.com>
*/
-
+#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/cpu.h>
+#include <linux/vmstat.h>
#include <linux/sched.h>
#ifdef CONFIG_VM_EVENT_COUNTERS
@@ -26,7 +27,7 @@ static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
- for_each_cpu_mask(cpu, *cpumask) {
+ for_each_cpu_mask_nr(cpu, *cpumask) {
struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
@@ -383,7 +384,7 @@ void zone_statistics(struct zone *preferred_zone, struct zone *z)
#endif
#ifdef CONFIG_PROC_FS
-
+#include <linux/proc_fs.h>
#include <linux/seq_file.h>
static char * const migratetype_names[MIGRATE_TYPES] = {
@@ -515,9 +516,26 @@ static void pagetypeinfo_showblockcount_print(struct seq_file *m,
continue;
page = pfn_to_page(pfn);
+#ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES
+ /*
+ * Ordinarily, memory holes in flatmem still have a valid
+ * memmap for the PFN range. However, an architecture for
+ * embedded systems (e.g. ARM) can free up the memmap backing
+ * holes to save memory on the assumption the memmap is
+ * never used. The page_zone linkages are then broken even
+ * though pfn_valid() returns true. Skip the page if the
+ * linkages are broken. Even if this test passed, the impact
+ * is that the counters for the movable type are off but
+ * fragmentation monitoring is likely meaningless on small
+ * systems.
+ */
+ if (page_zone(page) != zone)
+ continue;
+#endif
mtype = get_pageblock_migratetype(page);
- count[mtype]++;
+ if (mtype < MIGRATE_TYPES)
+ count[mtype]++;
}
/* Print counts */
@@ -563,20 +581,44 @@ static int pagetypeinfo_show(struct seq_file *m, void *arg)
return 0;
}
-const struct seq_operations fragmentation_op = {
+static const struct seq_operations fragmentation_op = {
.start = frag_start,
.next = frag_next,
.stop = frag_stop,
.show = frag_show,
};
-const struct seq_operations pagetypeinfo_op = {
+static int fragmentation_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &fragmentation_op);
+}
+
+static const struct file_operations fragmentation_file_operations = {
+ .open = fragmentation_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
+static const struct seq_operations pagetypeinfo_op = {
.start = frag_start,
.next = frag_next,
.stop = frag_stop,
.show = pagetypeinfo_show,
};
+static int pagetypeinfo_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &pagetypeinfo_op);
+}
+
+static const struct file_operations pagetypeinfo_file_ops = {
+ .open = pagetypeinfo_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
@@ -601,8 +643,14 @@ const struct seq_operations pagetypeinfo_op = {
static const char * const vmstat_text[] = {
/* Zoned VM counters */
"nr_free_pages",
- "nr_inactive",
- "nr_active",
+ "nr_inactive_anon",
+ "nr_active_anon",
+ "nr_inactive_file",
+ "nr_active_file",
+#ifdef CONFIG_UNEVICTABLE_LRU
+ "nr_unevictable",
+ "nr_mlock",
+#endif
"nr_anon_pages",
"nr_mapped",
"nr_file_pages",
@@ -657,6 +705,16 @@ static const char * const vmstat_text[] = {
"htlb_buddy_alloc_success",
"htlb_buddy_alloc_fail",
#endif
+#ifdef CONFIG_UNEVICTABLE_LRU
+ "unevictable_pgs_culled",
+ "unevictable_pgs_scanned",
+ "unevictable_pgs_rescued",
+ "unevictable_pgs_mlocked",
+ "unevictable_pgs_munlocked",
+ "unevictable_pgs_cleared",
+ "unevictable_pgs_stranded",
+ "unevictable_pgs_mlockfreed",
+#endif
#endif
};
@@ -670,7 +728,7 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
"\n min %lu"
"\n low %lu"
"\n high %lu"
- "\n scanned %lu (a: %lu i: %lu)"
+ "\n scanned %lu (aa: %lu ia: %lu af: %lu if: %lu)"
"\n spanned %lu"
"\n present %lu",
zone_page_state(zone, NR_FREE_PAGES),
@@ -678,7 +736,10 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
zone->pages_low,
zone->pages_high,
zone->pages_scanned,
- zone->nr_scan_active, zone->nr_scan_inactive,
+ zone->lru[LRU_ACTIVE_ANON].nr_scan,
+ zone->lru[LRU_INACTIVE_ANON].nr_scan,
+ zone->lru[LRU_ACTIVE_FILE].nr_scan,
+ zone->lru[LRU_INACTIVE_FILE].nr_scan,
zone->spanned_pages,
zone->present_pages);
@@ -715,10 +776,12 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
seq_printf(m,
"\n all_unreclaimable: %u"
"\n prev_priority: %i"
- "\n start_pfn: %lu",
+ "\n start_pfn: %lu"
+ "\n inactive_ratio: %u",
zone_is_all_unreclaimable(zone),
zone->prev_priority,
- zone->zone_start_pfn);
+ zone->zone_start_pfn,
+ zone->inactive_ratio);
seq_putc(m, '\n');
}
@@ -732,7 +795,7 @@ static int zoneinfo_show(struct seq_file *m, void *arg)
return 0;
}
-const struct seq_operations zoneinfo_op = {
+static const struct seq_operations zoneinfo_op = {
.start = frag_start, /* iterate over all zones. The same as in
* fragmentation. */
.next = frag_next,
@@ -740,6 +803,18 @@ const struct seq_operations zoneinfo_op = {
.show = zoneinfo_show,
};
+static int zoneinfo_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &zoneinfo_op);
+}
+
+static const struct file_operations proc_zoneinfo_file_operations = {
+ .open = zoneinfo_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
+
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
unsigned long *v;
@@ -795,13 +870,24 @@ static void vmstat_stop(struct seq_file *m, void *arg)
m->private = NULL;
}
-const struct seq_operations vmstat_op = {
+static const struct seq_operations vmstat_op = {
.start = vmstat_start,
.next = vmstat_next,
.stop = vmstat_stop,
.show = vmstat_show,
};
+static int vmstat_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &vmstat_op);
+}
+
+static const struct file_operations proc_vmstat_file_operations = {
+ .open = vmstat_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = seq_release,
+};
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_SMP
@@ -859,9 +945,11 @@ static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
static struct notifier_block __cpuinitdata vmstat_notifier =
{ &vmstat_cpuup_callback, NULL, 0 };
+#endif
static int __init setup_vmstat(void)
{
+#ifdef CONFIG_SMP
int cpu;
refresh_zone_stat_thresholds();
@@ -869,7 +957,13 @@ static int __init setup_vmstat(void)
for_each_online_cpu(cpu)
start_cpu_timer(cpu);
+#endif
+#ifdef CONFIG_PROC_FS
+ proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
+ proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
+ proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
+ proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
+#endif
return 0;
}
module_init(setup_vmstat)
-#endif