summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorJohannes Weiner <hannes@cmpxchg.org>2013-10-16 22:46:59 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2013-10-17 06:35:53 +0200
commit4942642080ea82d99ab5b653abb9a12b7ba31f4a (patch)
tree7ec12b61f0bfdd1f1466e5233b67432828b25c33 /mm
parenttools/testing/selftests: fix uninitialized variable (diff)
downloadlinux-4942642080ea82d99ab5b653abb9a12b7ba31f4a.tar.xz
linux-4942642080ea82d99ab5b653abb9a12b7ba31f4a.zip
mm: memcg: handle non-error OOM situations more gracefully
Commit 3812c8c8f395 ("mm: memcg: do not trap chargers with full callstack on OOM") assumed that only a few places that can trigger a memcg OOM situation do not return VM_FAULT_OOM, like optional page cache readahead. But there are many more and it's impractical to annotate them all. First of all, we don't want to invoke the OOM killer when the failed allocation is gracefully handled, so defer the actual kill to the end of the fault handling as well. This simplifies the code quite a bit for added bonus. Second, since a failed allocation might not be the abrupt end of the fault, the memcg OOM handler needs to be re-entrant until the fault finishes for subsequent allocation attempts. If an allocation is attempted after the task already OOMed, allow it to bypass the limit so that it can quickly finish the fault and invoke the OOM killer. Reported-by: azurIt <azurit@pobox.sk> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm')
-rw-r--r--mm/filemap.c11
-rw-r--r--mm/memcontrol.c139
-rw-r--r--mm/memory.c18
-rw-r--r--mm/oom_kill.c2
4 files changed, 65 insertions, 105 deletions
diff --git a/mm/filemap.c b/mm/filemap.c
index 1e6aec4a2d2e..ae4846ff4849 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -1616,7 +1616,6 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
struct inode *inode = mapping->host;
pgoff_t offset = vmf->pgoff;
struct page *page;
- bool memcg_oom;
pgoff_t size;
int ret = 0;
@@ -1625,11 +1624,7 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
return VM_FAULT_SIGBUS;
/*
- * Do we have something in the page cache already? Either
- * way, try readahead, but disable the memcg OOM killer for it
- * as readahead is optional and no errors are propagated up
- * the fault stack. The OOM killer is enabled while trying to
- * instantiate the faulting page individually below.
+ * Do we have something in the page cache already?
*/
page = find_get_page(mapping, offset);
if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
@@ -1637,14 +1632,10 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
* We found the page, so try async readahead before
* waiting for the lock.
*/
- memcg_oom = mem_cgroup_toggle_oom(false);
do_async_mmap_readahead(vma, ra, file, page, offset);
- mem_cgroup_toggle_oom(memcg_oom);
} else if (!page) {
/* No page in the page cache at all */
- memcg_oom = mem_cgroup_toggle_oom(false);
do_sync_mmap_readahead(vma, ra, file, offset);
- mem_cgroup_toggle_oom(memcg_oom);
count_vm_event(PGMAJFAULT);
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ret = VM_FAULT_MAJOR;
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 5335b2b6be77..65fc6a449841 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -2161,110 +2161,59 @@ static void memcg_oom_recover(struct mem_cgroup *memcg)
memcg_wakeup_oom(memcg);
}
-/*
- * try to call OOM killer
- */
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
{
- bool locked;
- int wakeups;
-
if (!current->memcg_oom.may_oom)
return;
-
- current->memcg_oom.in_memcg_oom = 1;
-
/*
- * As with any blocking lock, a contender needs to start
- * listening for wakeups before attempting the trylock,
- * otherwise it can miss the wakeup from the unlock and sleep
- * indefinitely. This is just open-coded because our locking
- * is so particular to memcg hierarchies.
+ * We are in the middle of the charge context here, so we
+ * don't want to block when potentially sitting on a callstack
+ * that holds all kinds of filesystem and mm locks.
+ *
+ * Also, the caller may handle a failed allocation gracefully
+ * (like optional page cache readahead) and so an OOM killer
+ * invocation might not even be necessary.
+ *
+ * That's why we don't do anything here except remember the
+ * OOM context and then deal with it at the end of the page
+ * fault when the stack is unwound, the locks are released,
+ * and when we know whether the fault was overall successful.
*/
- wakeups = atomic_read(&memcg->oom_wakeups);
- mem_cgroup_mark_under_oom(memcg);
-
- locked = mem_cgroup_oom_trylock(memcg);
-
- if (locked)
- mem_cgroup_oom_notify(memcg);
-
- if (locked && !memcg->oom_kill_disable) {
- mem_cgroup_unmark_under_oom(memcg);
- mem_cgroup_out_of_memory(memcg, mask, order);
- mem_cgroup_oom_unlock(memcg);
- /*
- * There is no guarantee that an OOM-lock contender
- * sees the wakeups triggered by the OOM kill
- * uncharges. Wake any sleepers explicitely.
- */
- memcg_oom_recover(memcg);
- } else {
- /*
- * A system call can just return -ENOMEM, but if this
- * is a page fault and somebody else is handling the
- * OOM already, we need to sleep on the OOM waitqueue
- * for this memcg until the situation is resolved.
- * Which can take some time because it might be
- * handled by a userspace task.
- *
- * However, this is the charge context, which means
- * that we may sit on a large call stack and hold
- * various filesystem locks, the mmap_sem etc. and we
- * don't want the OOM handler to deadlock on them
- * while we sit here and wait. Store the current OOM
- * context in the task_struct, then return -ENOMEM.
- * At the end of the page fault handler, with the
- * stack unwound, pagefault_out_of_memory() will check
- * back with us by calling
- * mem_cgroup_oom_synchronize(), possibly putting the
- * task to sleep.
- */
- current->memcg_oom.oom_locked = locked;
- current->memcg_oom.wakeups = wakeups;
- css_get(&memcg->css);
- current->memcg_oom.wait_on_memcg = memcg;
- }
+ css_get(&memcg->css);
+ current->memcg_oom.memcg = memcg;
+ current->memcg_oom.gfp_mask = mask;
+ current->memcg_oom.order = order;
}
/**
* mem_cgroup_oom_synchronize - complete memcg OOM handling
+ * @handle: actually kill/wait or just clean up the OOM state
*
- * This has to be called at the end of a page fault if the the memcg
- * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
+ * This has to be called at the end of a page fault if the memcg OOM
+ * handler was enabled.
*
- * Memcg supports userspace OOM handling, so failed allocations must
+ * Memcg supports userspace OOM handling where failed allocations must
* sleep on a waitqueue until the userspace task resolves the
* situation. Sleeping directly in the charge context with all kinds
* of locks held is not a good idea, instead we remember an OOM state
* in the task and mem_cgroup_oom_synchronize() has to be called at
- * the end of the page fault to put the task to sleep and clean up the
- * OOM state.
+ * the end of the page fault to complete the OOM handling.
*
* Returns %true if an ongoing memcg OOM situation was detected and
- * finalized, %false otherwise.
+ * completed, %false otherwise.
*/
-bool mem_cgroup_oom_synchronize(void)
+bool mem_cgroup_oom_synchronize(bool handle)
{
+ struct mem_cgroup *memcg = current->memcg_oom.memcg;
struct oom_wait_info owait;
- struct mem_cgroup *memcg;
+ bool locked;
/* OOM is global, do not handle */
- if (!current->memcg_oom.in_memcg_oom)
- return false;
-
- /*
- * We invoked the OOM killer but there is a chance that a kill
- * did not free up any charges. Everybody else might already
- * be sleeping, so restart the fault and keep the rampage
- * going until some charges are released.
- */
- memcg = current->memcg_oom.wait_on_memcg;
if (!memcg)
- goto out;
+ return false;
- if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
- goto out_memcg;
+ if (!handle)
+ goto cleanup;
owait.memcg = memcg;
owait.wait.flags = 0;
@@ -2273,13 +2222,25 @@ bool mem_cgroup_oom_synchronize(void)
INIT_LIST_HEAD(&owait.wait.task_list);
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
- /* Only sleep if we didn't miss any wakeups since OOM */
- if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
+ mem_cgroup_mark_under_oom(memcg);
+
+ locked = mem_cgroup_oom_trylock(memcg);
+
+ if (locked)
+ mem_cgroup_oom_notify(memcg);
+
+ if (locked && !memcg->oom_kill_disable) {
+ mem_cgroup_unmark_under_oom(memcg);
+ finish_wait(&memcg_oom_waitq, &owait.wait);
+ mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
+ current->memcg_oom.order);
+ } else {
schedule();
- finish_wait(&memcg_oom_waitq, &owait.wait);
-out_memcg:
- mem_cgroup_unmark_under_oom(memcg);
- if (current->memcg_oom.oom_locked) {
+ mem_cgroup_unmark_under_oom(memcg);
+ finish_wait(&memcg_oom_waitq, &owait.wait);
+ }
+
+ if (locked) {
mem_cgroup_oom_unlock(memcg);
/*
* There is no guarantee that an OOM-lock contender
@@ -2288,10 +2249,9 @@ out_memcg:
*/
memcg_oom_recover(memcg);
}
+cleanup:
+ current->memcg_oom.memcg = NULL;
css_put(&memcg->css);
- current->memcg_oom.wait_on_memcg = NULL;
-out:
- current->memcg_oom.in_memcg_oom = 0;
return true;
}
@@ -2705,6 +2665,9 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
|| fatal_signal_pending(current)))
goto bypass;
+ if (unlikely(task_in_memcg_oom(current)))
+ goto bypass;
+
/*
* We always charge the cgroup the mm_struct belongs to.
* The mm_struct's mem_cgroup changes on task migration if the
diff --git a/mm/memory.c b/mm/memory.c
index f7b7692c05ed..1311f26497e6 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -3865,15 +3865,21 @@ int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
* space. Kernel faults are handled more gracefully.
*/
if (flags & FAULT_FLAG_USER)
- mem_cgroup_enable_oom();
+ mem_cgroup_oom_enable();
ret = __handle_mm_fault(mm, vma, address, flags);
- if (flags & FAULT_FLAG_USER)
- mem_cgroup_disable_oom();
-
- if (WARN_ON(task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)))
- mem_cgroup_oom_synchronize();
+ if (flags & FAULT_FLAG_USER) {
+ mem_cgroup_oom_disable();
+ /*
+ * The task may have entered a memcg OOM situation but
+ * if the allocation error was handled gracefully (no
+ * VM_FAULT_OOM), there is no need to kill anything.
+ * Just clean up the OOM state peacefully.
+ */
+ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
+ mem_cgroup_oom_synchronize(false);
+ }
return ret;
}
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 314e9d274381..6738c47f1f72 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -680,7 +680,7 @@ void pagefault_out_of_memory(void)
{
struct zonelist *zonelist;
- if (mem_cgroup_oom_synchronize())
+ if (mem_cgroup_oom_synchronize(true))
return;
zonelist = node_zonelist(first_online_node, GFP_KERNEL);