diff options
author | Johannes Berg <johannes.berg@intel.com> | 2014-02-20 11:55:12 +0100 |
---|---|---|
committer | Johannes Berg <johannes.berg@intel.com> | 2014-02-20 11:55:12 +0100 |
commit | bf5f48339a019c9b4b42284c3f45d58942cbda27 (patch) | |
tree | 79976135166ffbdaf4ccb91bcadb17ddb551f060 /mm | |
parent | mac80211: remove erroneous comment about RX radiotap header (diff) | |
parent | Staging: rtl8812ae: remove modules field of rate_control_ops (diff) | |
download | linux-bf5f48339a019c9b4b42284c3f45d58942cbda27.tar.xz linux-bf5f48339a019c9b4b42284c3f45d58942cbda27.zip |
Merge remote-tracking branch 'wireless-next/master' into mac80211-next
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 25 | ||||
-rw-r--r-- | mm/Makefile | 1 | ||||
-rw-r--r-- | mm/bounce.c | 44 | ||||
-rw-r--r-- | mm/filemap.c | 46 | ||||
-rw-r--r-- | mm/huge_memory.c | 14 | ||||
-rw-r--r-- | mm/internal.h | 1 | ||||
-rw-r--r-- | mm/memblock.c | 7 | ||||
-rw-r--r-- | mm/memcontrol.c | 7 | ||||
-rw-r--r-- | mm/mempolicy.c | 26 | ||||
-rw-r--r-- | mm/migrate.c | 2 | ||||
-rw-r--r-- | mm/mm_init.c | 2 | ||||
-rw-r--r-- | mm/oom_kill.c | 2 | ||||
-rw-r--r-- | mm/page-writeback.c | 62 | ||||
-rw-r--r-- | mm/page_io.c | 10 | ||||
-rw-r--r-- | mm/readahead.c | 15 | ||||
-rw-r--r-- | mm/shmem.c | 57 | ||||
-rw-r--r-- | mm/slab.c | 2 | ||||
-rw-r--r-- | mm/slab_common.c | 19 | ||||
-rw-r--r-- | mm/slub.c | 87 | ||||
-rw-r--r-- | mm/swap_state.c | 63 | ||||
-rw-r--r-- | mm/swapfile.c | 11 | ||||
-rw-r--r-- | mm/vmalloc.c | 20 | ||||
-rw-r--r-- | mm/vmscan.c | 23 | ||||
-rw-r--r-- | mm/vmstat.c | 4 | ||||
-rw-r--r-- | mm/zsmalloc.c | 1106 |
25 files changed, 1417 insertions, 239 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index 723bbe04a0b0..2d9f1504d75e 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -552,3 +552,28 @@ config MEM_SOFT_DIRTY it can be cleared by hands. See Documentation/vm/soft-dirty.txt for more details. + +config ZSMALLOC + bool "Memory allocator for compressed pages" + depends on MMU + default n + help + zsmalloc is a slab-based memory allocator designed to store + compressed RAM pages. zsmalloc uses virtual memory mapping + in order to reduce fragmentation. However, this results in a + non-standard allocator interface where a handle, not a pointer, is + returned by an alloc(). This handle must be mapped in order to + access the allocated space. + +config PGTABLE_MAPPING + bool "Use page table mapping to access object in zsmalloc" + depends on ZSMALLOC + help + By default, zsmalloc uses a copy-based object mapping method to + access allocations that span two pages. However, if a particular + architecture (ex, ARM) performs VM mapping faster than copying, + then you should select this. This causes zsmalloc to use page table + mapping rather than copying for object mapping. + + You can check speed with zsmalloc benchmark[1]. + [1] https://github.com/spartacus06/zsmalloc diff --git a/mm/Makefile b/mm/Makefile index 305d10acd081..310c90a09264 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -60,3 +60,4 @@ obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o obj-$(CONFIG_CLEANCACHE) += cleancache.o obj-$(CONFIG_MEMORY_ISOLATION) += page_isolation.o obj-$(CONFIG_ZBUD) += zbud.o +obj-$(CONFIG_ZSMALLOC) += zsmalloc.o diff --git a/mm/bounce.c b/mm/bounce.c index 5a7d58fb883b..523918b8c6dc 100644 --- a/mm/bounce.c +++ b/mm/bounce.c @@ -98,27 +98,24 @@ int init_emergency_isa_pool(void) static void copy_to_high_bio_irq(struct bio *to, struct bio *from) { unsigned char *vfrom; - struct bio_vec *tovec, *fromvec; - int i; - - bio_for_each_segment(tovec, to, i) { - fromvec = from->bi_io_vec + i; - - /* - * not bounced - */ - if (tovec->bv_page == fromvec->bv_page) - continue; - - /* - * fromvec->bv_offset and fromvec->bv_len might have been - * modified by the block layer, so use the original copy, - * bounce_copy_vec already uses tovec->bv_len - */ - vfrom = page_address(fromvec->bv_page) + tovec->bv_offset; + struct bio_vec tovec, *fromvec = from->bi_io_vec; + struct bvec_iter iter; + + bio_for_each_segment(tovec, to, iter) { + if (tovec.bv_page != fromvec->bv_page) { + /* + * fromvec->bv_offset and fromvec->bv_len might have + * been modified by the block layer, so use the original + * copy, bounce_copy_vec already uses tovec->bv_len + */ + vfrom = page_address(fromvec->bv_page) + + tovec.bv_offset; + + bounce_copy_vec(&tovec, vfrom); + flush_dcache_page(tovec.bv_page); + } - bounce_copy_vec(tovec, vfrom); - flush_dcache_page(tovec->bv_page); + fromvec++; } } @@ -201,13 +198,14 @@ static void __blk_queue_bounce(struct request_queue *q, struct bio **bio_orig, { struct bio *bio; int rw = bio_data_dir(*bio_orig); - struct bio_vec *to, *from; + struct bio_vec *to, from; + struct bvec_iter iter; unsigned i; if (force) goto bounce; - bio_for_each_segment(from, *bio_orig, i) - if (page_to_pfn(from->bv_page) > queue_bounce_pfn(q)) + bio_for_each_segment(from, *bio_orig, iter) + if (page_to_pfn(from.bv_page) > queue_bounce_pfn(q)) goto bounce; return; diff --git a/mm/filemap.c b/mm/filemap.c index 7a7f3e0db738..7a13f6ac5421 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -1428,30 +1428,28 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, if (!count) goto out; /* skip atime */ size = i_size_read(inode); - if (pos < size) { - retval = filemap_write_and_wait_range(mapping, pos, + retval = filemap_write_and_wait_range(mapping, pos, pos + iov_length(iov, nr_segs) - 1); - if (!retval) { - retval = mapping->a_ops->direct_IO(READ, iocb, - iov, pos, nr_segs); - } - if (retval > 0) { - *ppos = pos + retval; - count -= retval; - } + if (!retval) { + retval = mapping->a_ops->direct_IO(READ, iocb, + iov, pos, nr_segs); + } + if (retval > 0) { + *ppos = pos + retval; + count -= retval; + } - /* - * Btrfs can have a short DIO read if we encounter - * compressed extents, so if there was an error, or if - * we've already read everything we wanted to, or if - * there was a short read because we hit EOF, go ahead - * and return. Otherwise fallthrough to buffered io for - * the rest of the read. - */ - if (retval < 0 || !count || *ppos >= size) { - file_accessed(filp); - goto out; - } + /* + * Btrfs can have a short DIO read if we encounter + * compressed extents, so if there was an error, or if + * we've already read everything we wanted to, or if + * there was a short read because we hit EOF, go ahead + * and return. Otherwise fallthrough to buffered io for + * the rest of the read. + */ + if (retval < 0 || !count || *ppos >= size) { + file_accessed(filp); + goto out; } } @@ -2555,8 +2553,8 @@ ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, if (ret > 0) { ssize_t err; - err = generic_write_sync(file, pos, ret); - if (err < 0 && ret > 0) + err = generic_write_sync(file, iocb->ki_pos - ret, ret); + if (err < 0) ret = err; } return ret; diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 65c98eb5483c..82166bf974e1 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -1508,19 +1508,15 @@ int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); VM_BUG_ON(!pmd_none(*new_pmd)); - set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); - if (new_ptl != old_ptl) { - pgtable_t pgtable; - /* - * Move preallocated PTE page table if new_pmd is on - * different PMD page table. - */ + if (pmd_move_must_withdraw(new_ptl, old_ptl)) { + pgtable_t pgtable; pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); pgtable_trans_huge_deposit(mm, new_pmd, pgtable); - - spin_unlock(new_ptl); } + set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); + if (new_ptl != old_ptl) + spin_unlock(new_ptl); spin_unlock(old_ptl); } out: diff --git a/mm/internal.h b/mm/internal.h index 612c14f5e0f5..29e1e761f9eb 100644 --- a/mm/internal.h +++ b/mm/internal.h @@ -83,7 +83,6 @@ extern unsigned long highest_memmap_pfn; */ extern int isolate_lru_page(struct page *page); extern void putback_lru_page(struct page *page); -extern unsigned long zone_reclaimable_pages(struct zone *zone); extern bool zone_reclaimable(struct zone *zone); /* diff --git a/mm/memblock.c b/mm/memblock.c index 9c0aeef19440..39a31e7f0045 100644 --- a/mm/memblock.c +++ b/mm/memblock.c @@ -984,9 +984,6 @@ static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, if (!align) align = SMP_CACHE_BYTES; - /* align @size to avoid excessive fragmentation on reserved array */ - size = round_up(size, align); - found = memblock_find_in_range_node(size, align, 0, max_addr, nid); if (found && !memblock_reserve(found, size)) return found; @@ -1080,8 +1077,8 @@ static void * __init memblock_virt_alloc_internal( if (!align) align = SMP_CACHE_BYTES; - /* align @size to avoid excessive fragmentation on reserved array */ - size = round_up(size, align); + if (max_addr > memblock.current_limit) + max_addr = memblock.current_limit; again: alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 19d5d4274e22..53385cd4e6f0 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -3400,7 +3400,7 @@ void mem_cgroup_destroy_cache(struct kmem_cache *cachep) static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, struct kmem_cache *s) { - struct kmem_cache *new; + struct kmem_cache *new = NULL; static char *tmp_name = NULL; static DEFINE_MUTEX(mutex); /* protects tmp_name */ @@ -3416,7 +3416,7 @@ static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, if (!tmp_name) { tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); if (!tmp_name) - return NULL; + goto out; } rcu_read_lock(); @@ -3426,12 +3426,11 @@ static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, (s->flags & ~SLAB_PANIC), s->ctor, s); - if (new) new->allocflags |= __GFP_KMEMCG; else new = s; - +out: mutex_unlock(&mutex); return new; } diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 463b7fbf0d1d..ae3c8f3595d4 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -613,7 +613,7 @@ static inline int queue_pages_pgd_range(struct vm_area_struct *vma, return 0; } -#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE +#ifdef CONFIG_NUMA_BALANCING /* * This is used to mark a range of virtual addresses to be inaccessible. * These are later cleared by a NUMA hinting fault. Depending on these @@ -627,7 +627,6 @@ unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { int nr_updated; - BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE); nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1); if (nr_updated) @@ -641,7 +640,7 @@ static unsigned long change_prot_numa(struct vm_area_struct *vma, { return 0; } -#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ +#endif /* CONFIG_NUMA_BALANCING */ /* * Walk through page tables and collect pages to be migrated. @@ -2655,7 +2654,7 @@ void mpol_free_shared_policy(struct shared_policy *p) } #ifdef CONFIG_NUMA_BALANCING -static bool __initdata numabalancing_override; +static int __initdata numabalancing_override; static void __init check_numabalancing_enable(void) { @@ -2664,9 +2663,15 @@ static void __init check_numabalancing_enable(void) if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) numabalancing_default = true; + /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ + if (numabalancing_override) + set_numabalancing_state(numabalancing_override == 1); + if (nr_node_ids > 1 && !numabalancing_override) { - printk(KERN_INFO "Enabling automatic NUMA balancing. " - "Configure with numa_balancing= or the kernel.numa_balancing sysctl"); + pr_info("%s automatic NUMA balancing. " + "Configure with numa_balancing= or the " + "kernel.numa_balancing sysctl", + numabalancing_default ? "Enabling" : "Disabling"); set_numabalancing_state(numabalancing_default); } } @@ -2676,18 +2681,17 @@ static int __init setup_numabalancing(char *str) int ret = 0; if (!str) goto out; - numabalancing_override = true; if (!strcmp(str, "enable")) { - set_numabalancing_state(true); + numabalancing_override = 1; ret = 1; } else if (!strcmp(str, "disable")) { - set_numabalancing_state(false); + numabalancing_override = -1; ret = 1; } out: if (!ret) - printk(KERN_WARNING "Unable to parse numa_balancing=\n"); + pr_warn("Unable to parse numa_balancing=\n"); return ret; } @@ -2926,7 +2930,7 @@ void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) unsigned short mode = MPOL_DEFAULT; unsigned short flags = 0; - if (pol && pol != &default_policy) { + if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { mode = pol->mode; flags = pol->flags; } diff --git a/mm/migrate.c b/mm/migrate.c index 734704f6f29b..482a33d89134 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -1548,8 +1548,6 @@ static struct page *alloc_misplaced_dst_page(struct page *page, __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & ~GFP_IOFS, 0); - if (newpage) - page_cpupid_xchg_last(newpage, page_cpupid_last(page)); return newpage; } diff --git a/mm/mm_init.c b/mm/mm_init.c index 857a6434e3a5..4074caf9936b 100644 --- a/mm/mm_init.c +++ b/mm/mm_init.c @@ -202,4 +202,4 @@ static int __init mm_sysfs_init(void) return 0; } -pure_initcall(mm_sysfs_init); +postcore_initcall(mm_sysfs_init); diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 37b1b1903fb2..3291e82d4352 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c @@ -178,7 +178,7 @@ unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg, * implementation used by LSMs. */ if (has_capability_noaudit(p, CAP_SYS_ADMIN)) - adj -= 30; + points -= (points * 3) / 100; /* Normalize to oom_score_adj units */ adj *= totalpages / 1000; diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 63807583d8e8..7106cb1aca8e 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -191,6 +191,26 @@ static unsigned long writeout_period_time = 0; * global dirtyable memory first. */ +/** + * zone_dirtyable_memory - number of dirtyable pages in a zone + * @zone: the zone + * + * Returns the zone's number of pages potentially available for dirty + * page cache. This is the base value for the per-zone dirty limits. + */ +static unsigned long zone_dirtyable_memory(struct zone *zone) +{ + unsigned long nr_pages; + + nr_pages = zone_page_state(zone, NR_FREE_PAGES); + nr_pages -= min(nr_pages, zone->dirty_balance_reserve); + + nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); + nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); + + return nr_pages; +} + static unsigned long highmem_dirtyable_memory(unsigned long total) { #ifdef CONFIG_HIGHMEM @@ -198,11 +218,9 @@ static unsigned long highmem_dirtyable_memory(unsigned long total) unsigned long x = 0; for_each_node_state(node, N_HIGH_MEMORY) { - struct zone *z = - &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; + struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; - x += zone_page_state(z, NR_FREE_PAGES) + - zone_reclaimable_pages(z) - z->dirty_balance_reserve; + x += zone_dirtyable_memory(z); } /* * Unreclaimable memory (kernel memory or anonymous memory @@ -238,9 +256,12 @@ static unsigned long global_dirtyable_memory(void) { unsigned long x; - x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); + x = global_page_state(NR_FREE_PAGES); x -= min(x, dirty_balance_reserve); + x += global_page_state(NR_INACTIVE_FILE); + x += global_page_state(NR_ACTIVE_FILE); + if (!vm_highmem_is_dirtyable) x -= highmem_dirtyable_memory(x); @@ -289,32 +310,6 @@ void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) } /** - * zone_dirtyable_memory - number of dirtyable pages in a zone - * @zone: the zone - * - * Returns the zone's number of pages potentially available for dirty - * page cache. This is the base value for the per-zone dirty limits. - */ -static unsigned long zone_dirtyable_memory(struct zone *zone) -{ - /* - * The effective global number of dirtyable pages may exclude - * highmem as a big-picture measure to keep the ratio between - * dirty memory and lowmem reasonable. - * - * But this function is purely about the individual zone and a - * highmem zone can hold its share of dirty pages, so we don't - * care about vm_highmem_is_dirtyable here. - */ - unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) + - zone_reclaimable_pages(zone); - - /* don't allow this to underflow */ - nr_pages -= min(nr_pages, zone->dirty_balance_reserve); - return nr_pages; -} - -/** * zone_dirty_limit - maximum number of dirty pages allowed in a zone * @zone: the zone * @@ -2178,11 +2173,12 @@ int __set_page_dirty_nobuffers(struct page *page) if (!TestSetPageDirty(page)) { struct address_space *mapping = page_mapping(page); struct address_space *mapping2; + unsigned long flags; if (!mapping) return 1; - spin_lock_irq(&mapping->tree_lock); + spin_lock_irqsave(&mapping->tree_lock, flags); mapping2 = page_mapping(page); if (mapping2) { /* Race with truncate? */ BUG_ON(mapping2 != mapping); @@ -2191,7 +2187,7 @@ int __set_page_dirty_nobuffers(struct page *page) radix_tree_tag_set(&mapping->page_tree, page_index(page), PAGECACHE_TAG_DIRTY); } - spin_unlock_irq(&mapping->tree_lock); + spin_unlock_irqrestore(&mapping->tree_lock, flags); if (mapping->host) { /* !PageAnon && !swapper_space */ __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); diff --git a/mm/page_io.c b/mm/page_io.c index 7247be6114ac..7c59ef681381 100644 --- a/mm/page_io.c +++ b/mm/page_io.c @@ -31,13 +31,13 @@ static struct bio *get_swap_bio(gfp_t gfp_flags, bio = bio_alloc(gfp_flags, 1); if (bio) { - bio->bi_sector = map_swap_page(page, &bio->bi_bdev); - bio->bi_sector <<= PAGE_SHIFT - 9; + bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev); + bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9; bio->bi_io_vec[0].bv_page = page; bio->bi_io_vec[0].bv_len = PAGE_SIZE; bio->bi_io_vec[0].bv_offset = 0; bio->bi_vcnt = 1; - bio->bi_size = PAGE_SIZE; + bio->bi_iter.bi_size = PAGE_SIZE; bio->bi_end_io = end_io; } return bio; @@ -62,7 +62,7 @@ void end_swap_bio_write(struct bio *bio, int err) printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n", imajor(bio->bi_bdev->bd_inode), iminor(bio->bi_bdev->bd_inode), - (unsigned long long)bio->bi_sector); + (unsigned long long)bio->bi_iter.bi_sector); ClearPageReclaim(page); } end_page_writeback(page); @@ -80,7 +80,7 @@ void end_swap_bio_read(struct bio *bio, int err) printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n", imajor(bio->bi_bdev->bd_inode), iminor(bio->bi_bdev->bd_inode), - (unsigned long long)bio->bi_sector); + (unsigned long long)bio->bi_iter.bi_sector); goto out; } diff --git a/mm/readahead.c b/mm/readahead.c index 7cdbb44aa90b..0de2360d65f3 100644 --- a/mm/readahead.c +++ b/mm/readahead.c @@ -211,8 +211,6 @@ out: int force_page_cache_readahead(struct address_space *mapping, struct file *filp, pgoff_t offset, unsigned long nr_to_read) { - int ret = 0; - if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) return -EINVAL; @@ -226,15 +224,13 @@ int force_page_cache_readahead(struct address_space *mapping, struct file *filp, this_chunk = nr_to_read; err = __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0); - if (err < 0) { - ret = err; - break; - } - ret += err; + if (err < 0) + return err; + offset += this_chunk; nr_to_read -= this_chunk; } - return ret; + return 0; } /* @@ -576,8 +572,7 @@ do_readahead(struct address_space *mapping, struct file *filp, if (!mapping || !mapping->a_ops) return -EINVAL; - force_page_cache_readahead(mapping, filp, index, nr); - return 0; + return force_page_cache_readahead(mapping, filp, index, nr); } SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) diff --git a/mm/shmem.c b/mm/shmem.c index 8156f95ec0cf..1f18c9d0d93e 100644 --- a/mm/shmem.c +++ b/mm/shmem.c @@ -45,7 +45,7 @@ static struct vfsmount *shm_mnt; #include <linux/xattr.h> #include <linux/exportfs.h> #include <linux/posix_acl.h> -#include <linux/generic_acl.h> +#include <linux/posix_acl_xattr.h> #include <linux/mman.h> #include <linux/string.h> #include <linux/slab.h> @@ -620,10 +620,8 @@ static int shmem_setattr(struct dentry *dentry, struct iattr *attr) } setattr_copy(inode, attr); -#ifdef CONFIG_TMPFS_POSIX_ACL if (attr->ia_valid & ATTR_MODE) - error = generic_acl_chmod(inode); -#endif + error = posix_acl_chmod(inode, inode->i_mode); return error; } @@ -1937,22 +1935,14 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); if (inode) { -#ifdef CONFIG_TMPFS_POSIX_ACL - error = generic_acl_init(inode, dir); - if (error) { - iput(inode); - return error; - } -#endif + error = simple_acl_create(dir, inode); + if (error) + goto out_iput; error = security_inode_init_security(inode, dir, &dentry->d_name, shmem_initxattrs, NULL); - if (error) { - if (error != -EOPNOTSUPP) { - iput(inode); - return error; - } - } + if (error && error != -EOPNOTSUPP) + goto out_iput; error = 0; dir->i_size += BOGO_DIRENT_SIZE; @@ -1961,6 +1951,9 @@ shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) dget(dentry); /* Extra count - pin the dentry in core */ } return error; +out_iput: + iput(inode); + return error; } static int @@ -1974,24 +1967,17 @@ shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) error = security_inode_init_security(inode, dir, NULL, shmem_initxattrs, NULL); - if (error) { - if (error != -EOPNOTSUPP) { - iput(inode); - return error; - } - } -#ifdef CONFIG_TMPFS_POSIX_ACL - error = generic_acl_init(inode, dir); - if (error) { - iput(inode); - return error; - } -#else - error = 0; -#endif + if (error && error != -EOPNOTSUPP) + goto out_iput; + error = simple_acl_create(dir, inode); + if (error) + goto out_iput; d_tmpfile(dentry, inode); } return error; +out_iput: + iput(inode); + return error; } static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) @@ -2223,8 +2209,8 @@ static int shmem_initxattrs(struct inode *inode, static const struct xattr_handler *shmem_xattr_handlers[] = { #ifdef CONFIG_TMPFS_POSIX_ACL - &generic_acl_access_handler, - &generic_acl_default_handler, + &posix_acl_access_xattr_handler, + &posix_acl_default_xattr_handler, #endif NULL }; @@ -2740,6 +2726,7 @@ static const struct inode_operations shmem_inode_operations = { .getxattr = shmem_getxattr, .listxattr = shmem_listxattr, .removexattr = shmem_removexattr, + .set_acl = simple_set_acl, #endif }; @@ -2764,6 +2751,7 @@ static const struct inode_operations shmem_dir_inode_operations = { #endif #ifdef CONFIG_TMPFS_POSIX_ACL .setattr = shmem_setattr, + .set_acl = simple_set_acl, #endif }; @@ -2776,6 +2764,7 @@ static const struct inode_operations shmem_special_inode_operations = { #endif #ifdef CONFIG_TMPFS_POSIX_ACL .setattr = shmem_setattr, + .set_acl = simple_set_acl, #endif }; diff --git a/mm/slab.c b/mm/slab.c index eb043bf05f4c..b264214c77ea 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -1946,7 +1946,7 @@ static void slab_destroy_debugcheck(struct kmem_cache *cachep, /** * slab_destroy - destroy and release all objects in a slab * @cachep: cache pointer being destroyed - * @slabp: slab pointer being destroyed + * @page: page pointer being destroyed * * Destroy all the objs in a slab, and release the mem back to the system. * Before calling the slab must have been unlinked from the cache. The diff --git a/mm/slab_common.c b/mm/slab_common.c index 8e40321da091..1ec3c619ba04 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -233,14 +233,17 @@ out_unlock: mutex_unlock(&slab_mutex); put_online_cpus(); - /* - * There is no point in flooding logs with warnings or especially - * crashing the system if we fail to create a cache for a memcg. In - * this case we will be accounting the memcg allocation to the root - * cgroup until we succeed to create its own cache, but it isn't that - * critical. - */ - if (err && !memcg) { + if (err) { + /* + * There is no point in flooding logs with warnings or + * especially crashing the system if we fail to create a cache + * for a memcg. In this case we will be accounting the memcg + * allocation to the root cgroup until we succeed to create its + * own cache, but it isn't that critical. + */ + if (!memcg) + return NULL; + if (flags & SLAB_PANIC) panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", name, err); diff --git a/mm/slub.c b/mm/slub.c index 34bb8c65a2d8..7e3e0458bce4 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -355,6 +355,21 @@ static __always_inline void slab_unlock(struct page *page) __bit_spin_unlock(PG_locked, &page->flags); } +static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) +{ + struct page tmp; + tmp.counters = counters_new; + /* + * page->counters can cover frozen/inuse/objects as well + * as page->_count. If we assign to ->counters directly + * we run the risk of losing updates to page->_count, so + * be careful and only assign to the fields we need. + */ + page->frozen = tmp.frozen; + page->inuse = tmp.inuse; + page->objects = tmp.objects; +} + /* Interrupts must be disabled (for the fallback code to work right) */ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, void *freelist_old, unsigned long counters_old, @@ -376,7 +391,7 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page if (page->freelist == freelist_old && page->counters == counters_old) { page->freelist = freelist_new; - page->counters = counters_new; + set_page_slub_counters(page, counters_new); slab_unlock(page); return 1; } @@ -415,7 +430,7 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, if (page->freelist == freelist_old && page->counters == counters_old) { page->freelist = freelist_new; - page->counters = counters_new; + set_page_slub_counters(page, counters_new); slab_unlock(page); local_irq_restore(flags); return 1; @@ -985,23 +1000,22 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x) /* * Tracking of fully allocated slabs for debugging purposes. - * - * list_lock must be held. */ static void add_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) { + lockdep_assert_held(&n->list_lock); + if (!(s->flags & SLAB_STORE_USER)) return; list_add(&page->lru, &n->full); } -/* - * list_lock must be held. - */ -static void remove_full(struct kmem_cache *s, struct page *page) +static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) { + lockdep_assert_held(&n->list_lock); + if (!(s->flags & SLAB_STORE_USER)) return; @@ -1250,7 +1264,8 @@ static inline int check_object(struct kmem_cache *s, struct page *page, void *object, u8 val) { return 1; } static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) {} -static inline void remove_full(struct kmem_cache *s, struct page *page) {} +static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, + struct page *page) {} static inline unsigned long kmem_cache_flags(unsigned long object_size, unsigned long flags, const char *name, void (*ctor)(void *)) @@ -1504,12 +1519,12 @@ static void discard_slab(struct kmem_cache *s, struct page *page) /* * Management of partially allocated slabs. - * - * list_lock must be held. */ static inline void add_partial(struct kmem_cache_node *n, struct page *page, int tail) { + lockdep_assert_held(&n->list_lock); + n->nr_partial++; if (tail == DEACTIVATE_TO_TAIL) list_add_tail(&page->lru, &n->partial); @@ -1517,12 +1532,11 @@ static inline void add_partial(struct kmem_cache_node *n, list_add(&page->lru, &n->partial); } -/* - * list_lock must be held. - */ static inline void remove_partial(struct kmem_cache_node *n, struct page *page) { + lockdep_assert_held(&n->list_lock); + list_del(&page->lru); n->nr_partial--; } @@ -1532,8 +1546,6 @@ static inline void remove_partial(struct kmem_cache_node *n, * return the pointer to the freelist. * * Returns a list of objects or NULL if it fails. - * - * Must hold list_lock since we modify the partial list. */ static inline void *acquire_slab(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page, @@ -1543,6 +1555,8 @@ static inline void *acquire_slab(struct kmem_cache *s, unsigned long counters; struct page new; + lockdep_assert_held(&n->list_lock); + /* * Zap the freelist and set the frozen bit. * The old freelist is the list of objects for the @@ -1559,7 +1573,7 @@ static inline void *acquire_slab(struct kmem_cache *s, new.freelist = freelist; } - VM_BUG_ON_PAGE(new.frozen, &new); + VM_BUG_ON(new.frozen); new.frozen = 1; if (!__cmpxchg_double_slab(s, page, @@ -1812,7 +1826,7 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page, set_freepointer(s, freelist, prior); new.counters = counters; new.inuse--; - VM_BUG_ON_PAGE(!new.frozen, &new); + VM_BUG_ON(!new.frozen); } while (!__cmpxchg_double_slab(s, page, prior, counters, @@ -1840,7 +1854,7 @@ redo: old.freelist = page->freelist; old.counters = page->counters; - VM_BUG_ON_PAGE(!old.frozen, &old); + VM_BUG_ON(!old.frozen); /* Determine target state of the slab */ new.counters = old.counters; @@ -1887,7 +1901,7 @@ redo: else if (l == M_FULL) - remove_full(s, page); + remove_full(s, n, page); if (m == M_PARTIAL) { @@ -1952,7 +1966,7 @@ static void unfreeze_partials(struct kmem_cache *s, old.freelist = page->freelist; old.counters = page->counters; - VM_BUG_ON_PAGE(!old.frozen, &old); + VM_BUG_ON(!old.frozen); new.counters = old.counters; new.freelist = old.freelist; @@ -2225,7 +2239,7 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page) counters = page->counters; new.counters = counters; - VM_BUG_ON_PAGE(!new.frozen, &new); + VM_BUG_ON(!new.frozen); new.inuse = page->objects; new.frozen = freelist != NULL; @@ -2319,7 +2333,7 @@ load_freelist: * page is pointing to the page from which the objects are obtained. * That page must be frozen for per cpu allocations to work. */ - VM_BUG_ON_PAGE(!c->page->frozen, c->page); + VM_BUG_ON(!c->page->frozen); c->freelist = get_freepointer(s, freelist); c->tid = next_tid(c->tid); local_irq_restore(flags); @@ -2541,7 +2555,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page, new.inuse--; if ((!new.inuse || !prior) && !was_frozen) { - if (kmem_cache_has_cpu_partial(s) && !prior) + if (kmem_cache_has_cpu_partial(s) && !prior) { /* * Slab was on no list before and will be @@ -2551,7 +2565,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page, */ new.frozen = 1; - else { /* Needs to be taken off a list */ + } else { /* Needs to be taken off a list */ n = get_node(s, page_to_nid(page)); /* @@ -2600,7 +2614,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page, */ if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { if (kmem_cache_debug(s)) - remove_full(s, page); + remove_full(s, n, page); add_partial(n, page, DEACTIVATE_TO_TAIL); stat(s, FREE_ADD_PARTIAL); } @@ -2614,9 +2628,10 @@ slab_empty: */ remove_partial(n, page); stat(s, FREE_REMOVE_PARTIAL); - } else + } else { /* Slab must be on the full list */ - remove_full(s, page); + remove_full(s, n, page); + } spin_unlock_irqrestore(&n->list_lock, flags); stat(s, FREE_SLAB); @@ -2890,7 +2905,13 @@ static void early_kmem_cache_node_alloc(int node) init_kmem_cache_node(n); inc_slabs_node(kmem_cache_node, node, page->objects); + /* + * the lock is for lockdep's sake, not for any actual + * race protection + */ + spin_lock(&n->list_lock); add_partial(n, page, DEACTIVATE_TO_HEAD); + spin_unlock(&n->list_lock); } static void free_kmem_cache_nodes(struct kmem_cache *s) @@ -4299,7 +4320,13 @@ static ssize_t show_slab_objects(struct kmem_cache *s, page = ACCESS_ONCE(c->partial); if (page) { - x = page->pobjects; + node = page_to_nid(page); + if (flags & SO_TOTAL) + WARN_ON_ONCE(1); + else if (flags & SO_OBJECTS) + WARN_ON_ONCE(1); + else + x = page->pages; total += x; nodes[node] += x; } @@ -5163,7 +5190,7 @@ static int sysfs_slab_add(struct kmem_cache *s) } s->kobj.kset = slab_kset; - err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); + err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); if (err) { kobject_put(&s->kobj); return err; diff --git a/mm/swap_state.c b/mm/swap_state.c index 98e85e9c2b2d..e76ace30d436 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -63,6 +63,8 @@ unsigned long total_swapcache_pages(void) return ret; } +static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); + void show_swap_cache_info(void) { printk("%lu pages in swap cache\n", total_swapcache_pages()); @@ -286,8 +288,11 @@ struct page * lookup_swap_cache(swp_entry_t entry) page = find_get_page(swap_address_space(entry), entry.val); - if (page) + if (page) { INC_CACHE_INFO(find_success); + if (TestClearPageReadahead(page)) + atomic_inc(&swapin_readahead_hits); + } INC_CACHE_INFO(find_total); return page; @@ -389,6 +394,50 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, return found_page; } +static unsigned long swapin_nr_pages(unsigned long offset) +{ + static unsigned long prev_offset; + unsigned int pages, max_pages, last_ra; + static atomic_t last_readahead_pages; + + max_pages = 1 << ACCESS_ONCE(page_cluster); + if (max_pages <= 1) + return 1; + + /* + * This heuristic has been found to work well on both sequential and + * random loads, swapping to hard disk or to SSD: please don't ask + * what the "+ 2" means, it just happens to work well, that's all. + */ + pages = atomic_xchg(&swapin_readahead_hits, 0) + 2; + if (pages == 2) { + /* + * We can have no readahead hits to judge by: but must not get + * stuck here forever, so check for an adjacent offset instead + * (and don't even bother to check whether swap type is same). + */ + if (offset != prev_offset + 1 && offset != prev_offset - 1) + pages = 1; + prev_offset = offset; + } else { + unsigned int roundup = 4; + while (roundup < pages) + roundup <<= 1; + pages = roundup; + } + + if (pages > max_pages) + pages = max_pages; + + /* Don't shrink readahead too fast */ + last_ra = atomic_read(&last_readahead_pages) / 2; + if (pages < last_ra) + pages = last_ra; + atomic_set(&last_readahead_pages, pages); + + return pages; +} + /** * swapin_readahead - swap in pages in hope we need them soon * @entry: swap entry of this memory @@ -412,11 +461,16 @@ struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_area_struct *vma, unsigned long addr) { struct page *page; - unsigned long offset = swp_offset(entry); + unsigned long entry_offset = swp_offset(entry); + unsigned long offset = entry_offset; unsigned long start_offset, end_offset; - unsigned long mask = (1UL << page_cluster) - 1; + unsigned long mask; struct blk_plug plug; + mask = swapin_nr_pages(offset) - 1; + if (!mask) + goto skip; + /* Read a page_cluster sized and aligned cluster around offset. */ start_offset = offset & ~mask; end_offset = offset | mask; @@ -430,10 +484,13 @@ struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, gfp_mask, vma, addr); if (!page) continue; + if (offset != entry_offset) + SetPageReadahead(page); page_cache_release(page); } blk_finish_plug(&plug); lru_add_drain(); /* Push any new pages onto the LRU now */ +skip: return read_swap_cache_async(entry, gfp_mask, vma, addr); } diff --git a/mm/swapfile.c b/mm/swapfile.c index c6c13b050a58..4a7f7e6992b6 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c @@ -1923,7 +1923,6 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) p->swap_map = NULL; cluster_info = p->cluster_info; p->cluster_info = NULL; - p->flags = 0; frontswap_map = frontswap_map_get(p); spin_unlock(&p->lock); spin_unlock(&swap_lock); @@ -1949,6 +1948,16 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) mutex_unlock(&inode->i_mutex); } filp_close(swap_file, NULL); + + /* + * Clear the SWP_USED flag after all resources are freed so that swapon + * can reuse this swap_info in alloc_swap_info() safely. It is ok to + * not hold p->lock after we cleared its SWP_WRITEOK. + */ + spin_lock(&swap_lock); + p->flags = 0; + spin_unlock(&swap_lock); + err = 0; atomic_inc(&proc_poll_event); wake_up_interruptible(&proc_poll_wait); diff --git a/mm/vmalloc.c b/mm/vmalloc.c index e4f0db2a3eae..0fdf96803c5b 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -220,12 +220,12 @@ int is_vmalloc_or_module_addr(const void *x) } /* - * Walk a vmap address to the physical pfn it maps to. + * Walk a vmap address to the struct page it maps. */ -unsigned long vmalloc_to_pfn(const void *vmalloc_addr) +struct page *vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; - unsigned long pfn = 0; + struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); /* @@ -244,23 +244,23 @@ unsigned long vmalloc_to_pfn(const void *vmalloc_addr) ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) - pfn = pte_pfn(pte); + page = pte_page(pte); pte_unmap(ptep); } } } - return pfn; + return page; } -EXPORT_SYMBOL(vmalloc_to_pfn); +EXPORT_SYMBOL(vmalloc_to_page); /* - * Map a vmalloc()-space virtual address to the struct page. + * Map a vmalloc()-space virtual address to the physical page frame number. */ -struct page *vmalloc_to_page(const void *vmalloc_addr) +unsigned long vmalloc_to_pfn(const void *vmalloc_addr) { - return pfn_to_page(vmalloc_to_pfn(vmalloc_addr)); + return page_to_pfn(vmalloc_to_page(vmalloc_addr)); } -EXPORT_SYMBOL(vmalloc_to_page); +EXPORT_SYMBOL(vmalloc_to_pfn); /*** Global kva allocator ***/ diff --git a/mm/vmscan.c b/mm/vmscan.c index 90c4075d8d75..a9c74b409681 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -147,7 +147,7 @@ static bool global_reclaim(struct scan_control *sc) } #endif -unsigned long zone_reclaimable_pages(struct zone *zone) +static unsigned long zone_reclaimable_pages(struct zone *zone) { int nr; @@ -3315,27 +3315,6 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) wake_up_interruptible(&pgdat->kswapd_wait); } -/* - * The reclaimable count would be mostly accurate. - * The less reclaimable pages may be - * - mlocked pages, which will be moved to unevictable list when encountered - * - mapped pages, which may require several travels to be reclaimed - * - dirty pages, which is not "instantly" reclaimable - */ -unsigned long global_reclaimable_pages(void) -{ - int nr; - - nr = global_page_state(NR_ACTIVE_FILE) + - global_page_state(NR_INACTIVE_FILE); - - if (get_nr_swap_pages() > 0) - nr += global_page_state(NR_ACTIVE_ANON) + - global_page_state(NR_INACTIVE_ANON); - - return nr; -} - #ifdef CONFIG_HIBERNATION /* * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of diff --git a/mm/vmstat.c b/mm/vmstat.c index 72496140ac08..def5dd2fbe61 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c @@ -851,12 +851,14 @@ const char * const vmstat_text[] = { "thp_zero_page_alloc", "thp_zero_page_alloc_failed", #endif +#ifdef CONFIG_DEBUG_TLBFLUSH #ifdef CONFIG_SMP "nr_tlb_remote_flush", "nr_tlb_remote_flush_received", -#endif +#endif /* CONFIG_SMP */ "nr_tlb_local_flush_all", "nr_tlb_local_flush_one", +#endif /* CONFIG_DEBUG_TLBFLUSH */ #endif /* CONFIG_VM_EVENTS_COUNTERS */ }; diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c new file mode 100644 index 000000000000..c03ca5e9fe15 --- /dev/null +++ b/mm/zsmalloc.c @@ -0,0 +1,1106 @@ +/* + * zsmalloc memory allocator + * + * Copyright (C) 2011 Nitin Gupta + * Copyright (C) 2012, 2013 Minchan Kim + * + * This code is released using a dual license strategy: BSD/GPL + * You can choose the license that better fits your requirements. + * + * Released under the terms of 3-clause BSD License + * Released under the terms of GNU General Public License Version 2.0 + */ + +/* + * This allocator is designed for use with zram. Thus, the allocator is + * supposed to work well under low memory conditions. In particular, it + * never attempts higher order page allocation which is very likely to + * fail under memory pressure. On the other hand, if we just use single + * (0-order) pages, it would suffer from very high fragmentation -- + * any object of size PAGE_SIZE/2 or larger would occupy an entire page. + * This was one of the major issues with its predecessor (xvmalloc). + * + * To overcome these issues, zsmalloc allocates a bunch of 0-order pages + * and links them together using various 'struct page' fields. These linked + * pages act as a single higher-order page i.e. an object can span 0-order + * page boundaries. The code refers to these linked pages as a single entity + * called zspage. + * + * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE + * since this satisfies the requirements of all its current users (in the + * worst case, page is incompressible and is thus stored "as-is" i.e. in + * uncompressed form). For allocation requests larger than this size, failure + * is returned (see zs_malloc). + * + * Additionally, zs_malloc() does not return a dereferenceable pointer. + * Instead, it returns an opaque handle (unsigned long) which encodes actual + * location of the allocated object. The reason for this indirection is that + * zsmalloc does not keep zspages permanently mapped since that would cause + * issues on 32-bit systems where the VA region for kernel space mappings + * is very small. So, before using the allocating memory, the object has to + * be mapped using zs_map_object() to get a usable pointer and subsequently + * unmapped using zs_unmap_object(). + * + * Following is how we use various fields and flags of underlying + * struct page(s) to form a zspage. + * + * Usage of struct page fields: + * page->first_page: points to the first component (0-order) page + * page->index (union with page->freelist): offset of the first object + * starting in this page. For the first page, this is + * always 0, so we use this field (aka freelist) to point + * to the first free object in zspage. + * page->lru: links together all component pages (except the first page) + * of a zspage + * + * For _first_ page only: + * + * page->private (union with page->first_page): refers to the + * component page after the first page + * page->freelist: points to the first free object in zspage. + * Free objects are linked together using in-place + * metadata. + * page->objects: maximum number of objects we can store in this + * zspage (class->zspage_order * PAGE_SIZE / class->size) + * page->lru: links together first pages of various zspages. + * Basically forming list of zspages in a fullness group. + * page->mapping: class index and fullness group of the zspage + * + * Usage of struct page flags: + * PG_private: identifies the first component page + * PG_private2: identifies the last component page + * + */ + +#ifdef CONFIG_ZSMALLOC_DEBUG +#define DEBUG +#endif + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/bitops.h> +#include <linux/errno.h> +#include <linux/highmem.h> +#include <linux/string.h> +#include <linux/slab.h> +#include <asm/tlbflush.h> +#include <asm/pgtable.h> +#include <linux/cpumask.h> +#include <linux/cpu.h> +#include <linux/vmalloc.h> +#include <linux/hardirq.h> +#include <linux/spinlock.h> +#include <linux/types.h> +#include <linux/zsmalloc.h> + +/* + * This must be power of 2 and greater than of equal to sizeof(link_free). + * These two conditions ensure that any 'struct link_free' itself doesn't + * span more than 1 page which avoids complex case of mapping 2 pages simply + * to restore link_free pointer values. + */ +#define ZS_ALIGN 8 + +/* + * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) + * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. + */ +#define ZS_MAX_ZSPAGE_ORDER 2 +#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) + +/* + * Object location (<PFN>, <obj_idx>) is encoded as + * as single (unsigned long) handle value. + * + * Note that object index <obj_idx> is relative to system + * page <PFN> it is stored in, so for each sub-page belonging + * to a zspage, obj_idx starts with 0. + * + * This is made more complicated by various memory models and PAE. + */ + +#ifndef MAX_PHYSMEM_BITS +#ifdef CONFIG_HIGHMEM64G +#define MAX_PHYSMEM_BITS 36 +#else /* !CONFIG_HIGHMEM64G */ +/* + * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just + * be PAGE_SHIFT + */ +#define MAX_PHYSMEM_BITS BITS_PER_LONG +#endif +#endif +#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT) +#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) +#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) + +#define MAX(a, b) ((a) >= (b) ? (a) : (b)) +/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ +#define ZS_MIN_ALLOC_SIZE \ + MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) +#define ZS_MAX_ALLOC_SIZE PAGE_SIZE + +/* + * On systems with 4K page size, this gives 254 size classes! There is a + * trader-off here: + * - Large number of size classes is potentially wasteful as free page are + * spread across these classes + * - Small number of size classes causes large internal fragmentation + * - Probably its better to use specific size classes (empirically + * determined). NOTE: all those class sizes must be set as multiple of + * ZS_ALIGN to make sure link_free itself never has to span 2 pages. + * + * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN + * (reason above) + */ +#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8) +#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \ + ZS_SIZE_CLASS_DELTA + 1) + +/* + * We do not maintain any list for completely empty or full pages + */ +enum fullness_group { + ZS_ALMOST_FULL, + ZS_ALMOST_EMPTY, + _ZS_NR_FULLNESS_GROUPS, + + ZS_EMPTY, + ZS_FULL +}; + +/* + * We assign a page to ZS_ALMOST_EMPTY fullness group when: + * n <= N / f, where + * n = number of allocated objects + * N = total number of objects zspage can store + * f = 1/fullness_threshold_frac + * + * Similarly, we assign zspage to: + * ZS_ALMOST_FULL when n > N / f + * ZS_EMPTY when n == 0 + * ZS_FULL when n == N + * + * (see: fix_fullness_group()) + */ +static const int fullness_threshold_frac = 4; + +struct size_class { + /* + * Size of objects stored in this class. Must be multiple + * of ZS_ALIGN. + */ + int size; + unsigned int index; + + /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ + int pages_per_zspage; + + spinlock_t lock; + + /* stats */ + u64 pages_allocated; + + struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS]; +}; + +/* + * Placed within free objects to form a singly linked list. + * For every zspage, first_page->freelist gives head of this list. + * + * This must be power of 2 and less than or equal to ZS_ALIGN + */ +struct link_free { + /* Handle of next free chunk (encodes <PFN, obj_idx>) */ + void *next; +}; + +struct zs_pool { + struct size_class size_class[ZS_SIZE_CLASSES]; + + gfp_t flags; /* allocation flags used when growing pool */ +}; + +/* + * A zspage's class index and fullness group + * are encoded in its (first)page->mapping + */ +#define CLASS_IDX_BITS 28 +#define FULLNESS_BITS 4 +#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1) +#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1) + +struct mapping_area { +#ifdef CONFIG_PGTABLE_MAPPING + struct vm_struct *vm; /* vm area for mapping object that span pages */ +#else + char *vm_buf; /* copy buffer for objects that span pages */ +#endif + char *vm_addr; /* address of kmap_atomic()'ed pages */ + enum zs_mapmode vm_mm; /* mapping mode */ +}; + + +/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ +static DEFINE_PER_CPU(struct mapping_area, zs_map_area); + +static int is_first_page(struct page *page) +{ + return PagePrivate(page); +} + +static int is_last_page(struct page *page) +{ + return PagePrivate2(page); +} + +static void get_zspage_mapping(struct page *page, unsigned int *class_idx, + enum fullness_group *fullness) +{ + unsigned long m; + BUG_ON(!is_first_page(page)); + + m = (unsigned long)page->mapping; + *fullness = m & FULLNESS_MASK; + *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK; +} + +static void set_zspage_mapping(struct page *page, unsigned int class_idx, + enum fullness_group fullness) +{ + unsigned long m; + BUG_ON(!is_first_page(page)); + + m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) | + (fullness & FULLNESS_MASK); + page->mapping = (struct address_space *)m; +} + +/* + * zsmalloc divides the pool into various size classes where each + * class maintains a list of zspages where each zspage is divided + * into equal sized chunks. Each allocation falls into one of these + * classes depending on its size. This function returns index of the + * size class which has chunk size big enough to hold the give size. + */ +static int get_size_class_index(int size) +{ + int idx = 0; + + if (likely(size > ZS_MIN_ALLOC_SIZE)) + idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, + ZS_SIZE_CLASS_DELTA); + + return idx; +} + +/* + * For each size class, zspages are divided into different groups + * depending on how "full" they are. This was done so that we could + * easily find empty or nearly empty zspages when we try to shrink + * the pool (not yet implemented). This function returns fullness + * status of the given page. + */ +static enum fullness_group get_fullness_group(struct page *page) +{ + int inuse, max_objects; + enum fullness_group fg; + BUG_ON(!is_first_page(page)); + + inuse = page->inuse; + max_objects = page->objects; + + if (inuse == 0) + fg = ZS_EMPTY; + else if (inuse == max_objects) + fg = ZS_FULL; + else if (inuse <= max_objects / fullness_threshold_frac) + fg = ZS_ALMOST_EMPTY; + else + fg = ZS_ALMOST_FULL; + + return fg; +} + +/* + * Each size class maintains various freelists and zspages are assigned + * to one of these freelists based on the number of live objects they + * have. This functions inserts the given zspage into the freelist + * identified by <class, fullness_group>. + */ +static void insert_zspage(struct page *page, struct size_class *class, + enum fullness_group fullness) +{ + struct page **head; + + BUG_ON(!is_first_page(page)); + + if (fullness >= _ZS_NR_FULLNESS_GROUPS) + return; + + head = &class->fullness_list[fullness]; + if (*head) + list_add_tail(&page->lru, &(*head)->lru); + + *head = page; +} + +/* + * This function removes the given zspage from the freelist identified + * by <class, fullness_group>. + */ +static void remove_zspage(struct page *page, struct size_class *class, + enum fullness_group fullness) +{ + struct page **head; + + BUG_ON(!is_first_page(page)); + + if (fullness >= _ZS_NR_FULLNESS_GROUPS) + return; + + head = &class->fullness_list[fullness]; + BUG_ON(!*head); + if (list_empty(&(*head)->lru)) + *head = NULL; + else if (*head == page) + *head = (struct page *)list_entry((*head)->lru.next, + struct page, lru); + + list_del_init(&page->lru); +} + +/* + * Each size class maintains zspages in different fullness groups depending + * on the number of live objects they contain. When allocating or freeing + * objects, the fullness status of the page can change, say, from ALMOST_FULL + * to ALMOST_EMPTY when freeing an object. This function checks if such + * a status change has occurred for the given page and accordingly moves the + * page from the freelist of the old fullness group to that of the new + * fullness group. + */ +static enum fullness_group fix_fullness_group(struct zs_pool *pool, + struct page *page) +{ + int class_idx; + struct size_class *class; + enum fullness_group currfg, newfg; + + BUG_ON(!is_first_page(page)); + + get_zspage_mapping(page, &class_idx, &currfg); + newfg = get_fullness_group(page); + if (newfg == currfg) + goto out; + + class = &pool->size_class[class_idx]; + remove_zspage(page, class, currfg); + insert_zspage(page, class, newfg); + set_zspage_mapping(page, class_idx, newfg); + +out: + return newfg; +} + +/* + * We have to decide on how many pages to link together + * to form a zspage for each size class. This is important + * to reduce wastage due to unusable space left at end of + * each zspage which is given as: + * wastage = Zp - Zp % size_class + * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... + * + * For example, for size class of 3/8 * PAGE_SIZE, we should + * link together 3 PAGE_SIZE sized pages to form a zspage + * since then we can perfectly fit in 8 such objects. + */ +static int get_pages_per_zspage(int class_size) +{ + int i, max_usedpc = 0; + /* zspage order which gives maximum used size per KB */ + int max_usedpc_order = 1; + + for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { + int zspage_size; + int waste, usedpc; + + zspage_size = i * PAGE_SIZE; + waste = zspage_size % class_size; + usedpc = (zspage_size - waste) * 100 / zspage_size; + + if (usedpc > max_usedpc) { + max_usedpc = usedpc; + max_usedpc_order = i; + } + } + + return max_usedpc_order; +} + +/* + * A single 'zspage' is composed of many system pages which are + * linked together using fields in struct page. This function finds + * the first/head page, given any component page of a zspage. + */ +static struct page *get_first_page(struct page *page) +{ + if (is_first_page(page)) + return page; + else + return page->first_page; +} + +static struct page *get_next_page(struct page *page) +{ + struct page *next; + + if (is_last_page(page)) + next = NULL; + else if (is_first_page(page)) + next = (struct page *)page_private(page); + else + next = list_entry(page->lru.next, struct page, lru); + + return next; +} + +/* + * Encode <page, obj_idx> as a single handle value. + * On hardware platforms with physical memory starting at 0x0 the pfn + * could be 0 so we ensure that the handle will never be 0 by adjusting the + * encoded obj_idx value before encoding. + */ +static void *obj_location_to_handle(struct page *page, unsigned long obj_idx) +{ + unsigned long handle; + + if (!page) { + BUG_ON(obj_idx); + return NULL; + } + + handle = page_to_pfn(page) << OBJ_INDEX_BITS; + handle |= ((obj_idx + 1) & OBJ_INDEX_MASK); + + return (void *)handle; +} + +/* + * Decode <page, obj_idx> pair from the given object handle. We adjust the + * decoded obj_idx back to its original value since it was adjusted in + * obj_location_to_handle(). + */ +static void obj_handle_to_location(unsigned long handle, struct page **page, + unsigned long *obj_idx) +{ + *page = pfn_to_page(handle >> OBJ_INDEX_BITS); + *obj_idx = (handle & OBJ_INDEX_MASK) - 1; +} + +static unsigned long obj_idx_to_offset(struct page *page, + unsigned long obj_idx, int class_size) +{ + unsigned long off = 0; + + if (!is_first_page(page)) + off = page->index; + + return off + obj_idx * class_size; +} + +static void reset_page(struct page *page) +{ + clear_bit(PG_private, &page->flags); + clear_bit(PG_private_2, &page->flags); + set_page_private(page, 0); + page->mapping = NULL; + page->freelist = NULL; + page_mapcount_reset(page); +} + +static void free_zspage(struct page *first_page) +{ + struct page *nextp, *tmp, *head_extra; + + BUG_ON(!is_first_page(first_page)); + BUG_ON(first_page->inuse); + + head_extra = (struct page *)page_private(first_page); + + reset_page(first_page); + __free_page(first_page); + + /* zspage with only 1 system page */ + if (!head_extra) + return; + + list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) { + list_del(&nextp->lru); + reset_page(nextp); + __free_page(nextp); + } + reset_page(head_extra); + __free_page(head_extra); +} + +/* Initialize a newly allocated zspage */ +static void init_zspage(struct page *first_page, struct size_class *class) +{ + unsigned long off = 0; + struct page *page = first_page; + + BUG_ON(!is_first_page(first_page)); + while (page) { + struct page *next_page; + struct link_free *link; + unsigned int i, objs_on_page; + + /* + * page->index stores offset of first object starting + * in the page. For the first page, this is always 0, + * so we use first_page->index (aka ->freelist) to store + * head of corresponding zspage's freelist. + */ + if (page != first_page) + page->index = off; + + link = (struct link_free *)kmap_atomic(page) + + off / sizeof(*link); + objs_on_page = (PAGE_SIZE - off) / class->size; + + for (i = 1; i <= objs_on_page; i++) { + off += class->size; + if (off < PAGE_SIZE) { + link->next = obj_location_to_handle(page, i); + link += class->size / sizeof(*link); + } + } + + /* + * We now come to the last (full or partial) object on this + * page, which must point to the first object on the next + * page (if present) + */ + next_page = get_next_page(page); + link->next = obj_location_to_handle(next_page, 0); + kunmap_atomic(link); + page = next_page; + off = (off + class->size) % PAGE_SIZE; + } +} + +/* + * Allocate a zspage for the given size class + */ +static struct page *alloc_zspage(struct size_class *class, gfp_t flags) +{ + int i, error; + struct page *first_page = NULL, *uninitialized_var(prev_page); + + /* + * Allocate individual pages and link them together as: + * 1. first page->private = first sub-page + * 2. all sub-pages are linked together using page->lru + * 3. each sub-page is linked to the first page using page->first_page + * + * For each size class, First/Head pages are linked together using + * page->lru. Also, we set PG_private to identify the first page + * (i.e. no other sub-page has this flag set) and PG_private_2 to + * identify the last page. + */ + error = -ENOMEM; + for (i = 0; i < class->pages_per_zspage; i++) { + struct page *page; + + page = alloc_page(flags); + if (!page) + goto cleanup; + + INIT_LIST_HEAD(&page->lru); + if (i == 0) { /* first page */ + SetPagePrivate(page); + set_page_private(page, 0); + first_page = page; + first_page->inuse = 0; + } + if (i == 1) + set_page_private(first_page, (unsigned long)page); + if (i >= 1) + page->first_page = first_page; + if (i >= 2) + list_add(&page->lru, &prev_page->lru); + if (i == class->pages_per_zspage - 1) /* last page */ + SetPagePrivate2(page); + prev_page = page; + } + + init_zspage(first_page, class); + + first_page->freelist = obj_location_to_handle(first_page, 0); + /* Maximum number of objects we can store in this zspage */ + first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size; + + error = 0; /* Success */ + +cleanup: + if (unlikely(error) && first_page) { + free_zspage(first_page); + first_page = NULL; + } + + return first_page; +} + +static struct page *find_get_zspage(struct size_class *class) +{ + int i; + struct page *page; + + for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) { + page = class->fullness_list[i]; + if (page) + break; + } + + return page; +} + +#ifdef CONFIG_PGTABLE_MAPPING +static inline int __zs_cpu_up(struct mapping_area *area) +{ + /* + * Make sure we don't leak memory if a cpu UP notification + * and zs_init() race and both call zs_cpu_up() on the same cpu + */ + if (area->vm) + return 0; + area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); + if (!area->vm) + return -ENOMEM; + return 0; +} + +static inline void __zs_cpu_down(struct mapping_area *area) +{ + if (area->vm) + free_vm_area(area->vm); + area->vm = NULL; +} + +static inline void *__zs_map_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages)); + area->vm_addr = area->vm->addr; + return area->vm_addr + off; +} + +static inline void __zs_unmap_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + unsigned long addr = (unsigned long)area->vm_addr; + + unmap_kernel_range(addr, PAGE_SIZE * 2); +} + +#else /* CONFIG_PGTABLE_MAPPING */ + +static inline int __zs_cpu_up(struct mapping_area *area) +{ + /* + * Make sure we don't leak memory if a cpu UP notification + * and zs_init() race and both call zs_cpu_up() on the same cpu + */ + if (area->vm_buf) + return 0; + area->vm_buf = (char *)__get_free_page(GFP_KERNEL); + if (!area->vm_buf) + return -ENOMEM; + return 0; +} + +static inline void __zs_cpu_down(struct mapping_area *area) +{ + if (area->vm_buf) + free_page((unsigned long)area->vm_buf); + area->vm_buf = NULL; +} + +static void *__zs_map_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + int sizes[2]; + void *addr; + char *buf = area->vm_buf; + + /* disable page faults to match kmap_atomic() return conditions */ + pagefault_disable(); + + /* no read fastpath */ + if (area->vm_mm == ZS_MM_WO) + goto out; + + sizes[0] = PAGE_SIZE - off; + sizes[1] = size - sizes[0]; + + /* copy object to per-cpu buffer */ + addr = kmap_atomic(pages[0]); + memcpy(buf, addr + off, sizes[0]); + kunmap_atomic(addr); + addr = kmap_atomic(pages[1]); + memcpy(buf + sizes[0], addr, sizes[1]); + kunmap_atomic(addr); +out: + return area->vm_buf; +} + +static void __zs_unmap_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + int sizes[2]; + void *addr; + char *buf = area->vm_buf; + + /* no write fastpath */ + if (area->vm_mm == ZS_MM_RO) + goto out; + + sizes[0] = PAGE_SIZE - off; + sizes[1] = size - sizes[0]; + + /* copy per-cpu buffer to object */ + addr = kmap_atomic(pages[0]); + memcpy(addr + off, buf, sizes[0]); + kunmap_atomic(addr); + addr = kmap_atomic(pages[1]); + memcpy(addr, buf + sizes[0], sizes[1]); + kunmap_atomic(addr); + +out: + /* enable page faults to match kunmap_atomic() return conditions */ + pagefault_enable(); +} + +#endif /* CONFIG_PGTABLE_MAPPING */ + +static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action, + void *pcpu) +{ + int ret, cpu = (long)pcpu; + struct mapping_area *area; + + switch (action) { + case CPU_UP_PREPARE: + area = &per_cpu(zs_map_area, cpu); + ret = __zs_cpu_up(area); + if (ret) + return notifier_from_errno(ret); + break; + case CPU_DEAD: + case CPU_UP_CANCELED: + area = &per_cpu(zs_map_area, cpu); + __zs_cpu_down(area); + break; + } + + return NOTIFY_OK; +} + +static struct notifier_block zs_cpu_nb = { + .notifier_call = zs_cpu_notifier +}; + +static void zs_exit(void) +{ + int cpu; + + for_each_online_cpu(cpu) + zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu); + unregister_cpu_notifier(&zs_cpu_nb); +} + +static int zs_init(void) +{ + int cpu, ret; + + register_cpu_notifier(&zs_cpu_nb); + for_each_online_cpu(cpu) { + ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu); + if (notifier_to_errno(ret)) + goto fail; + } + return 0; +fail: + zs_exit(); + return notifier_to_errno(ret); +} + +/** + * zs_create_pool - Creates an allocation pool to work from. + * @flags: allocation flags used to allocate pool metadata + * + * This function must be called before anything when using + * the zsmalloc allocator. + * + * On success, a pointer to the newly created pool is returned, + * otherwise NULL. + */ +struct zs_pool *zs_create_pool(gfp_t flags) +{ + int i, ovhd_size; + struct zs_pool *pool; + + ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); + pool = kzalloc(ovhd_size, GFP_KERNEL); + if (!pool) + return NULL; + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + int size; + struct size_class *class; + + size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; + if (size > ZS_MAX_ALLOC_SIZE) + size = ZS_MAX_ALLOC_SIZE; + + class = &pool->size_class[i]; + class->size = size; + class->index = i; + spin_lock_init(&class->lock); + class->pages_per_zspage = get_pages_per_zspage(size); + + } + + pool->flags = flags; + + return pool; +} +EXPORT_SYMBOL_GPL(zs_create_pool); + +void zs_destroy_pool(struct zs_pool *pool) +{ + int i; + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + int fg; + struct size_class *class = &pool->size_class[i]; + + for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) { + if (class->fullness_list[fg]) { + pr_info("Freeing non-empty class with size %db, fullness group %d\n", + class->size, fg); + } + } + } + kfree(pool); +} +EXPORT_SYMBOL_GPL(zs_destroy_pool); + +/** + * zs_malloc - Allocate block of given size from pool. + * @pool: pool to allocate from + * @size: size of block to allocate + * + * On success, handle to the allocated object is returned, + * otherwise 0. + * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. + */ +unsigned long zs_malloc(struct zs_pool *pool, size_t size) +{ + unsigned long obj; + struct link_free *link; + int class_idx; + struct size_class *class; + + struct page *first_page, *m_page; + unsigned long m_objidx, m_offset; + + if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) + return 0; + + class_idx = get_size_class_index(size); + class = &pool->size_class[class_idx]; + BUG_ON(class_idx != class->index); + + spin_lock(&class->lock); + first_page = find_get_zspage(class); + + if (!first_page) { + spin_unlock(&class->lock); + first_page = alloc_zspage(class, pool->flags); + if (unlikely(!first_page)) + return 0; + + set_zspage_mapping(first_page, class->index, ZS_EMPTY); + spin_lock(&class->lock); + class->pages_allocated += class->pages_per_zspage; + } + + obj = (unsigned long)first_page->freelist; + obj_handle_to_location(obj, &m_page, &m_objidx); + m_offset = obj_idx_to_offset(m_page, m_objidx, class->size); + + link = (struct link_free *)kmap_atomic(m_page) + + m_offset / sizeof(*link); + first_page->freelist = link->next; + memset(link, POISON_INUSE, sizeof(*link)); + kunmap_atomic(link); + + first_page->inuse++; + /* Now move the zspage to another fullness group, if required */ + fix_fullness_group(pool, first_page); + spin_unlock(&class->lock); + + return obj; +} +EXPORT_SYMBOL_GPL(zs_malloc); + +void zs_free(struct zs_pool *pool, unsigned long obj) +{ + struct link_free *link; + struct page *first_page, *f_page; + unsigned long f_objidx, f_offset; + + int class_idx; + struct size_class *class; + enum fullness_group fullness; + + if (unlikely(!obj)) + return; + + obj_handle_to_location(obj, &f_page, &f_objidx); + first_page = get_first_page(f_page); + + get_zspage_mapping(first_page, &class_idx, &fullness); + class = &pool->size_class[class_idx]; + f_offset = obj_idx_to_offset(f_page, f_objidx, class->size); + + spin_lock(&class->lock); + + /* Insert this object in containing zspage's freelist */ + link = (struct link_free *)((unsigned char *)kmap_atomic(f_page) + + f_offset); + link->next = first_page->freelist; + kunmap_atomic(link); + first_page->freelist = (void *)obj; + + first_page->inuse--; + fullness = fix_fullness_group(pool, first_page); + + if (fullness == ZS_EMPTY) + class->pages_allocated -= class->pages_per_zspage; + + spin_unlock(&class->lock); + + if (fullness == ZS_EMPTY) + free_zspage(first_page); +} +EXPORT_SYMBOL_GPL(zs_free); + +/** + * zs_map_object - get address of allocated object from handle. + * @pool: pool from which the object was allocated + * @handle: handle returned from zs_malloc + * + * Before using an object allocated from zs_malloc, it must be mapped using + * this function. When done with the object, it must be unmapped using + * zs_unmap_object. + * + * Only one object can be mapped per cpu at a time. There is no protection + * against nested mappings. + * + * This function returns with preemption and page faults disabled. + */ +void *zs_map_object(struct zs_pool *pool, unsigned long handle, + enum zs_mapmode mm) +{ + struct page *page; + unsigned long obj_idx, off; + + unsigned int class_idx; + enum fullness_group fg; + struct size_class *class; + struct mapping_area *area; + struct page *pages[2]; + + BUG_ON(!handle); + + /* + * Because we use per-cpu mapping areas shared among the + * pools/users, we can't allow mapping in interrupt context + * because it can corrupt another users mappings. + */ + BUG_ON(in_interrupt()); + + obj_handle_to_location(handle, &page, &obj_idx); + get_zspage_mapping(get_first_page(page), &class_idx, &fg); + class = &pool->size_class[class_idx]; + off = obj_idx_to_offset(page, obj_idx, class->size); + + area = &get_cpu_var(zs_map_area); + area->vm_mm = mm; + if (off + class->size <= PAGE_SIZE) { + /* this object is contained entirely within a page */ + area->vm_addr = kmap_atomic(page); + return area->vm_addr + off; + } + + /* this object spans two pages */ + pages[0] = page; + pages[1] = get_next_page(page); + BUG_ON(!pages[1]); + + return __zs_map_object(area, pages, off, class->size); +} +EXPORT_SYMBOL_GPL(zs_map_object); + +void zs_unmap_object(struct zs_pool *pool, unsigned long handle) +{ + struct page *page; + unsigned long obj_idx, off; + + unsigned int class_idx; + enum fullness_group fg; + struct size_class *class; + struct mapping_area *area; + + BUG_ON(!handle); + + obj_handle_to_location(handle, &page, &obj_idx); + get_zspage_mapping(get_first_page(page), &class_idx, &fg); + class = &pool->size_class[class_idx]; + off = obj_idx_to_offset(page, obj_idx, class->size); + + area = &__get_cpu_var(zs_map_area); + if (off + class->size <= PAGE_SIZE) + kunmap_atomic(area->vm_addr); + else { + struct page *pages[2]; + + pages[0] = page; + pages[1] = get_next_page(page); + BUG_ON(!pages[1]); + + __zs_unmap_object(area, pages, off, class->size); + } + put_cpu_var(zs_map_area); +} +EXPORT_SYMBOL_GPL(zs_unmap_object); + +u64 zs_get_total_size_bytes(struct zs_pool *pool) +{ + int i; + u64 npages = 0; + + for (i = 0; i < ZS_SIZE_CLASSES; i++) + npages += pool->size_class[i].pages_allocated; + + return npages << PAGE_SHIFT; +} +EXPORT_SYMBOL_GPL(zs_get_total_size_bytes); + +module_init(zs_init); +module_exit(zs_exit); + +MODULE_LICENSE("Dual BSD/GPL"); +MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |