diff options
author | Jiri Kosina <jkosina@suse.cz> | 2011-04-26 10:22:15 +0200 |
---|---|---|
committer | Jiri Kosina <jkosina@suse.cz> | 2011-04-26 10:22:59 +0200 |
commit | 07f9479a40cc778bc1462ada11f95b01360ae4ff (patch) | |
tree | 0676cf38df3844004bb3ebfd99dfa67a4a8998f5 /mm | |
parent | ath9k_hw: don't touch with treewide double semicolon removal (diff) | |
parent | Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ecr... (diff) | |
download | linux-07f9479a40cc778bc1462ada11f95b01360ae4ff.tar.xz linux-07f9479a40cc778bc1462ada11f95b01360ae4ff.zip |
Merge branch 'master' into for-next
Fast-forwarded to current state of Linus' tree as there are patches to be
applied for files that didn't exist on the old branch.
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig.debug | 25 | ||||
-rw-r--r-- | mm/backing-dev.c | 18 | ||||
-rw-r--r-- | mm/bootmem.c | 8 | ||||
-rw-r--r-- | mm/compaction.c | 65 | ||||
-rw-r--r-- | mm/filemap.c | 211 | ||||
-rw-r--r-- | mm/huge_memory.c | 69 | ||||
-rw-r--r-- | mm/hugetlb.c | 16 | ||||
-rw-r--r-- | mm/hwpoison-inject.c | 2 | ||||
-rw-r--r-- | mm/internal.h | 2 | ||||
-rw-r--r-- | mm/kmemleak.c | 6 | ||||
-rw-r--r-- | mm/ksm.c | 25 | ||||
-rw-r--r-- | mm/memblock.c | 241 | ||||
-rw-r--r-- | mm/memcontrol.c | 669 | ||||
-rw-r--r-- | mm/memory-failure.c | 16 | ||||
-rw-r--r-- | mm/memory.c | 106 | ||||
-rw-r--r-- | mm/memory_hotplug.c | 4 | ||||
-rw-r--r-- | mm/mempolicy.c | 3 | ||||
-rw-r--r-- | mm/migrate.c | 58 | ||||
-rw-r--r-- | mm/mlock.c | 17 | ||||
-rw-r--r-- | mm/mmap.c | 15 | ||||
-rw-r--r-- | mm/mremap.c | 11 | ||||
-rw-r--r-- | mm/nobootmem.c | 10 | ||||
-rw-r--r-- | mm/nommu.c | 58 | ||||
-rw-r--r-- | mm/oom_kill.c | 89 | ||||
-rw-r--r-- | mm/page-writeback.c | 25 | ||||
-rw-r--r-- | mm/page_alloc.c | 95 | ||||
-rw-r--r-- | mm/page_cgroup.c | 140 | ||||
-rw-r--r-- | mm/page_io.c | 2 | ||||
-rw-r--r-- | mm/pagewalk.c | 24 | ||||
-rw-r--r-- | mm/percpu.c | 13 | ||||
-rw-r--r-- | mm/readahead.c | 18 | ||||
-rw-r--r-- | mm/rmap.c | 85 | ||||
-rw-r--r-- | mm/shmem.c | 11 | ||||
-rw-r--r-- | mm/slab.c | 61 | ||||
-rw-r--r-- | mm/slob.c | 6 | ||||
-rw-r--r-- | mm/slub.c | 376 | ||||
-rw-r--r-- | mm/sparse.c | 2 | ||||
-rw-r--r-- | mm/swap.c | 189 | ||||
-rw-r--r-- | mm/swap_state.c | 5 | ||||
-rw-r--r-- | mm/swapfile.c | 411 | ||||
-rw-r--r-- | mm/truncate.c | 22 | ||||
-rw-r--r-- | mm/util.c | 2 | ||||
-rw-r--r-- | mm/vmalloc.c | 158 | ||||
-rw-r--r-- | mm/vmscan.c | 66 | ||||
-rw-r--r-- | mm/vmstat.c | 27 |
45 files changed, 2123 insertions, 1359 deletions
diff --git a/mm/Kconfig.debug b/mm/Kconfig.debug index af7cfb43d2f0..8b1a477162dc 100644 --- a/mm/Kconfig.debug +++ b/mm/Kconfig.debug @@ -1,27 +1,24 @@ config DEBUG_PAGEALLOC bool "Debug page memory allocations" - depends on DEBUG_KERNEL && ARCH_SUPPORTS_DEBUG_PAGEALLOC - depends on !HIBERNATION || !PPC && !SPARC + depends on DEBUG_KERNEL + depends on !HIBERNATION || ARCH_SUPPORTS_DEBUG_PAGEALLOC && !PPC && !SPARC depends on !KMEMCHECK + select PAGE_POISONING if !ARCH_SUPPORTS_DEBUG_PAGEALLOC ---help--- Unmap pages from the kernel linear mapping after free_pages(). This results in a large slowdown, but helps to find certain types of memory corruption. + For architectures which don't enable ARCH_SUPPORTS_DEBUG_PAGEALLOC, + fill the pages with poison patterns after free_pages() and verify + the patterns before alloc_pages(). Additionally, + this option cannot be enabled in combination with hibernation as + that would result in incorrect warnings of memory corruption after + a resume because free pages are not saved to the suspend image. + config WANT_PAGE_DEBUG_FLAGS bool config PAGE_POISONING - bool "Debug page memory allocations" - depends on DEBUG_KERNEL && !ARCH_SUPPORTS_DEBUG_PAGEALLOC - depends on !HIBERNATION - select DEBUG_PAGEALLOC + bool select WANT_PAGE_DEBUG_FLAGS - ---help--- - Fill the pages with poison patterns after free_pages() and verify - the patterns before alloc_pages(). This results in a large slowdown, - but helps to find certain types of memory corruption. - - This option cannot be enabled in combination with hibernation as - that would result in incorrect warnings of memory corruption after - a resume because free pages are not saved to the suspend image. diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 027100d30227..befc87531e4f 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c @@ -14,17 +14,11 @@ static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); -void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) -{ -} -EXPORT_SYMBOL(default_unplug_io_fn); - struct backing_dev_info default_backing_dev_info = { .name = "default", .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE, .state = 0, .capabilities = BDI_CAP_MAP_COPY, - .unplug_io_fn = default_unplug_io_fn, }; EXPORT_SYMBOL_GPL(default_backing_dev_info); @@ -73,14 +67,14 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) struct inode *inode; nr_wb = nr_dirty = nr_io = nr_more_io = 0; - spin_lock(&inode_lock); + spin_lock(&inode_wb_list_lock); list_for_each_entry(inode, &wb->b_dirty, i_wb_list) nr_dirty++; list_for_each_entry(inode, &wb->b_io, i_wb_list) nr_io++; list_for_each_entry(inode, &wb->b_more_io, i_wb_list) nr_more_io++; - spin_unlock(&inode_lock); + spin_unlock(&inode_wb_list_lock); global_dirty_limits(&background_thresh, &dirty_thresh); bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); @@ -604,7 +598,7 @@ static void bdi_prune_sb(struct backing_dev_info *bdi) spin_lock(&sb_lock); list_for_each_entry(sb, &super_blocks, s_list) { if (sb->s_bdi == bdi) - sb->s_bdi = NULL; + sb->s_bdi = &default_backing_dev_info; } spin_unlock(&sb_lock); } @@ -682,11 +676,11 @@ void bdi_destroy(struct backing_dev_info *bdi) if (bdi_has_dirty_io(bdi)) { struct bdi_writeback *dst = &default_backing_dev_info.wb; - spin_lock(&inode_lock); + spin_lock(&inode_wb_list_lock); list_splice(&bdi->wb.b_dirty, &dst->b_dirty); list_splice(&bdi->wb.b_io, &dst->b_io); list_splice(&bdi->wb.b_more_io, &dst->b_more_io); - spin_unlock(&inode_lock); + spin_unlock(&inode_wb_list_lock); } bdi_unregister(bdi); @@ -793,7 +787,7 @@ EXPORT_SYMBOL(congestion_wait); * jiffies for either a BDI to exit congestion of the given @sync queue * or a write to complete. * - * In the absense of zone congestion, cond_resched() is called to yield + * In the absence of zone congestion, cond_resched() is called to yield * the processor if necessary but otherwise does not sleep. * * The return value is 0 if the sleep is for the full timeout. Otherwise, diff --git a/mm/bootmem.c b/mm/bootmem.c index 07aeb89e396e..01d5a4b3dd0c 100644 --- a/mm/bootmem.c +++ b/mm/bootmem.c @@ -34,14 +34,6 @@ unsigned long max_low_pfn; unsigned long min_low_pfn; unsigned long max_pfn; -#ifdef CONFIG_CRASH_DUMP -/* - * If we have booted due to a crash, max_pfn will be a very low value. We need - * to know the amount of memory that the previous kernel used. - */ -unsigned long saved_max_pfn; -#endif - bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata; static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list); diff --git a/mm/compaction.c b/mm/compaction.c index 8be430b812de..021a2960ef9e 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -42,8 +42,6 @@ struct compact_control { unsigned int order; /* order a direct compactor needs */ int migratetype; /* MOVABLE, RECLAIMABLE etc */ struct zone *zone; - - int compact_mode; }; static unsigned long release_freepages(struct list_head *freelist) @@ -155,7 +153,6 @@ static void isolate_freepages(struct zone *zone, * pages on cc->migratepages. We stop searching if the migrate * and free page scanners meet or enough free pages are isolated. */ - spin_lock_irqsave(&zone->lock, flags); for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; pfn -= pageblock_nr_pages) { unsigned long isolated; @@ -178,9 +175,19 @@ static void isolate_freepages(struct zone *zone, if (!suitable_migration_target(page)) continue; - /* Found a block suitable for isolating free pages from */ - isolated = isolate_freepages_block(zone, pfn, freelist); - nr_freepages += isolated; + /* + * Found a block suitable for isolating free pages from. Now + * we disabled interrupts, double check things are ok and + * isolate the pages. This is to minimise the time IRQs + * are disabled + */ + isolated = 0; + spin_lock_irqsave(&zone->lock, flags); + if (suitable_migration_target(page)) { + isolated = isolate_freepages_block(zone, pfn, freelist); + nr_freepages += isolated; + } + spin_unlock_irqrestore(&zone->lock, flags); /* * Record the highest PFN we isolated pages from. When next @@ -190,7 +197,6 @@ static void isolate_freepages(struct zone *zone, if (isolated) high_pfn = max(high_pfn, pfn); } - spin_unlock_irqrestore(&zone->lock, flags); /* split_free_page does not map the pages */ list_for_each_entry(page, freelist, lru) { @@ -271,9 +277,27 @@ static unsigned long isolate_migratepages(struct zone *zone, } /* Time to isolate some pages for migration */ + cond_resched(); spin_lock_irq(&zone->lru_lock); for (; low_pfn < end_pfn; low_pfn++) { struct page *page; + bool locked = true; + + /* give a chance to irqs before checking need_resched() */ + if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) { + spin_unlock_irq(&zone->lru_lock); + locked = false; + } + if (need_resched() || spin_is_contended(&zone->lru_lock)) { + if (locked) + spin_unlock_irq(&zone->lru_lock); + cond_resched(); + spin_lock_irq(&zone->lru_lock); + if (fatal_signal_pending(current)) + break; + } else if (!locked) + spin_lock_irq(&zone->lru_lock); + if (!pfn_valid_within(low_pfn)) continue; nr_scanned++; @@ -397,10 +421,7 @@ static int compact_finished(struct zone *zone, return COMPACT_COMPLETE; /* Compaction run is not finished if the watermark is not met */ - if (cc->compact_mode != COMPACT_MODE_KSWAPD) - watermark = low_wmark_pages(zone); - else - watermark = high_wmark_pages(zone); + watermark = low_wmark_pages(zone); watermark += (1 << cc->order); if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) @@ -413,15 +434,6 @@ static int compact_finished(struct zone *zone, if (cc->order == -1) return COMPACT_CONTINUE; - /* - * Generating only one page of the right order is not enough - * for kswapd, we must continue until we're above the high - * watermark as a pool for high order GFP_ATOMIC allocations - * too. - */ - if (cc->compact_mode == COMPACT_MODE_KSWAPD) - return COMPACT_CONTINUE; - /* Direct compactor: Is a suitable page free? */ for (order = cc->order; order < MAX_ORDER; order++) { /* Job done if page is free of the right migratetype */ @@ -508,12 +520,13 @@ static int compact_zone(struct zone *zone, struct compact_control *cc) while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { unsigned long nr_migrate, nr_remaining; + int err; if (!isolate_migratepages(zone, cc)) continue; nr_migrate = cc->nr_migratepages; - migrate_pages(&cc->migratepages, compaction_alloc, + err = migrate_pages(&cc->migratepages, compaction_alloc, (unsigned long)cc, false, cc->sync); update_nr_listpages(cc); @@ -527,7 +540,7 @@ static int compact_zone(struct zone *zone, struct compact_control *cc) nr_remaining); /* Release LRU pages not migrated */ - if (!list_empty(&cc->migratepages)) { + if (err) { putback_lru_pages(&cc->migratepages); cc->nr_migratepages = 0; } @@ -543,8 +556,7 @@ static int compact_zone(struct zone *zone, struct compact_control *cc) unsigned long compact_zone_order(struct zone *zone, int order, gfp_t gfp_mask, - bool sync, - int compact_mode) + bool sync) { struct compact_control cc = { .nr_freepages = 0, @@ -553,7 +565,6 @@ unsigned long compact_zone_order(struct zone *zone, .migratetype = allocflags_to_migratetype(gfp_mask), .zone = zone, .sync = sync, - .compact_mode = compact_mode, }; INIT_LIST_HEAD(&cc.freepages); INIT_LIST_HEAD(&cc.migratepages); @@ -599,8 +610,7 @@ unsigned long try_to_compact_pages(struct zonelist *zonelist, nodemask) { int status; - status = compact_zone_order(zone, order, gfp_mask, sync, - COMPACT_MODE_DIRECT_RECLAIM); + status = compact_zone_order(zone, order, gfp_mask, sync); rc = max(status, rc); /* If a normal allocation would succeed, stop compacting */ @@ -631,7 +641,6 @@ static int compact_node(int nid) .nr_freepages = 0, .nr_migratepages = 0, .order = -1, - .compact_mode = COMPACT_MODE_DIRECT_RECLAIM, }; zone = &pgdat->node_zones[zoneid]; diff --git a/mm/filemap.c b/mm/filemap.c index 83a45d35468b..c641edf553a9 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -80,8 +80,8 @@ * ->i_mutex * ->i_alloc_sem (various) * - * ->inode_lock - * ->sb_lock (fs/fs-writeback.c) + * inode_wb_list_lock + * sb_lock (fs/fs-writeback.c) * ->mapping->tree_lock (__sync_single_inode) * * ->i_mmap_lock @@ -98,8 +98,10 @@ * ->zone.lru_lock (check_pte_range->isolate_lru_page) * ->private_lock (page_remove_rmap->set_page_dirty) * ->tree_lock (page_remove_rmap->set_page_dirty) - * ->inode_lock (page_remove_rmap->set_page_dirty) - * ->inode_lock (zap_pte_range->set_page_dirty) + * inode_wb_list_lock (page_remove_rmap->set_page_dirty) + * ->inode->i_lock (page_remove_rmap->set_page_dirty) + * inode_wb_list_lock (zap_pte_range->set_page_dirty) + * ->inode->i_lock (zap_pte_range->set_page_dirty) * ->private_lock (zap_pte_range->__set_page_dirty_buffers) * * (code doesn't rely on that order, so you could switch it around) @@ -108,11 +110,11 @@ */ /* - * Remove a page from the page cache and free it. Caller has to make + * Delete a page from the page cache and free it. Caller has to make * sure the page is locked and that nobody else uses it - or that usage * is safe. The caller must hold the mapping's tree_lock. */ -void __remove_from_page_cache(struct page *page) +void __delete_from_page_cache(struct page *page) { struct address_space *mapping = page->mapping; @@ -137,7 +139,15 @@ void __remove_from_page_cache(struct page *page) } } -void remove_from_page_cache(struct page *page) +/** + * delete_from_page_cache - delete page from page cache + * @page: the page which the kernel is trying to remove from page cache + * + * This must be called only on pages that have been verified to be in the page + * cache and locked. It will never put the page into the free list, the caller + * has a reference on the page. + */ +void delete_from_page_cache(struct page *page) { struct address_space *mapping = page->mapping; void (*freepage)(struct page *); @@ -146,54 +156,25 @@ void remove_from_page_cache(struct page *page) freepage = mapping->a_ops->freepage; spin_lock_irq(&mapping->tree_lock); - __remove_from_page_cache(page); + __delete_from_page_cache(page); spin_unlock_irq(&mapping->tree_lock); mem_cgroup_uncharge_cache_page(page); if (freepage) freepage(page); + page_cache_release(page); } -EXPORT_SYMBOL(remove_from_page_cache); +EXPORT_SYMBOL(delete_from_page_cache); -static int sync_page(void *word) +static int sleep_on_page(void *word) { - struct address_space *mapping; - struct page *page; - - page = container_of((unsigned long *)word, struct page, flags); - - /* - * page_mapping() is being called without PG_locked held. - * Some knowledge of the state and use of the page is used to - * reduce the requirements down to a memory barrier. - * The danger here is of a stale page_mapping() return value - * indicating a struct address_space different from the one it's - * associated with when it is associated with one. - * After smp_mb(), it's either the correct page_mapping() for - * the page, or an old page_mapping() and the page's own - * page_mapping() has gone NULL. - * The ->sync_page() address_space operation must tolerate - * page_mapping() going NULL. By an amazing coincidence, - * this comes about because none of the users of the page - * in the ->sync_page() methods make essential use of the - * page_mapping(), merely passing the page down to the backing - * device's unplug functions when it's non-NULL, which in turn - * ignore it for all cases but swap, where only page_private(page) is - * of interest. When page_mapping() does go NULL, the entire - * call stack gracefully ignores the page and returns. - * -- wli - */ - smp_mb(); - mapping = page_mapping(page); - if (mapping && mapping->a_ops && mapping->a_ops->sync_page) - mapping->a_ops->sync_page(page); io_schedule(); return 0; } -static int sync_page_killable(void *word) +static int sleep_on_page_killable(void *word) { - sync_page(word); + sleep_on_page(word); return fatal_signal_pending(current) ? -EINTR : 0; } @@ -387,6 +368,76 @@ int filemap_write_and_wait_range(struct address_space *mapping, EXPORT_SYMBOL(filemap_write_and_wait_range); /** + * replace_page_cache_page - replace a pagecache page with a new one + * @old: page to be replaced + * @new: page to replace with + * @gfp_mask: allocation mode + * + * This function replaces a page in the pagecache with a new one. On + * success it acquires the pagecache reference for the new page and + * drops it for the old page. Both the old and new pages must be + * locked. This function does not add the new page to the LRU, the + * caller must do that. + * + * The remove + add is atomic. The only way this function can fail is + * memory allocation failure. + */ +int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) +{ + int error; + struct mem_cgroup *memcg = NULL; + + VM_BUG_ON(!PageLocked(old)); + VM_BUG_ON(!PageLocked(new)); + VM_BUG_ON(new->mapping); + + /* + * This is not page migration, but prepare_migration and + * end_migration does enough work for charge replacement. + * + * In the longer term we probably want a specialized function + * for moving the charge from old to new in a more efficient + * manner. + */ + error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask); + if (error) + return error; + + error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); + if (!error) { + struct address_space *mapping = old->mapping; + void (*freepage)(struct page *); + + pgoff_t offset = old->index; + freepage = mapping->a_ops->freepage; + + page_cache_get(new); + new->mapping = mapping; + new->index = offset; + + spin_lock_irq(&mapping->tree_lock); + __delete_from_page_cache(old); + error = radix_tree_insert(&mapping->page_tree, offset, new); + BUG_ON(error); + mapping->nrpages++; + __inc_zone_page_state(new, NR_FILE_PAGES); + if (PageSwapBacked(new)) + __inc_zone_page_state(new, NR_SHMEM); + spin_unlock_irq(&mapping->tree_lock); + radix_tree_preload_end(); + if (freepage) + freepage(old); + page_cache_release(old); + mem_cgroup_end_migration(memcg, old, new, true); + } else { + mem_cgroup_end_migration(memcg, old, new, false); + } + + return error; +} +EXPORT_SYMBOL_GPL(replace_page_cache_page); + +/** * add_to_page_cache_locked - add a locked page to the pagecache * @page: page to add * @mapping: the page's address_space @@ -479,12 +530,6 @@ struct page *__page_cache_alloc(gfp_t gfp) EXPORT_SYMBOL(__page_cache_alloc); #endif -static int __sleep_on_page_lock(void *word) -{ - io_schedule(); - return 0; -} - /* * In order to wait for pages to become available there must be * waitqueues associated with pages. By using a hash table of @@ -512,7 +557,7 @@ void wait_on_page_bit(struct page *page, int bit_nr) DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); if (test_bit(bit_nr, &page->flags)) - __wait_on_bit(page_waitqueue(page), &wait, sync_page, + __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(wait_on_page_bit); @@ -576,17 +621,12 @@ EXPORT_SYMBOL(end_page_writeback); /** * __lock_page - get a lock on the page, assuming we need to sleep to get it * @page: the page to lock - * - * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some - * random driver's requestfn sets TASK_RUNNING, we could busywait. However - * chances are that on the second loop, the block layer's plug list is empty, - * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. */ void __lock_page(struct page *page) { DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); - __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, + __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(__lock_page); @@ -596,24 +636,10 @@ int __lock_page_killable(struct page *page) DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); return __wait_on_bit_lock(page_waitqueue(page), &wait, - sync_page_killable, TASK_KILLABLE); + sleep_on_page_killable, TASK_KILLABLE); } EXPORT_SYMBOL_GPL(__lock_page_killable); -/** - * __lock_page_nosync - get a lock on the page, without calling sync_page() - * @page: the page to lock - * - * Variant of lock_page that does not require the caller to hold a reference - * on the page's mapping. - */ -void __lock_page_nosync(struct page *page) -{ - DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); - __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, - TASK_UNINTERRUPTIBLE); -} - int __lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags) { @@ -621,8 +647,10 @@ int __lock_page_or_retry(struct page *page, struct mm_struct *mm, __lock_page(page); return 1; } else { - up_read(&mm->mmap_sem); - wait_on_page_locked(page); + if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) { + up_read(&mm->mmap_sem); + wait_on_page_locked(page); + } return 0; } } @@ -782,9 +810,13 @@ repeat: page = radix_tree_deref_slot((void **)pages[i]); if (unlikely(!page)) continue; + + /* + * This can only trigger when the entry at index 0 moves out + * of or back to the root: none yet gotten, safe to restart. + */ if (radix_tree_deref_retry(page)) { - if (ret) - start = pages[ret-1]->index; + WARN_ON(start | i); goto restart; } @@ -800,6 +832,13 @@ repeat: pages[ret] = page; ret++; } + + /* + * If all entries were removed before we could secure them, + * try again, because callers stop trying once 0 is returned. + */ + if (unlikely(!ret && nr_found)) + goto restart; rcu_read_unlock(); return ret; } @@ -834,6 +873,11 @@ repeat: page = radix_tree_deref_slot((void **)pages[i]); if (unlikely(!page)) continue; + + /* + * This can only trigger when the entry at index 0 moves out + * of or back to the root: none yet gotten, safe to restart. + */ if (radix_tree_deref_retry(page)) goto restart; @@ -894,6 +938,11 @@ repeat: page = radix_tree_deref_slot((void **)pages[i]); if (unlikely(!page)) continue; + + /* + * This can only trigger when the entry at index 0 moves out + * of or back to the root: none yet gotten, safe to restart. + */ if (radix_tree_deref_retry(page)) goto restart; @@ -909,6 +958,13 @@ repeat: pages[ret] = page; ret++; } + + /* + * If all entries were removed before we could secure them, + * try again, because callers stop trying once 0 is returned. + */ + if (unlikely(!ret && nr_found)) + goto restart; rcu_read_unlock(); if (ret) @@ -1298,12 +1354,15 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, unsigned long seg = 0; size_t count; loff_t *ppos = &iocb->ki_pos; + struct blk_plug plug; count = 0; retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); if (retval) return retval; + blk_start_plug(&plug); + /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ if (filp->f_flags & O_DIRECT) { loff_t size; @@ -1376,6 +1435,7 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, break; } out: + blk_finish_plug(&plug); return retval; } EXPORT_SYMBOL(generic_file_aio_read); @@ -2487,11 +2547,13 @@ ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; + struct blk_plug plug; ssize_t ret; BUG_ON(iocb->ki_pos != pos); mutex_lock(&inode->i_mutex); + blk_start_plug(&plug); ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); mutex_unlock(&inode->i_mutex); @@ -2502,6 +2564,7 @@ ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, if (err < 0 && ret > 0) ret = err; } + blk_finish_plug(&plug); return ret; } EXPORT_SYMBOL(generic_file_aio_write); diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 113e35c47502..470dcda10add 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -244,24 +244,28 @@ static ssize_t single_flag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf, enum transparent_hugepage_flag flag) { - if (test_bit(flag, &transparent_hugepage_flags)) - return sprintf(buf, "[yes] no\n"); - else - return sprintf(buf, "yes [no]\n"); + return sprintf(buf, "%d\n", + !!test_bit(flag, &transparent_hugepage_flags)); } + static ssize_t single_flag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count, enum transparent_hugepage_flag flag) { - if (!memcmp("yes", buf, - min(sizeof("yes")-1, count))) { + unsigned long value; + int ret; + + ret = kstrtoul(buf, 10, &value); + if (ret < 0) + return ret; + if (value > 1) + return -EINVAL; + + if (value) set_bit(flag, &transparent_hugepage_flags); - } else if (!memcmp("no", buf, - min(sizeof("no")-1, count))) { + else clear_bit(flag, &transparent_hugepage_flags); - } else - return -EINVAL; return count; } @@ -643,23 +647,24 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, return ret; } -static inline gfp_t alloc_hugepage_gfpmask(int defrag) +static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) { - return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT); + return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; } static inline struct page *alloc_hugepage_vma(int defrag, struct vm_area_struct *vma, - unsigned long haddr, int nd) + unsigned long haddr, int nd, + gfp_t extra_gfp) { - return alloc_pages_vma(alloc_hugepage_gfpmask(defrag), + return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), HPAGE_PMD_ORDER, vma, haddr, nd); } #ifndef CONFIG_NUMA static inline struct page *alloc_hugepage(int defrag) { - return alloc_pages(alloc_hugepage_gfpmask(defrag), + return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER); } #endif @@ -678,9 +683,12 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, if (unlikely(khugepaged_enter(vma))) return VM_FAULT_OOM; page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), - vma, haddr, numa_node_id()); - if (unlikely(!page)) + vma, haddr, numa_node_id(), 0); + if (unlikely(!page)) { + count_vm_event(THP_FAULT_FALLBACK); goto out; + } + count_vm_event(THP_FAULT_ALLOC); if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { put_page(page); goto out; @@ -799,7 +807,8 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, } for (i = 0; i < HPAGE_PMD_NR; i++) { - pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, + pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | + __GFP_OTHER_NODE, vma, address, page_to_nid(page)); if (unlikely(!pages[i] || mem_cgroup_newpage_charge(pages[i], mm, @@ -902,16 +911,18 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, if (transparent_hugepage_enabled(vma) && !transparent_hugepage_debug_cow()) new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), - vma, haddr, numa_node_id()); + vma, haddr, numa_node_id(), 0); else new_page = NULL; if (unlikely(!new_page)) { + count_vm_event(THP_FAULT_FALLBACK); ret = do_huge_pmd_wp_page_fallback(mm, vma, address, pmd, orig_pmd, page, haddr); put_page(page); goto out; } + count_vm_event(THP_FAULT_ALLOC); if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { put_page(new_page); @@ -1388,6 +1399,7 @@ int split_huge_page(struct page *page) BUG_ON(!PageSwapBacked(page)); __split_huge_page(page, anon_vma); + count_vm_event(THP_SPLIT); BUG_ON(PageCompound(page)); out_unlock: @@ -1779,12 +1791,14 @@ static void collapse_huge_page(struct mm_struct *mm, * scalability. */ new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address, - node); + node, __GFP_OTHER_NODE); if (unlikely(!new_page)) { up_read(&mm->mmap_sem); + count_vm_event(THP_COLLAPSE_ALLOC_FAILED); *hpage = ERR_PTR(-ENOMEM); return; } + count_vm_event(THP_COLLAPSE_ALLOC); if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { up_read(&mm->mmap_sem); put_page(new_page); @@ -2149,8 +2163,11 @@ static void khugepaged_do_scan(struct page **hpage) #ifndef CONFIG_NUMA if (!*hpage) { *hpage = alloc_hugepage(khugepaged_defrag()); - if (unlikely(!*hpage)) + if (unlikely(!*hpage)) { + count_vm_event(THP_COLLAPSE_ALLOC_FAILED); break; + } + count_vm_event(THP_COLLAPSE_ALLOC); } #else if (IS_ERR(*hpage)) @@ -2190,8 +2207,11 @@ static struct page *khugepaged_alloc_hugepage(void) do { hpage = alloc_hugepage(khugepaged_defrag()); - if (!hpage) + if (!hpage) { + count_vm_event(THP_COLLAPSE_ALLOC_FAILED); khugepaged_alloc_sleep(); + } else + count_vm_event(THP_COLLAPSE_ALLOC); } while (unlikely(!hpage) && likely(khugepaged_enabled())); return hpage; @@ -2208,8 +2228,11 @@ static void khugepaged_loop(void) while (likely(khugepaged_enabled())) { #ifndef CONFIG_NUMA hpage = khugepaged_alloc_hugepage(); - if (unlikely(!hpage)) + if (unlikely(!hpage)) { + count_vm_event(THP_COLLAPSE_ALLOC_FAILED); break; + } + count_vm_event(THP_COLLAPSE_ALLOC); #else if (IS_ERR(hpage)) { khugepaged_alloc_sleep(); diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 838fe25f704c..bbb4a5bbb958 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -146,7 +146,7 @@ static long region_chg(struct list_head *head, long f, long t) if (rg->from > t) return chg; - /* We overlap with this area, if it extends futher than + /* We overlap with this area, if it extends further than * us then we must extend ourselves. Account for its * existing reservation. */ if (rg->to > t) { @@ -842,7 +842,7 @@ struct page *alloc_huge_page_node(struct hstate *h, int nid) } /* - * Increase the hugetlb pool such that it can accomodate a reservation + * Increase the hugetlb pool such that it can accommodate a reservation * of size 'delta'. */ static int gather_surplus_pages(struct hstate *h, int delta) @@ -890,7 +890,7 @@ retry: /* * The surplus_list now contains _at_least_ the number of extra pages - * needed to accomodate the reservation. Add the appropriate number + * needed to accommodate the reservation. Add the appropriate number * of pages to the hugetlb pool and free the extras back to the buddy * allocator. Commit the entire reservation here to prevent another * process from stealing the pages as they are added to the pool but @@ -1872,8 +1872,7 @@ static int hugetlb_sysctl_handler_common(bool obey_mempolicy, unsigned long tmp; int ret; - if (!write) - tmp = h->max_huge_pages; + tmp = h->max_huge_pages; if (write && h->order >= MAX_ORDER) return -EINVAL; @@ -1938,8 +1937,7 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write, unsigned long tmp; int ret; - if (!write) - tmp = h->nr_overcommit_huge_pages; + tmp = h->nr_overcommit_huge_pages; if (write && h->order >= MAX_ORDER) return -EINVAL; @@ -2045,7 +2043,7 @@ static void hugetlb_vm_op_open(struct vm_area_struct *vma) * This new VMA should share its siblings reservation map if present. * The VMA will only ever have a valid reservation map pointer where * it is being copied for another still existing VMA. As that VMA - * has a reference to the reservation map it cannot dissappear until + * has a reference to the reservation map it cannot disappear until * after this open call completes. It is therefore safe to take a * new reference here without additional locking. */ @@ -2492,7 +2490,7 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, /* * Currently, we are forced to kill the process in the event the * original mapper has unmapped pages from the child due to a failed - * COW. Warn that such a situation has occured as it may not be obvious + * COW. Warn that such a situation has occurred as it may not be obvious */ if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { printk(KERN_WARNING diff --git a/mm/hwpoison-inject.c b/mm/hwpoison-inject.c index 0948f1072d6b..c7fc7fd00e32 100644 --- a/mm/hwpoison-inject.c +++ b/mm/hwpoison-inject.c @@ -1,4 +1,4 @@ -/* Inject a hwpoison memory failure on a arbitary pfn */ +/* Inject a hwpoison memory failure on a arbitrary pfn */ #include <linux/module.h> #include <linux/debugfs.h> #include <linux/kernel.h> diff --git a/mm/internal.h b/mm/internal.h index 3438dd43a062..9d0ced8e505e 100644 --- a/mm/internal.h +++ b/mm/internal.h @@ -162,7 +162,7 @@ static inline struct page *mem_map_offset(struct page *base, int offset) } /* - * Iterator over all subpages withing the maximally aligned gigantic + * Iterator over all subpages within the maximally aligned gigantic * page 'base'. Handle any discontiguity in the mem_map. */ static inline struct page *mem_map_next(struct page *iter, diff --git a/mm/kmemleak.c b/mm/kmemleak.c index 84225f3b7190..c1d5867543e4 100644 --- a/mm/kmemleak.c +++ b/mm/kmemleak.c @@ -265,7 +265,7 @@ static void kmemleak_disable(void); } while (0) /* - * Macro invoked when a serious kmemleak condition occured and cannot be + * Macro invoked when a serious kmemleak condition occurred and cannot be * recovered from. Kmemleak will be disabled and further allocation/freeing * tracing no longer available. */ @@ -1006,7 +1006,7 @@ static bool update_checksum(struct kmemleak_object *object) /* * Memory scanning is a long process and it needs to be interruptable. This - * function checks whether such interrupt condition occured. + * function checks whether such interrupt condition occurred. */ static int scan_should_stop(void) { @@ -1733,7 +1733,7 @@ static int __init kmemleak_late_init(void) if (atomic_read(&kmemleak_error)) { /* - * Some error occured and kmemleak was disabled. There is a + * Some error occurred and kmemleak was disabled. There is a * small chance that kmemleak_disable() was called immediately * after setting kmemleak_initialized and we may end up with * two clean-up threads but serialized by scan_mutex. @@ -301,20 +301,6 @@ static inline int in_stable_tree(struct rmap_item *rmap_item) return rmap_item->address & STABLE_FLAG; } -static void hold_anon_vma(struct rmap_item *rmap_item, - struct anon_vma *anon_vma) -{ - rmap_item->anon_vma = anon_vma; - get_anon_vma(anon_vma); -} - -static void ksm_drop_anon_vma(struct rmap_item *rmap_item) -{ - struct anon_vma *anon_vma = rmap_item->anon_vma; - - drop_anon_vma(anon_vma); -} - /* * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's * page tables after it has passed through ksm_exit() - which, if necessary, @@ -397,7 +383,7 @@ static void break_cow(struct rmap_item *rmap_item) * It is not an accident that whenever we want to break COW * to undo, we also need to drop a reference to the anon_vma. */ - ksm_drop_anon_vma(rmap_item); + put_anon_vma(rmap_item->anon_vma); down_read(&mm->mmap_sem); if (ksm_test_exit(mm)) @@ -466,7 +452,7 @@ static void remove_node_from_stable_tree(struct stable_node *stable_node) ksm_pages_sharing--; else ksm_pages_shared--; - ksm_drop_anon_vma(rmap_item); + put_anon_vma(rmap_item->anon_vma); rmap_item->address &= PAGE_MASK; cond_resched(); } @@ -554,7 +540,7 @@ static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) else ksm_pages_shared--; - ksm_drop_anon_vma(rmap_item); + put_anon_vma(rmap_item->anon_vma); rmap_item->address &= PAGE_MASK; } else if (rmap_item->address & UNSTABLE_FLAG) { @@ -734,7 +720,7 @@ static int write_protect_page(struct vm_area_struct *vma, struct page *page, swapped = PageSwapCache(page); flush_cache_page(vma, addr, page_to_pfn(page)); /* - * Ok this is tricky, when get_user_pages_fast() run it doesnt + * Ok this is tricky, when get_user_pages_fast() run it doesn't * take any lock, therefore the check that we are going to make * with the pagecount against the mapcount is racey and * O_DIRECT can happen right after the check. @@ -949,7 +935,8 @@ static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, goto out; /* Must get reference to anon_vma while still holding mmap_sem */ - hold_anon_vma(rmap_item, vma->anon_vma); + rmap_item->anon_vma = vma->anon_vma; + get_anon_vma(vma->anon_vma); out: up_read(&mm->mmap_sem); return err; diff --git a/mm/memblock.c b/mm/memblock.c index 4618fda975a0..a0562d1a6ad4 100644 --- a/mm/memblock.c +++ b/mm/memblock.c @@ -58,28 +58,6 @@ static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, p return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); } -static long __init_memblock memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1, - phys_addr_t base2, phys_addr_t size2) -{ - if (base2 == base1 + size1) - return 1; - else if (base1 == base2 + size2) - return -1; - - return 0; -} - -static long __init_memblock memblock_regions_adjacent(struct memblock_type *type, - unsigned long r1, unsigned long r2) -{ - phys_addr_t base1 = type->regions[r1].base; - phys_addr_t size1 = type->regions[r1].size; - phys_addr_t base2 = type->regions[r2].base; - phys_addr_t size2 = type->regions[r2].size; - - return memblock_addrs_adjacent(base1, size1, base2, size2); -} - long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { unsigned long i; @@ -206,14 +184,13 @@ static void __init_memblock memblock_remove_region(struct memblock_type *type, u type->regions[i].size = type->regions[i + 1].size; } type->cnt--; -} -/* Assumption: base addr of region 1 < base addr of region 2 */ -static void __init_memblock memblock_coalesce_regions(struct memblock_type *type, - unsigned long r1, unsigned long r2) -{ - type->regions[r1].size += type->regions[r2].size; - memblock_remove_region(type, r2); + /* Special case for empty arrays */ + if (type->cnt == 0) { + type->cnt = 1; + type->regions[0].base = 0; + type->regions[0].size = 0; + } } /* Defined below but needed now */ @@ -276,7 +253,7 @@ static int __init_memblock memblock_double_array(struct memblock_type *type) return 0; /* Add the new reserved region now. Should not fail ! */ - BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size) < 0); + BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size)); /* If the array wasn't our static init one, then free it. We only do * that before SLAB is available as later on, we don't know whether @@ -296,58 +273,99 @@ extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1 return 1; } -static long __init_memblock memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) +static long __init_memblock memblock_add_region(struct memblock_type *type, + phys_addr_t base, phys_addr_t size) { - unsigned long coalesced = 0; - long adjacent, i; - - if ((type->cnt == 1) && (type->regions[0].size == 0)) { - type->regions[0].base = base; - type->regions[0].size = size; - return 0; - } + phys_addr_t end = base + size; + int i, slot = -1; - /* First try and coalesce this MEMBLOCK with another. */ + /* First try and coalesce this MEMBLOCK with others */ for (i = 0; i < type->cnt; i++) { - phys_addr_t rgnbase = type->regions[i].base; - phys_addr_t rgnsize = type->regions[i].size; + struct memblock_region *rgn = &type->regions[i]; + phys_addr_t rend = rgn->base + rgn->size; + + /* Exit if there's no possible hits */ + if (rgn->base > end || rgn->size == 0) + break; - if ((rgnbase == base) && (rgnsize == size)) - /* Already have this region, so we're done */ + /* Check if we are fully enclosed within an existing + * block + */ + if (rgn->base <= base && rend >= end) return 0; - adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize); - /* Check if arch allows coalescing */ - if (adjacent != 0 && type == &memblock.memory && - !memblock_memory_can_coalesce(base, size, rgnbase, rgnsize)) - break; - if (adjacent > 0) { - type->regions[i].base -= size; - type->regions[i].size += size; - coalesced++; - break; - } else if (adjacent < 0) { - type->regions[i].size += size; - coalesced++; - break; + /* Check if we overlap or are adjacent with the bottom + * of a block. + */ + if (base < rgn->base && end >= rgn->base) { + /* If we can't coalesce, create a new block */ + if (!memblock_memory_can_coalesce(base, size, + rgn->base, + rgn->size)) { + /* Overlap & can't coalesce are mutually + * exclusive, if you do that, be prepared + * for trouble + */ + WARN_ON(end != rgn->base); + goto new_block; + } + /* We extend the bottom of the block down to our + * base + */ + rgn->base = base; + rgn->size = rend - base; + + /* Return if we have nothing else to allocate + * (fully coalesced) + */ + if (rend >= end) + return 0; + + /* We continue processing from the end of the + * coalesced block. + */ + base = rend; + size = end - base; + } + + /* Now check if we overlap or are adjacent with the + * top of a block + */ + if (base <= rend && end >= rend) { + /* If we can't coalesce, create a new block */ + if (!memblock_memory_can_coalesce(rgn->base, + rgn->size, + base, size)) { + /* Overlap & can't coalesce are mutually + * exclusive, if you do that, be prepared + * for trouble + */ + WARN_ON(rend != base); + goto new_block; + } + /* We adjust our base down to enclose the + * original block and destroy it. It will be + * part of our new allocation. Since we've + * freed an entry, we know we won't fail + * to allocate one later, so we won't risk + * losing the original block allocation. + */ + size += (base - rgn->base); + base = rgn->base; + memblock_remove_region(type, i--); } } - /* If we plugged a hole, we may want to also coalesce with the - * next region + /* If the array is empty, special case, replace the fake + * filler region and return */ - if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1) && - ((type != &memblock.memory || memblock_memory_can_coalesce(type->regions[i].base, - type->regions[i].size, - type->regions[i+1].base, - type->regions[i+1].size)))) { - memblock_coalesce_regions(type, i, i+1); - coalesced++; + if ((type->cnt == 1) && (type->regions[0].size == 0)) { + type->regions[0].base = base; + type->regions[0].size = size; + return 0; } - if (coalesced) - return coalesced; - + new_block: /* If we are out of space, we fail. It's too late to resize the array * but then this shouldn't have happened in the first place. */ @@ -362,13 +380,14 @@ static long __init_memblock memblock_add_region(struct memblock_type *type, phys } else { type->regions[i+1].base = base; type->regions[i+1].size = size; + slot = i + 1; break; } } - if (base < type->regions[0].base) { type->regions[0].base = base; type->regions[0].size = size; + slot = 0; } type->cnt++; @@ -376,7 +395,8 @@ static long __init_memblock memblock_add_region(struct memblock_type *type, phys * our allocation and return an error */ if (type->cnt == type->max && memblock_double_array(type)) { - type->cnt--; + BUG_ON(slot < 0); + memblock_remove_region(type, slot); return -1; } @@ -389,52 +409,55 @@ long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) } -static long __init_memblock __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size) +static long __init_memblock __memblock_remove(struct memblock_type *type, + phys_addr_t base, phys_addr_t size) { - phys_addr_t rgnbegin, rgnend; phys_addr_t end = base + size; int i; - rgnbegin = rgnend = 0; /* supress gcc warnings */ - - /* Find the region where (base, size) belongs to */ - for (i=0; i < type->cnt; i++) { - rgnbegin = type->regions[i].base; - rgnend = rgnbegin + type->regions[i].size; + /* Walk through the array for collisions */ + for (i = 0; i < type->cnt; i++) { + struct memblock_region *rgn = &type->regions[i]; + phys_addr_t rend = rgn->base + rgn->size; - if ((rgnbegin <= base) && (end <= rgnend)) + /* Nothing more to do, exit */ + if (rgn->base > end || rgn->size == 0) break; - } - /* Didn't find the region */ - if (i == type->cnt) - return -1; + /* If we fully enclose the block, drop it */ + if (base <= rgn->base && end >= rend) { + memblock_remove_region(type, i--); + continue; + } - /* Check to see if we are removing entire region */ - if ((rgnbegin == base) && (rgnend == end)) { - memblock_remove_region(type, i); - return 0; - } + /* If we are fully enclosed within a block + * then we need to split it and we are done + */ + if (base > rgn->base && end < rend) { + rgn->size = base - rgn->base; + if (!memblock_add_region(type, end, rend - end)) + return 0; + /* Failure to split is bad, we at least + * restore the block before erroring + */ + rgn->size = rend - rgn->base; + WARN_ON(1); + return -1; + } - /* Check to see if region is matching at the front */ - if (rgnbegin == base) { - type->regions[i].base = end; - type->regions[i].size -= size; - return 0; - } + /* Check if we need to trim the bottom of a block */ + if (rgn->base < end && rend > end) { + rgn->size -= end - rgn->base; + rgn->base = end; + break; + } - /* Check to see if the region is matching at the end */ - if (rgnend == end) { - type->regions[i].size -= size; - return 0; - } + /* And check if we need to trim the top of a block */ + if (base < rend) + rgn->size -= rend - base; - /* - * We need to split the entry - adjust the current one to the - * beginging of the hole and add the region after hole. - */ - type->regions[i].size = base - type->regions[i].base; - return memblock_add_region(type, end, rgnend - end); + } + return 0; } long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) @@ -467,7 +490,7 @@ phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, ph found = memblock_find_base(size, align, 0, max_addr); if (found != MEMBLOCK_ERROR && - memblock_add_region(&memblock.reserved, found, size) >= 0) + !memblock_add_region(&memblock.reserved, found, size)) return found; return 0; @@ -548,7 +571,7 @@ static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp, if (this_nid == nid) { phys_addr_t ret = memblock_find_region(start, this_end, size, align); if (ret != MEMBLOCK_ERROR && - memblock_add_region(&memblock.reserved, ret, size) >= 0) + !memblock_add_region(&memblock.reserved, ret, size)) return ret; } start = this_end; diff --git a/mm/memcontrol.c b/mm/memcontrol.c index da53a252b259..010f9166fa6e 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -73,15 +73,6 @@ static int really_do_swap_account __initdata = 0; #define do_swap_account (0) #endif -/* - * Per memcg event counter is incremented at every pagein/pageout. This counter - * is used for trigger some periodic events. This is straightforward and better - * than using jiffies etc. to handle periodic memcg event. - * - * These values will be used as !((event) & ((1 <<(thresh)) - 1)) - */ -#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */ -#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */ /* * Statistics for memory cgroup. @@ -93,19 +84,36 @@ enum mem_cgroup_stat_index { MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ - MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ - MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ - /* incremented at every pagein/pageout */ - MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA, MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ - MEM_CGROUP_STAT_NSTATS, }; +enum mem_cgroup_events_index { + MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ + MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ + MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */ + MEM_CGROUP_EVENTS_NSTATS, +}; +/* + * Per memcg event counter is incremented at every pagein/pageout. With THP, + * it will be incremated by the number of pages. This counter is used for + * for trigger some periodic events. This is straightforward and better + * than using jiffies etc. to handle periodic memcg event. + */ +enum mem_cgroup_events_target { + MEM_CGROUP_TARGET_THRESH, + MEM_CGROUP_TARGET_SOFTLIMIT, + MEM_CGROUP_NTARGETS, +}; +#define THRESHOLDS_EVENTS_TARGET (128) +#define SOFTLIMIT_EVENTS_TARGET (1024) + struct mem_cgroup_stat_cpu { - s64 count[MEM_CGROUP_STAT_NSTATS]; + long count[MEM_CGROUP_STAT_NSTATS]; + unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; + unsigned long targets[MEM_CGROUP_NTARGETS]; }; /* @@ -218,12 +226,6 @@ struct mem_cgroup { * per zone LRU lists. */ struct mem_cgroup_lru_info info; - - /* - protect against reclaim related member. - */ - spinlock_t reclaim_param_lock; - /* * While reclaiming in a hierarchy, we cache the last child we * reclaimed from. @@ -327,13 +329,6 @@ enum charge_type { NR_CHARGE_TYPE, }; -/* only for here (for easy reading.) */ -#define PCGF_CACHE (1UL << PCG_CACHE) -#define PCGF_USED (1UL << PCG_USED) -#define PCGF_LOCK (1UL << PCG_LOCK) -/* Not used, but added here for completeness */ -#define PCGF_ACCT (1UL << PCG_ACCT) - /* for encoding cft->private value on file */ #define _MEM (0) #define _MEMSWAP (1) @@ -371,14 +366,10 @@ struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) } static struct mem_cgroup_per_zone * -page_cgroup_zoneinfo(struct page_cgroup *pc) +page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page) { - struct mem_cgroup *mem = pc->mem_cgroup; - int nid = page_cgroup_nid(pc); - int zid = page_cgroup_zid(pc); - - if (!mem) - return NULL; + int nid = page_to_nid(page); + int zid = page_zonenum(page); return mem_cgroup_zoneinfo(mem, nid, zid); } @@ -504,11 +495,6 @@ static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) } } -static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem) -{ - return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT; -} - static struct mem_cgroup_per_zone * __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) { @@ -565,11 +551,11 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) * common workload, threashold and synchonization as vmstat[] should be * implemented. */ -static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, - enum mem_cgroup_stat_index idx) +static long mem_cgroup_read_stat(struct mem_cgroup *mem, + enum mem_cgroup_stat_index idx) { + long val = 0; int cpu; - s64 val = 0; get_online_cpus(); for_each_online_cpu(cpu) @@ -583,9 +569,9 @@ static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, return val; } -static s64 mem_cgroup_local_usage(struct mem_cgroup *mem) +static long mem_cgroup_local_usage(struct mem_cgroup *mem) { - s64 ret; + long ret; ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); @@ -599,6 +585,22 @@ static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); } +static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem, + enum mem_cgroup_events_index idx) +{ + unsigned long val = 0; + int cpu; + + for_each_online_cpu(cpu) + val += per_cpu(mem->stat->events[idx], cpu); +#ifdef CONFIG_HOTPLUG_CPU + spin_lock(&mem->pcp_counter_lock); + val += mem->nocpu_base.events[idx]; + spin_unlock(&mem->pcp_counter_lock); +#endif + return val; +} + static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, bool file, int nr_pages) { @@ -611,13 +613,13 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, /* pagein of a big page is an event. So, ignore page size */ if (nr_pages > 0) - __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]); + __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); else { - __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]); + __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); nr_pages = -nr_pages; /* for event */ } - __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages); + __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages); preempt_enable(); } @@ -637,13 +639,34 @@ static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, return total; } -static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift) +static bool __memcg_event_check(struct mem_cgroup *mem, int target) { - s64 val; + unsigned long val, next; + + val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]); + next = this_cpu_read(mem->stat->targets[target]); + /* from time_after() in jiffies.h */ + return ((long)next - (long)val < 0); +} + +static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target) +{ + unsigned long val, next; - val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]); + val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]); - return !(val & ((1 << event_mask_shift) - 1)); + switch (target) { + case MEM_CGROUP_TARGET_THRESH: + next = val + THRESHOLDS_EVENTS_TARGET; + break; + case MEM_CGROUP_TARGET_SOFTLIMIT: + next = val + SOFTLIMIT_EVENTS_TARGET; + break; + default: + return; + } + + this_cpu_write(mem->stat->targets[target], next); } /* @@ -653,10 +676,15 @@ static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift) static void memcg_check_events(struct mem_cgroup *mem, struct page *page) { /* threshold event is triggered in finer grain than soft limit */ - if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) { + if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) { mem_cgroup_threshold(mem); - if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH))) + __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH); + if (unlikely(__memcg_event_check(mem, + MEM_CGROUP_TARGET_SOFTLIMIT))){ mem_cgroup_update_tree(mem, page); + __mem_cgroup_target_update(mem, + MEM_CGROUP_TARGET_SOFTLIMIT); + } } } @@ -815,7 +843,7 @@ void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) * We don't check PCG_USED bit. It's cleared when the "page" is finally * removed from global LRU. */ - mz = page_cgroup_zoneinfo(pc); + mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); /* huge page split is done under lru_lock. so, we have no races. */ MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page); if (mem_cgroup_is_root(pc->mem_cgroup)) @@ -829,6 +857,32 @@ void mem_cgroup_del_lru(struct page *page) mem_cgroup_del_lru_list(page, page_lru(page)); } +/* + * Writeback is about to end against a page which has been marked for immediate + * reclaim. If it still appears to be reclaimable, move it to the tail of the + * inactive list. + */ +void mem_cgroup_rotate_reclaimable_page(struct page *page) +{ + struct mem_cgroup_per_zone *mz; + struct page_cgroup *pc; + enum lru_list lru = page_lru(page); + + if (mem_cgroup_disabled()) + return; + + pc = lookup_page_cgroup(page); + /* unused or root page is not rotated. */ + if (!PageCgroupUsed(pc)) + return; + /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ + smp_rmb(); + if (mem_cgroup_is_root(pc->mem_cgroup)) + return; + mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); + list_move_tail(&pc->lru, &mz->lists[lru]); +} + void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) { struct mem_cgroup_per_zone *mz; @@ -845,7 +899,7 @@ void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) smp_rmb(); if (mem_cgroup_is_root(pc->mem_cgroup)) return; - mz = page_cgroup_zoneinfo(pc); + mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); list_move(&pc->lru, &mz->lists[lru]); } @@ -862,7 +916,7 @@ void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) return; /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ smp_rmb(); - mz = page_cgroup_zoneinfo(pc); + mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); /* huge page split is done under lru_lock. so, we have no races. */ MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page); SetPageCgroupAcctLRU(pc); @@ -872,18 +926,28 @@ void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) } /* - * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to - * lru because the page may.be reused after it's fully uncharged (because of - * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge - * it again. This function is only used to charge SwapCache. It's done under - * lock_page and expected that zone->lru_lock is never held. + * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed + * while it's linked to lru because the page may be reused after it's fully + * uncharged. To handle that, unlink page_cgroup from LRU when charge it again. + * It's done under lock_page and expected that zone->lru_lock isnever held. */ -static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) +static void mem_cgroup_lru_del_before_commit(struct page *page) { unsigned long flags; struct zone *zone = page_zone(page); struct page_cgroup *pc = lookup_page_cgroup(page); + /* + * Doing this check without taking ->lru_lock seems wrong but this + * is safe. Because if page_cgroup's USED bit is unset, the page + * will not be added to any memcg's LRU. If page_cgroup's USED bit is + * set, the commit after this will fail, anyway. + * This all charge/uncharge is done under some mutual execustion. + * So, we don't need to taking care of changes in USED bit. + */ + if (likely(!PageLRU(page))) + return; + spin_lock_irqsave(&zone->lru_lock, flags); /* * Forget old LRU when this page_cgroup is *not* used. This Used bit @@ -894,12 +958,15 @@ static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) spin_unlock_irqrestore(&zone->lru_lock, flags); } -static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) +static void mem_cgroup_lru_add_after_commit(struct page *page) { unsigned long flags; struct zone *zone = page_zone(page); struct page_cgroup *pc = lookup_page_cgroup(page); + /* taking care of that the page is added to LRU while we commit it */ + if (likely(!PageLRU(page))) + return; spin_lock_irqsave(&zone->lru_lock, flags); /* link when the page is linked to LRU but page_cgroup isn't */ if (PageLRU(page) && !PageCgroupAcctLRU(pc)) @@ -1032,10 +1099,7 @@ mem_cgroup_get_reclaim_stat_from_page(struct page *page) return NULL; /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ smp_rmb(); - mz = page_cgroup_zoneinfo(pc); - if (!mz) - return NULL; - + mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); return &mz->reclaim_stat; } @@ -1067,9 +1131,11 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, if (scan >= nr_to_scan) break; - page = pc->page; if (unlikely(!PageCgroupUsed(pc))) continue; + + page = lookup_cgroup_page(pc); + if (unlikely(!PageLRU(page))) continue; @@ -1101,49 +1167,32 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, #define mem_cgroup_from_res_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) -static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) -{ - if (do_swap_account) { - if (res_counter_check_under_limit(&mem->res) && - res_counter_check_under_limit(&mem->memsw)) - return true; - } else - if (res_counter_check_under_limit(&mem->res)) - return true; - return false; -} - /** - * mem_cgroup_check_margin - check if the memory cgroup allows charging - * @mem: memory cgroup to check - * @bytes: the number of bytes the caller intends to charge + * mem_cgroup_margin - calculate chargeable space of a memory cgroup + * @mem: the memory cgroup * - * Returns a boolean value on whether @mem can be charged @bytes or - * whether this would exceed the limit. + * Returns the maximum amount of memory @mem can be charged with, in + * pages. */ -static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes) +static unsigned long mem_cgroup_margin(struct mem_cgroup *mem) { - if (!res_counter_check_margin(&mem->res, bytes)) - return false; - if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes)) - return false; - return true; + unsigned long long margin; + + margin = res_counter_margin(&mem->res); + if (do_swap_account) + margin = min(margin, res_counter_margin(&mem->memsw)); + return margin >> PAGE_SHIFT; } static unsigned int get_swappiness(struct mem_cgroup *memcg) { struct cgroup *cgrp = memcg->css.cgroup; - unsigned int swappiness; /* root ? */ if (cgrp->parent == NULL) return vm_swappiness; - spin_lock(&memcg->reclaim_param_lock); - swappiness = memcg->swappiness; - spin_unlock(&memcg->reclaim_param_lock); - - return swappiness; + return memcg->swappiness; } static void mem_cgroup_start_move(struct mem_cgroup *mem) @@ -1359,13 +1408,11 @@ mem_cgroup_select_victim(struct mem_cgroup *root_mem) rcu_read_unlock(); /* Updates scanning parameter */ - spin_lock(&root_mem->reclaim_param_lock); if (!css) { /* this means start scan from ID:1 */ root_mem->last_scanned_child = 0; } else root_mem->last_scanned_child = found; - spin_unlock(&root_mem->reclaim_param_lock); } return ret; @@ -1394,7 +1441,9 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; - unsigned long excess = mem_cgroup_get_excess(root_mem); + unsigned long excess; + + excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT; /* If memsw_is_minimum==1, swap-out is of-no-use. */ if (root_mem->memsw_is_minimum) @@ -1417,7 +1466,7 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, break; } /* - * We want to do more targetted reclaim. + * We want to do more targeted reclaim. * excess >> 2 is not to excessive so as to * reclaim too much, nor too less that we keep * coming back to reclaim from this cgroup @@ -1451,9 +1500,9 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, return ret; total += ret; if (check_soft) { - if (res_counter_check_under_soft_limit(&root_mem->res)) + if (!res_counter_soft_limit_excess(&root_mem->res)) return total; - } else if (mem_cgroup_check_under_limit(root_mem)) + } else if (mem_cgroup_margin(root_mem)) return 1 + total; } return total; @@ -1661,17 +1710,17 @@ EXPORT_SYMBOL(mem_cgroup_update_page_stat); * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ -#define CHARGE_SIZE (32 * PAGE_SIZE) +#define CHARGE_BATCH 32U struct memcg_stock_pcp { struct mem_cgroup *cached; /* this never be root cgroup */ - int charge; + unsigned int nr_pages; struct work_struct work; }; static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); static atomic_t memcg_drain_count; /* - * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed + * Try to consume stocked charge on this cpu. If success, one page is consumed * from local stock and true is returned. If the stock is 0 or charges from a * cgroup which is not current target, returns false. This stock will be * refilled. @@ -1682,8 +1731,8 @@ static bool consume_stock(struct mem_cgroup *mem) bool ret = true; stock = &get_cpu_var(memcg_stock); - if (mem == stock->cached && stock->charge) - stock->charge -= PAGE_SIZE; + if (mem == stock->cached && stock->nr_pages) + stock->nr_pages--; else /* need to call res_counter_charge */ ret = false; put_cpu_var(memcg_stock); @@ -1697,13 +1746,15 @@ static void drain_stock(struct memcg_stock_pcp *stock) { struct mem_cgroup *old = stock->cached; - if (stock->charge) { - res_counter_uncharge(&old->res, stock->charge); + if (stock->nr_pages) { + unsigned long bytes = stock->nr_pages * PAGE_SIZE; + + res_counter_uncharge(&old->res, bytes); if (do_swap_account) - res_counter_uncharge(&old->memsw, stock->charge); + res_counter_uncharge(&old->memsw, bytes); + stock->nr_pages = 0; } stock->cached = NULL; - stock->charge = 0; } /* @@ -1720,7 +1771,7 @@ static void drain_local_stock(struct work_struct *dummy) * Cache charges(val) which is from res_counter, to local per_cpu area. * This will be consumed by consume_stock() function, later. */ -static void refill_stock(struct mem_cgroup *mem, int val) +static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages) { struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); @@ -1728,7 +1779,7 @@ static void refill_stock(struct mem_cgroup *mem, int val) drain_stock(stock); stock->cached = mem; } - stock->charge += val; + stock->nr_pages += nr_pages; put_cpu_var(memcg_stock); } @@ -1780,11 +1831,17 @@ static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) spin_lock(&mem->pcp_counter_lock); for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { - s64 x = per_cpu(mem->stat->count[i], cpu); + long x = per_cpu(mem->stat->count[i], cpu); per_cpu(mem->stat->count[i], cpu) = 0; mem->nocpu_base.count[i] += x; } + for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { + unsigned long x = per_cpu(mem->stat->events[i], cpu); + + per_cpu(mem->stat->events[i], cpu) = 0; + mem->nocpu_base.events[i] += x; + } /* need to clear ON_MOVE value, works as a kind of lock. */ per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; spin_unlock(&mem->pcp_counter_lock); @@ -1834,9 +1891,10 @@ enum { CHARGE_OOM_DIE, /* the current is killed because of OOM */ }; -static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, - int csize, bool oom_check) +static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, + unsigned int nr_pages, bool oom_check) { + unsigned long csize = nr_pages * PAGE_SIZE; struct mem_cgroup *mem_over_limit; struct res_counter *fail_res; unsigned long flags = 0; @@ -1857,14 +1915,13 @@ static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, } else mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); /* - * csize can be either a huge page (HPAGE_SIZE), a batch of - * regular pages (CHARGE_SIZE), or a single regular page - * (PAGE_SIZE). + * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch + * of regular pages (CHARGE_BATCH), or a single regular page (1). * * Never reclaim on behalf of optional batching, retry with a * single page instead. */ - if (csize == CHARGE_SIZE) + if (nr_pages == CHARGE_BATCH) return CHARGE_RETRY; if (!(gfp_mask & __GFP_WAIT)) @@ -1872,7 +1929,7 @@ static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, gfp_mask, flags); - if (mem_cgroup_check_margin(mem_over_limit, csize)) + if (mem_cgroup_margin(mem_over_limit) >= nr_pages) return CHARGE_RETRY; /* * Even though the limit is exceeded at this point, reclaim @@ -1883,7 +1940,7 @@ static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, * unlikely to succeed so close to the limit, and we fall back * to regular pages anyway in case of failure. */ - if (csize == PAGE_SIZE && ret) + if (nr_pages == 1 && ret) return CHARGE_RETRY; /* @@ -1909,13 +1966,14 @@ static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, */ static int __mem_cgroup_try_charge(struct mm_struct *mm, gfp_t gfp_mask, - struct mem_cgroup **memcg, bool oom, - int page_size) + unsigned int nr_pages, + struct mem_cgroup **memcg, + bool oom) { + unsigned int batch = max(CHARGE_BATCH, nr_pages); int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; struct mem_cgroup *mem = NULL; int ret; - int csize = max(CHARGE_SIZE, (unsigned long) page_size); /* * Unlike gloval-vm's OOM-kill, we're not in memory shortage @@ -1940,7 +1998,7 @@ again: VM_BUG_ON(css_is_removed(&mem->css)); if (mem_cgroup_is_root(mem)) goto done; - if (page_size == PAGE_SIZE && consume_stock(mem)) + if (nr_pages == 1 && consume_stock(mem)) goto done; css_get(&mem->css); } else { @@ -1963,7 +2021,7 @@ again: rcu_read_unlock(); goto done; } - if (page_size == PAGE_SIZE && consume_stock(mem)) { + if (nr_pages == 1 && consume_stock(mem)) { /* * It seems dagerous to access memcg without css_get(). * But considering how consume_stok works, it's not @@ -1998,13 +2056,12 @@ again: nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; } - ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); - + ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check); switch (ret) { case CHARGE_OK: break; case CHARGE_RETRY: /* not in OOM situation but retry */ - csize = page_size; + batch = nr_pages; css_put(&mem->css); mem = NULL; goto again; @@ -2025,8 +2082,8 @@ again: } } while (ret != CHARGE_OK); - if (csize > page_size) - refill_stock(mem, csize - page_size); + if (batch > nr_pages) + refill_stock(mem, batch - nr_pages); css_put(&mem->css); done: *memcg = mem; @@ -2045,21 +2102,17 @@ bypass: * gotten by try_charge(). */ static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, - unsigned long count) + unsigned int nr_pages) { if (!mem_cgroup_is_root(mem)) { - res_counter_uncharge(&mem->res, PAGE_SIZE * count); + unsigned long bytes = nr_pages * PAGE_SIZE; + + res_counter_uncharge(&mem->res, bytes); if (do_swap_account) - res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); + res_counter_uncharge(&mem->memsw, bytes); } } -static void mem_cgroup_cancel_charge(struct mem_cgroup *mem, - int page_size) -{ - __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT); -} - /* * A helper function to get mem_cgroup from ID. must be called under * rcu_read_lock(). The caller must check css_is_removed() or some if @@ -2108,20 +2161,15 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) } static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, + struct page *page, + unsigned int nr_pages, struct page_cgroup *pc, - enum charge_type ctype, - int page_size) + enum charge_type ctype) { - int nr_pages = page_size >> PAGE_SHIFT; - - /* try_charge() can return NULL to *memcg, taking care of it. */ - if (!mem) - return; - lock_page_cgroup(pc); if (unlikely(PageCgroupUsed(pc))) { unlock_page_cgroup(pc); - mem_cgroup_cancel_charge(mem, page_size); + __mem_cgroup_cancel_charge(mem, nr_pages); return; } /* @@ -2158,7 +2206,7 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. * if they exceeds softlimit. */ - memcg_check_events(mem, pc->page); + memcg_check_events(mem, page); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE @@ -2195,7 +2243,7 @@ void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail) * We hold lru_lock, then, reduce counter directly. */ lru = page_lru(head); - mz = page_cgroup_zoneinfo(head_pc); + mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head); MEM_CGROUP_ZSTAT(mz, lru) -= 1; } tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; @@ -2204,7 +2252,9 @@ void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail) #endif /** - * __mem_cgroup_move_account - move account of the page + * mem_cgroup_move_account - move account of the page + * @page: the page + * @nr_pages: number of regular pages (>1 for huge pages) * @pc: page_cgroup of the page. * @from: mem_cgroup which the page is moved from. * @to: mem_cgroup which the page is moved to. @from != @to. @@ -2212,25 +2262,42 @@ void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail) * * The caller must confirm following. * - page is not on LRU (isolate_page() is useful.) - * - the pc is locked, used, and ->mem_cgroup points to @from. + * - compound_lock is held when nr_pages > 1 * * This function doesn't do "charge" nor css_get to new cgroup. It should be - * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is + * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is * true, this function does "uncharge" from old cgroup, but it doesn't if * @uncharge is false, so a caller should do "uncharge". */ - -static void __mem_cgroup_move_account(struct page_cgroup *pc, - struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge, - int charge_size) +static int mem_cgroup_move_account(struct page *page, + unsigned int nr_pages, + struct page_cgroup *pc, + struct mem_cgroup *from, + struct mem_cgroup *to, + bool uncharge) { - int nr_pages = charge_size >> PAGE_SHIFT; + unsigned long flags; + int ret; VM_BUG_ON(from == to); - VM_BUG_ON(PageLRU(pc->page)); - VM_BUG_ON(!page_is_cgroup_locked(pc)); - VM_BUG_ON(!PageCgroupUsed(pc)); - VM_BUG_ON(pc->mem_cgroup != from); + VM_BUG_ON(PageLRU(page)); + /* + * The page is isolated from LRU. So, collapse function + * will not handle this page. But page splitting can happen. + * Do this check under compound_page_lock(). The caller should + * hold it. + */ + ret = -EBUSY; + if (nr_pages > 1 && !PageTransHuge(page)) + goto out; + + lock_page_cgroup(pc); + + ret = -EINVAL; + if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) + goto unlock; + + move_lock_page_cgroup(pc, &flags); if (PageCgroupFileMapped(pc)) { /* Update mapped_file data for mem_cgroup */ @@ -2242,7 +2309,7 @@ static void __mem_cgroup_move_account(struct page_cgroup *pc, mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages); if (uncharge) /* This is not "cancel", but cancel_charge does all we need. */ - mem_cgroup_cancel_charge(from, charge_size); + __mem_cgroup_cancel_charge(from, nr_pages); /* caller should have done css_get */ pc->mem_cgroup = to; @@ -2251,43 +2318,19 @@ static void __mem_cgroup_move_account(struct page_cgroup *pc, * We charges against "to" which may not have any tasks. Then, "to" * can be under rmdir(). But in current implementation, caller of * this function is just force_empty() and move charge, so it's - * garanteed that "to" is never removed. So, we don't check rmdir + * guaranteed that "to" is never removed. So, we don't check rmdir * status here. */ -} - -/* - * check whether the @pc is valid for moving account and call - * __mem_cgroup_move_account() - */ -static int mem_cgroup_move_account(struct page_cgroup *pc, - struct mem_cgroup *from, struct mem_cgroup *to, - bool uncharge, int charge_size) -{ - int ret = -EINVAL; - unsigned long flags; - /* - * The page is isolated from LRU. So, collapse function - * will not handle this page. But page splitting can happen. - * Do this check under compound_page_lock(). The caller should - * hold it. - */ - if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page)) - return -EBUSY; - - lock_page_cgroup(pc); - if (PageCgroupUsed(pc) && pc->mem_cgroup == from) { - move_lock_page_cgroup(pc, &flags); - __mem_cgroup_move_account(pc, from, to, uncharge, charge_size); - move_unlock_page_cgroup(pc, &flags); - ret = 0; - } + move_unlock_page_cgroup(pc, &flags); + ret = 0; +unlock: unlock_page_cgroup(pc); /* * check events */ - memcg_check_events(to, pc->page); - memcg_check_events(from, pc->page); + memcg_check_events(to, page); + memcg_check_events(from, page); +out: return ret; } @@ -2295,16 +2338,16 @@ static int mem_cgroup_move_account(struct page_cgroup *pc, * move charges to its parent. */ -static int mem_cgroup_move_parent(struct page_cgroup *pc, +static int mem_cgroup_move_parent(struct page *page, + struct page_cgroup *pc, struct mem_cgroup *child, gfp_t gfp_mask) { - struct page *page = pc->page; struct cgroup *cg = child->css.cgroup; struct cgroup *pcg = cg->parent; struct mem_cgroup *parent; - int page_size = PAGE_SIZE; - unsigned long flags; + unsigned int nr_pages; + unsigned long uninitialized_var(flags); int ret; /* Is ROOT ? */ @@ -2317,23 +2360,21 @@ static int mem_cgroup_move_parent(struct page_cgroup *pc, if (isolate_lru_page(page)) goto put; - if (PageTransHuge(page)) - page_size = HPAGE_SIZE; + nr_pages = hpage_nr_pages(page); parent = mem_cgroup_from_cont(pcg); - ret = __mem_cgroup_try_charge(NULL, gfp_mask, - &parent, false, page_size); + ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false); if (ret || !parent) goto put_back; - if (page_size > PAGE_SIZE) + if (nr_pages > 1) flags = compound_lock_irqsave(page); - ret = mem_cgroup_move_account(pc, child, parent, true, page_size); + ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true); if (ret) - mem_cgroup_cancel_charge(parent, page_size); + __mem_cgroup_cancel_charge(parent, nr_pages); - if (page_size > PAGE_SIZE) + if (nr_pages > 1) compound_unlock_irqrestore(page, flags); put_back: putback_lru_page(page); @@ -2353,13 +2394,13 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, gfp_t gfp_mask, enum charge_type ctype) { struct mem_cgroup *mem = NULL; - int page_size = PAGE_SIZE; + unsigned int nr_pages = 1; struct page_cgroup *pc; bool oom = true; int ret; if (PageTransHuge(page)) { - page_size <<= compound_order(page); + nr_pages <<= compound_order(page); VM_BUG_ON(!PageTransHuge(page)); /* * Never OOM-kill a process for a huge page. The @@ -2369,16 +2410,13 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, } pc = lookup_page_cgroup(page); - /* can happen at boot */ - if (unlikely(!pc)) - return 0; - prefetchw(pc); + BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */ - ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size); + ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom); if (ret || !mem) return ret; - __mem_cgroup_commit_charge(mem, pc, ctype, page_size); + __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype); return 0; } @@ -2406,9 +2444,26 @@ static void __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, enum charge_type ctype); +static void +__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem, + enum charge_type ctype) +{ + struct page_cgroup *pc = lookup_page_cgroup(page); + /* + * In some case, SwapCache, FUSE(splice_buf->radixtree), the page + * is already on LRU. It means the page may on some other page_cgroup's + * LRU. Take care of it. + */ + mem_cgroup_lru_del_before_commit(page); + __mem_cgroup_commit_charge(mem, page, 1, pc, ctype); + mem_cgroup_lru_add_after_commit(page); + return; +} + int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { + struct mem_cgroup *mem = NULL; int ret; if (mem_cgroup_disabled()) @@ -2443,14 +2498,22 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, if (unlikely(!mm)) mm = &init_mm; - if (page_is_file_cache(page)) - return mem_cgroup_charge_common(page, mm, gfp_mask, - MEM_CGROUP_CHARGE_TYPE_CACHE); + if (page_is_file_cache(page)) { + ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true); + if (ret || !mem) + return ret; + /* + * FUSE reuses pages without going through the final + * put that would remove them from the LRU list, make + * sure that they get relinked properly. + */ + __mem_cgroup_commit_charge_lrucare(page, mem, + MEM_CGROUP_CHARGE_TYPE_CACHE); + return ret; + } /* shmem */ if (PageSwapCache(page)) { - struct mem_cgroup *mem = NULL; - ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); if (!ret) __mem_cgroup_commit_charge_swapin(page, mem, @@ -2475,6 +2538,8 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct mem_cgroup *mem; int ret; + *ptr = NULL; + if (mem_cgroup_disabled()) return 0; @@ -2492,30 +2557,26 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm, if (!mem) goto charge_cur_mm; *ptr = mem; - ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE); + ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true); css_put(&mem->css); return ret; charge_cur_mm: if (unlikely(!mm)) mm = &init_mm; - return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE); + return __mem_cgroup_try_charge(mm, mask, 1, ptr, true); } static void __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, enum charge_type ctype) { - struct page_cgroup *pc; - if (mem_cgroup_disabled()) return; if (!ptr) return; cgroup_exclude_rmdir(&ptr->css); - pc = lookup_page_cgroup(page); - mem_cgroup_lru_del_before_commit_swapcache(page); - __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE); - mem_cgroup_lru_add_after_commit_swapcache(page); + + __mem_cgroup_commit_charge_lrucare(page, ptr, ctype); /* * Now swap is on-memory. This means this page may be * counted both as mem and swap....double count. @@ -2563,15 +2624,16 @@ void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) return; if (!mem) return; - mem_cgroup_cancel_charge(mem, PAGE_SIZE); + __mem_cgroup_cancel_charge(mem, 1); } -static void -__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype, - int page_size) +static void mem_cgroup_do_uncharge(struct mem_cgroup *mem, + unsigned int nr_pages, + const enum charge_type ctype) { struct memcg_batch_info *batch = NULL; bool uncharge_memsw = true; + /* If swapout, usage of swap doesn't decrease */ if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) uncharge_memsw = false; @@ -2586,7 +2648,7 @@ __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype, batch->memcg = mem; /* * do_batch > 0 when unmapping pages or inode invalidate/truncate. - * In those cases, all pages freed continously can be expected to be in + * In those cases, all pages freed continuously can be expected to be in * the same cgroup and we have chance to coalesce uncharges. * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) * because we want to do uncharge as soon as possible. @@ -2595,7 +2657,7 @@ __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype, if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) goto direct_uncharge; - if (page_size != PAGE_SIZE) + if (nr_pages > 1) goto direct_uncharge; /* @@ -2606,14 +2668,14 @@ __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype, if (batch->memcg != mem) goto direct_uncharge; /* remember freed charge and uncharge it later */ - batch->bytes += PAGE_SIZE; + batch->nr_pages++; if (uncharge_memsw) - batch->memsw_bytes += PAGE_SIZE; + batch->memsw_nr_pages++; return; direct_uncharge: - res_counter_uncharge(&mem->res, page_size); + res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE); if (uncharge_memsw) - res_counter_uncharge(&mem->memsw, page_size); + res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE); if (unlikely(batch->memcg != mem)) memcg_oom_recover(mem); return; @@ -2625,10 +2687,9 @@ direct_uncharge: static struct mem_cgroup * __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) { - int count; - struct page_cgroup *pc; struct mem_cgroup *mem = NULL; - int page_size = PAGE_SIZE; + unsigned int nr_pages = 1; + struct page_cgroup *pc; if (mem_cgroup_disabled()) return NULL; @@ -2637,11 +2698,9 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) return NULL; if (PageTransHuge(page)) { - page_size <<= compound_order(page); + nr_pages <<= compound_order(page); VM_BUG_ON(!PageTransHuge(page)); } - - count = page_size >> PAGE_SHIFT; /* * Check if our page_cgroup is valid */ @@ -2674,7 +2733,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) break; } - mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count); + mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages); ClearPageCgroupUsed(pc); /* @@ -2695,7 +2754,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) mem_cgroup_get(mem); } if (!mem_cgroup_is_root(mem)) - __do_uncharge(mem, ctype, page_size); + mem_cgroup_do_uncharge(mem, nr_pages, ctype); return mem; @@ -2735,8 +2794,8 @@ void mem_cgroup_uncharge_start(void) /* We can do nest. */ if (current->memcg_batch.do_batch == 1) { current->memcg_batch.memcg = NULL; - current->memcg_batch.bytes = 0; - current->memcg_batch.memsw_bytes = 0; + current->memcg_batch.nr_pages = 0; + current->memcg_batch.memsw_nr_pages = 0; } } @@ -2757,10 +2816,12 @@ void mem_cgroup_uncharge_end(void) * This "batch->memcg" is valid without any css_get/put etc... * bacause we hide charges behind us. */ - if (batch->bytes) - res_counter_uncharge(&batch->memcg->res, batch->bytes); - if (batch->memsw_bytes) - res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes); + if (batch->nr_pages) + res_counter_uncharge(&batch->memcg->res, + batch->nr_pages * PAGE_SIZE); + if (batch->memsw_nr_pages) + res_counter_uncharge(&batch->memcg->memsw, + batch->memsw_nr_pages * PAGE_SIZE); memcg_oom_recover(batch->memcg); /* forget this pointer (for sanity check) */ batch->memcg = NULL; @@ -2883,13 +2944,15 @@ static inline int mem_cgroup_move_swap_account(swp_entry_t entry, * page belongs to. */ int mem_cgroup_prepare_migration(struct page *page, - struct page *newpage, struct mem_cgroup **ptr) + struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask) { - struct page_cgroup *pc; struct mem_cgroup *mem = NULL; + struct page_cgroup *pc; enum charge_type ctype; int ret = 0; + *ptr = NULL; + VM_BUG_ON(PageTransHuge(page)); if (mem_cgroup_disabled()) return 0; @@ -2940,7 +3003,7 @@ int mem_cgroup_prepare_migration(struct page *page, return 0; *ptr = mem; - ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE); + ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false); css_put(&mem->css);/* drop extra refcnt */ if (ret || *ptr == NULL) { if (PageAnon(page)) { @@ -2967,7 +3030,7 @@ int mem_cgroup_prepare_migration(struct page *page, ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; else ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; - __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE); + __mem_cgroup_commit_charge(mem, page, 1, pc, ctype); return ret; } @@ -3032,7 +3095,7 @@ int mem_cgroup_shmem_charge_fallback(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { - struct mem_cgroup *mem = NULL; + struct mem_cgroup *mem; int ret; if (mem_cgroup_disabled()) @@ -3045,6 +3108,52 @@ int mem_cgroup_shmem_charge_fallback(struct page *page, return ret; } +#ifdef CONFIG_DEBUG_VM +static struct page_cgroup *lookup_page_cgroup_used(struct page *page) +{ + struct page_cgroup *pc; + + pc = lookup_page_cgroup(page); + if (likely(pc) && PageCgroupUsed(pc)) + return pc; + return NULL; +} + +bool mem_cgroup_bad_page_check(struct page *page) +{ + if (mem_cgroup_disabled()) + return false; + + return lookup_page_cgroup_used(page) != NULL; +} + +void mem_cgroup_print_bad_page(struct page *page) +{ + struct page_cgroup *pc; + + pc = lookup_page_cgroup_used(page); + if (pc) { + int ret = -1; + char *path; + + printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p", + pc, pc->flags, pc->mem_cgroup); + + path = kmalloc(PATH_MAX, GFP_KERNEL); + if (path) { + rcu_read_lock(); + ret = cgroup_path(pc->mem_cgroup->css.cgroup, + path, PATH_MAX); + rcu_read_unlock(); + } + + printk(KERN_CONT "(%s)\n", + (ret < 0) ? "cannot get the path" : path); + kfree(path); + } +} +#endif + static DEFINE_MUTEX(set_limit_mutex); static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, @@ -3288,6 +3397,8 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, loop += 256; busy = NULL; while (loop--) { + struct page *page; + ret = 0; spin_lock_irqsave(&zone->lru_lock, flags); if (list_empty(list)) { @@ -3303,7 +3414,9 @@ static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, } spin_unlock_irqrestore(&zone->lru_lock, flags); - ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); + page = lookup_cgroup_page(pc); + + ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL); if (ret == -ENOMEM) break; @@ -3451,13 +3564,13 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, } -static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, - enum mem_cgroup_stat_index idx) +static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem, + enum mem_cgroup_stat_index idx) { struct mem_cgroup *iter; - s64 val = 0; + long val = 0; - /* each per cpu's value can be minus.Then, use s64 */ + /* Per-cpu values can be negative, use a signed accumulator */ for_each_mem_cgroup_tree(iter, mem) val += mem_cgroup_read_stat(iter, idx); @@ -3477,12 +3590,11 @@ static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) return res_counter_read_u64(&mem->memsw, RES_USAGE); } - val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE); - val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS); + val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE); + val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS); if (swap) - val += mem_cgroup_get_recursive_idx_stat(mem, - MEM_CGROUP_STAT_SWAPOUT); + val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT); return val << PAGE_SHIFT; } @@ -3702,9 +3814,9 @@ mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) s->stat[MCS_RSS] += val * PAGE_SIZE; val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; - val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT); + val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN); s->stat[MCS_PGPGIN] += val; - val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT); + val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT); s->stat[MCS_PGPGOUT] += val; if (do_swap_account) { val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); @@ -3828,9 +3940,7 @@ static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, return -EINVAL; } - spin_lock(&memcg->reclaim_param_lock); memcg->swappiness = val; - spin_unlock(&memcg->reclaim_param_lock); cgroup_unlock(); @@ -4486,7 +4596,6 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) res_counter_init(&mem->memsw, NULL); } mem->last_scanned_child = 0; - spin_lock_init(&mem->reclaim_param_lock); INIT_LIST_HEAD(&mem->oom_notify); if (parent) @@ -4574,8 +4683,7 @@ one_by_one: batch_count = PRECHARGE_COUNT_AT_ONCE; cond_resched(); } - ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false, - PAGE_SIZE); + ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false); if (ret || !mem) /* mem_cgroup_clear_mc() will do uncharge later */ return -ENOMEM; @@ -4737,7 +4845,8 @@ static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, pte_t *pte; spinlock_t *ptl; - VM_BUG_ON(pmd_trans_huge(*pmd)); + split_huge_page_pmd(walk->mm, pmd); + pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) if (is_target_pte_for_mc(vma, addr, *pte, NULL)) @@ -4899,8 +5008,8 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, pte_t *pte; spinlock_t *ptl; + split_huge_page_pmd(walk->mm, pmd); retry: - VM_BUG_ON(pmd_trans_huge(*pmd)); pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; addr += PAGE_SIZE) { pte_t ptent = *(pte++); @@ -4920,8 +5029,8 @@ retry: if (isolate_lru_page(page)) goto put; pc = lookup_page_cgroup(page); - if (!mem_cgroup_move_account(pc, - mc.from, mc.to, false, PAGE_SIZE)) { + if (!mem_cgroup_move_account(page, 1, pc, + mc.from, mc.to, false)) { mc.precharge--; /* we uncharge from mc.from later. */ mc.moved_charge++; diff --git a/mm/memory-failure.c b/mm/memory-failure.c index 99ccb4472623..2b9a5eef39e0 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -208,7 +208,7 @@ static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, * Don't use force here, it's convenient if the signal * can be temporarily blocked. * This could cause a loop when the user sets SIGBUS - * to SIG_IGN, but hopefully noone will do that? + * to SIG_IGN, but hopefully no one will do that? */ ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ if (ret < 0) @@ -634,7 +634,7 @@ static int me_pagecache_dirty(struct page *p, unsigned long pfn) * when the page is reread or dropped. If an * application assumes it will always get error on * fsync, but does other operations on the fd before - * and the page is dropped inbetween then the error + * and the page is dropped between then the error * will not be properly reported. * * This can already happen even without hwpoisoned @@ -728,7 +728,7 @@ static int me_huge_page(struct page *p, unsigned long pfn) * The table matches them in order and calls the right handler. * * This is quite tricky because we can access page at any time - * in its live cycle, so all accesses have to be extremly careful. + * in its live cycle, so all accesses have to be extremely careful. * * This is not complete. More states could be added. * For any missing state don't attempt recovery. @@ -945,7 +945,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, collect_procs(ppage, &tokill); if (hpage != ppage) - lock_page_nosync(ppage); + lock_page(ppage); ret = try_to_unmap(ppage, ttu); if (ret != SWAP_SUCCESS) @@ -1038,7 +1038,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) * Check "just unpoisoned", "filter hit", and * "race with other subpage." */ - lock_page_nosync(hpage); + lock_page(hpage); if (!PageHWPoison(hpage) || (hwpoison_filter(p) && TestClearPageHWPoison(p)) || (p != hpage && TestSetPageHWPoison(hpage))) { @@ -1088,7 +1088,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) * It's very difficult to mess with pages currently under IO * and in many cases impossible, so we just avoid it here. */ - lock_page_nosync(hpage); + lock_page(hpage); /* * unpoison always clear PG_hwpoison inside page lock @@ -1130,7 +1130,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) /* * Now take care of user space mappings. - * Abort on fail: __remove_from_page_cache() assumes unmapped page. + * Abort on fail: __delete_from_page_cache() assumes unmapped page. */ if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); @@ -1231,7 +1231,7 @@ int unpoison_memory(unsigned long pfn) return 0; } - lock_page_nosync(page); + lock_page(page); /* * This test is racy because PG_hwpoison is set outside of page lock. * That's acceptable because that won't trigger kernel panic. Instead, diff --git a/mm/memory.c b/mm/memory.c index e48945ab362b..ce22a250926f 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -1410,6 +1410,13 @@ no_page_table: return page; } +static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) +{ + return (vma->vm_flags & VM_GROWSDOWN) && + (vma->vm_start == addr) && + !vma_stack_continue(vma->vm_prev, addr); +} + /** * __get_user_pages() - pin user pages in memory * @tsk: task_struct of target task @@ -1486,9 +1493,8 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, struct vm_area_struct *vma; vma = find_extend_vma(mm, start); - if (!vma && in_gate_area(tsk, start)) { + if (!vma && in_gate_area(mm, start)) { unsigned long pg = start & PAGE_MASK; - struct vm_area_struct *gate_vma = get_gate_vma(tsk); pgd_t *pgd; pud_t *pud; pmd_t *pmd; @@ -1513,10 +1519,11 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, pte_unmap(pte); return i ? : -EFAULT; } + vma = get_gate_vma(mm); if (pages) { struct page *page; - page = vm_normal_page(gate_vma, start, *pte); + page = vm_normal_page(vma, start, *pte); if (!page) { if (!(gup_flags & FOLL_DUMP) && is_zero_pfn(pte_pfn(*pte))) @@ -1530,12 +1537,7 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, get_page(page); } pte_unmap(pte); - if (vmas) - vmas[i] = gate_vma; - i++; - start += PAGE_SIZE; - nr_pages--; - continue; + goto next_page; } if (!vma || @@ -1549,6 +1551,13 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, continue; } + /* + * If we don't actually want the page itself, + * and it's the stack guard page, just skip it. + */ + if (!pages && stack_guard_page(vma, start)) + goto next_page; + do { struct page *page; unsigned int foll_flags = gup_flags; @@ -1569,6 +1578,8 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, fault_flags |= FAULT_FLAG_WRITE; if (nonblocking) fault_flags |= FAULT_FLAG_ALLOW_RETRY; + if (foll_flags & FOLL_NOWAIT) + fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); ret = handle_mm_fault(mm, vma, start, fault_flags); @@ -1589,13 +1600,17 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, return i ? i : -EFAULT; BUG(); } - if (ret & VM_FAULT_MAJOR) - tsk->maj_flt++; - else - tsk->min_flt++; + + if (tsk) { + if (ret & VM_FAULT_MAJOR) + tsk->maj_flt++; + else + tsk->min_flt++; + } if (ret & VM_FAULT_RETRY) { - *nonblocking = 0; + if (nonblocking) + *nonblocking = 0; return i; } @@ -1625,6 +1640,7 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, flush_anon_page(vma, page, start); flush_dcache_page(page); } +next_page: if (vmas) vmas[i] = vma; i++; @@ -1638,7 +1654,8 @@ EXPORT_SYMBOL(__get_user_pages); /** * get_user_pages() - pin user pages in memory - * @tsk: task_struct of target task + * @tsk: the task_struct to use for page fault accounting, or + * NULL if faults are not to be recorded. * @mm: mm_struct of target mm * @start: starting user address * @nr_pages: number of pages from start to pin @@ -2764,7 +2781,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, swp_entry_t entry; pte_t pte; int locked; - struct mem_cgroup *ptr = NULL; + struct mem_cgroup *ptr; int exclusive = 0; int ret = 0; @@ -3496,7 +3513,7 @@ static int __init gate_vma_init(void) __initcall(gate_vma_init); #endif -struct vm_area_struct *get_gate_vma(struct task_struct *tsk) +struct vm_area_struct *get_gate_vma(struct mm_struct *mm) { #ifdef AT_SYSINFO_EHDR return &gate_vma; @@ -3505,7 +3522,7 @@ struct vm_area_struct *get_gate_vma(struct task_struct *tsk) #endif } -int in_gate_area_no_task(unsigned long addr) +int in_gate_area_no_mm(unsigned long addr) { #ifdef AT_SYSINFO_EHDR if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) @@ -3646,20 +3663,15 @@ int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, #endif /* - * Access another process' address space. - * Source/target buffer must be kernel space, - * Do not walk the page table directly, use get_user_pages + * Access another process' address space as given in mm. If non-NULL, use the + * given task for page fault accounting. */ -int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) +static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, + unsigned long addr, void *buf, int len, int write) { - struct mm_struct *mm; struct vm_area_struct *vma; void *old_buf = buf; - mm = get_task_mm(tsk); - if (!mm) - return 0; - down_read(&mm->mmap_sem); /* ignore errors, just check how much was successfully transferred */ while (len) { @@ -3676,7 +3688,7 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in */ #ifdef CONFIG_HAVE_IOREMAP_PROT vma = find_vma(mm, addr); - if (!vma) + if (!vma || vma->vm_start > addr) break; if (vma->vm_ops && vma->vm_ops->access) ret = vma->vm_ops->access(vma, addr, buf, @@ -3708,11 +3720,47 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in addr += bytes; } up_read(&mm->mmap_sem); - mmput(mm); return buf - old_buf; } +/** + * access_remote_vm - access another process' address space + * @mm: the mm_struct of the target address space + * @addr: start address to access + * @buf: source or destination buffer + * @len: number of bytes to transfer + * @write: whether the access is a write + * + * The caller must hold a reference on @mm. + */ +int access_remote_vm(struct mm_struct *mm, unsigned long addr, + void *buf, int len, int write) +{ + return __access_remote_vm(NULL, mm, addr, buf, len, write); +} + +/* + * Access another process' address space. + * Source/target buffer must be kernel space, + * Do not walk the page table directly, use get_user_pages + */ +int access_process_vm(struct task_struct *tsk, unsigned long addr, + void *buf, int len, int write) +{ + struct mm_struct *mm; + int ret; + + mm = get_task_mm(tsk); + if (!mm) + return 0; + + ret = __access_remote_vm(tsk, mm, addr, buf, len, write); + mmput(mm); + + return ret; +} + /* * Print the name of a VMA. */ diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index 321fc7455df7..9ca1d604f7cd 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -375,7 +375,7 @@ void online_page(struct page *page) #endif #ifdef CONFIG_FLATMEM - max_mapnr = max(page_to_pfn(page), max_mapnr); + max_mapnr = max(pfn, max_mapnr); #endif ClearPageReserved(page); @@ -724,7 +724,7 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) pfn); dump_page(page); #endif - /* Becasue we don't have big zone->lock. we should + /* Because we don't have big zone->lock. we should check this again here. */ if (page_count(page)) { not_managed++; diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 78062ab641ff..959a8b8c7350 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -1979,8 +1979,7 @@ int __mpol_equal(struct mempolicy *a, struct mempolicy *b) case MPOL_INTERLEAVE: return nodes_equal(a->v.nodes, b->v.nodes); case MPOL_PREFERRED: - return a->v.preferred_node == b->v.preferred_node && - a->flags == b->flags; + return a->v.preferred_node == b->v.preferred_node; default: BUG(); return 0; diff --git a/mm/migrate.c b/mm/migrate.c index 352de555626c..34132f8e9109 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -375,7 +375,7 @@ void migrate_page_copy(struct page *newpage, struct page *page) * redo the accounting that clear_page_dirty_for_io undid, * but we can't use set_page_dirty because that function * is actually a signal that all of the page has become dirty. - * Wheras only part of our page may be dirty. + * Whereas only part of our page may be dirty. */ __set_page_dirty_nobuffers(newpage); } @@ -564,7 +564,7 @@ static int fallback_migrate_page(struct address_space *mapping, * == 0 - success */ static int move_to_new_page(struct page *newpage, struct page *page, - int remap_swapcache) + int remap_swapcache, bool sync) { struct address_space *mapping; int rc; @@ -586,18 +586,28 @@ static int move_to_new_page(struct page *newpage, struct page *page, mapping = page_mapping(page); if (!mapping) rc = migrate_page(mapping, newpage, page); - else if (mapping->a_ops->migratepage) + else { /* - * Most pages have a mapping and most filesystems - * should provide a migration function. Anonymous - * pages are part of swap space which also has its - * own migration function. This is the most common - * path for page migration. + * Do not writeback pages if !sync and migratepage is + * not pointing to migrate_page() which is nonblocking + * (swapcache/tmpfs uses migratepage = migrate_page). */ - rc = mapping->a_ops->migratepage(mapping, - newpage, page); - else - rc = fallback_migrate_page(mapping, newpage, page); + if (PageDirty(page) && !sync && + mapping->a_ops->migratepage != migrate_page) + rc = -EBUSY; + else if (mapping->a_ops->migratepage) + /* + * Most pages have a mapping and most filesystems + * should provide a migration function. Anonymous + * pages are part of swap space which also has its + * own migration function. This is the most common + * path for page migration. + */ + rc = mapping->a_ops->migratepage(mapping, + newpage, page); + else + rc = fallback_migrate_page(mapping, newpage, page); + } if (rc) { newpage->mapping = NULL; @@ -623,7 +633,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, struct page *newpage = get_new_page(page, private, &result); int remap_swapcache = 1; int charge = 0; - struct mem_cgroup *mem = NULL; + struct mem_cgroup *mem; struct anon_vma *anon_vma = NULL; if (!newpage) @@ -641,7 +651,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, rc = -EAGAIN; if (!trylock_page(page)) { - if (!force) + if (!force || !sync) goto move_newpage; /* @@ -678,7 +688,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, } /* charge against new page */ - charge = mem_cgroup_prepare_migration(page, newpage, &mem); + charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL); if (charge == -ENOMEM) { rc = -ENOMEM; goto unlock; @@ -686,7 +696,15 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, BUG_ON(charge); if (PageWriteback(page)) { - if (!force || !sync) + /* + * For !sync, there is no point retrying as the retry loop + * is expected to be too short for PageWriteback to be cleared + */ + if (!sync) { + rc = -EBUSY; + goto uncharge; + } + if (!force) goto uncharge; wait_on_page_writeback(page); } @@ -757,14 +775,14 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, skip_unmap: if (!page_mapped(page)) - rc = move_to_new_page(newpage, page, remap_swapcache); + rc = move_to_new_page(newpage, page, remap_swapcache, sync); if (rc && remap_swapcache) remove_migration_ptes(page, page); /* Drop an anon_vma reference if we took one */ if (anon_vma) - drop_anon_vma(anon_vma); + put_anon_vma(anon_vma); uncharge: if (!charge) @@ -850,13 +868,13 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); if (!page_mapped(hpage)) - rc = move_to_new_page(new_hpage, hpage, 1); + rc = move_to_new_page(new_hpage, hpage, 1, sync); if (rc) remove_migration_ptes(hpage, hpage); if (anon_vma) - drop_anon_vma(anon_vma); + put_anon_vma(anon_vma); out: unlock_page(hpage); diff --git a/mm/mlock.c b/mm/mlock.c index c3924c7f00be..6b55e3efe0df 100644 --- a/mm/mlock.c +++ b/mm/mlock.c @@ -135,13 +135,6 @@ void munlock_vma_page(struct page *page) } } -static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) -{ - return (vma->vm_flags & VM_GROWSDOWN) && - (vma->vm_start == addr) && - !vma_stack_continue(vma->vm_prev, addr); -} - /** * __mlock_vma_pages_range() - mlock a range of pages in the vma. * @vma: target vma @@ -188,12 +181,6 @@ static long __mlock_vma_pages_range(struct vm_area_struct *vma, if (vma->vm_flags & VM_LOCKED) gup_flags |= FOLL_MLOCK; - /* We don't try to access the guard page of a stack vma */ - if (stack_guard_page(vma, start)) { - addr += PAGE_SIZE; - nr_pages--; - } - return __get_user_pages(current, mm, addr, nr_pages, gup_flags, NULL, NULL, nonblocking); } @@ -237,7 +224,7 @@ long mlock_vma_pages_range(struct vm_area_struct *vma, if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) || is_vm_hugetlb_page(vma) || - vma == get_gate_vma(current))) { + vma == get_gate_vma(current->mm))) { __mlock_vma_pages_range(vma, start, end, NULL); @@ -332,7 +319,7 @@ static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, int lock = newflags & VM_LOCKED; if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || - is_vm_hugetlb_page(vma) || vma == get_gate_vma(current)) + is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) goto out; /* don't set VM_LOCKED, don't count */ pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); diff --git a/mm/mmap.c b/mm/mmap.c index 2ec8eb5a9cdd..e27e0cf0de03 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -259,7 +259,7 @@ SYSCALL_DEFINE1(brk, unsigned long, brk) * randomize_va_space to 2, which will still cause mm->start_brk * to be arbitrarily shifted */ - if (mm->start_brk > PAGE_ALIGN(mm->end_data)) + if (current->brk_randomized) min_brk = mm->start_brk; else min_brk = mm->end_data; @@ -1814,11 +1814,14 @@ static int expand_downwards(struct vm_area_struct *vma, size = vma->vm_end - address; grow = (vma->vm_start - address) >> PAGE_SHIFT; - error = acct_stack_growth(vma, size, grow); - if (!error) { - vma->vm_start = address; - vma->vm_pgoff -= grow; - perf_event_mmap(vma); + error = -ENOMEM; + if (grow <= vma->vm_pgoff) { + error = acct_stack_growth(vma, size, grow); + if (!error) { + vma->vm_start = address; + vma->vm_pgoff -= grow; + perf_event_mmap(vma); + } } } vma_unlock_anon_vma(vma); diff --git a/mm/mremap.c b/mm/mremap.c index 1de98d492ddc..a7c1f9f9b941 100644 --- a/mm/mremap.c +++ b/mm/mremap.c @@ -277,9 +277,16 @@ static struct vm_area_struct *vma_to_resize(unsigned long addr, if (old_len > vma->vm_end - addr) goto Efault; - if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) { - if (new_len > old_len) + /* Need to be careful about a growing mapping */ + if (new_len > old_len) { + unsigned long pgoff; + + if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) goto Efault; + pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; + pgoff += vma->vm_pgoff; + if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) + goto Einval; } if (vma->vm_flags & VM_LOCKED) { diff --git a/mm/nobootmem.c b/mm/nobootmem.c index e2bdb07079ce..9109049f0bbc 100644 --- a/mm/nobootmem.c +++ b/mm/nobootmem.c @@ -32,14 +32,6 @@ unsigned long max_low_pfn; unsigned long min_low_pfn; unsigned long max_pfn; -#ifdef CONFIG_CRASH_DUMP -/* - * If we have booted due to a crash, max_pfn will be a very low value. We need - * to know the amount of memory that the previous kernel used. - */ -unsigned long saved_max_pfn; -#endif - static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, u64 goal, u64 limit) { @@ -158,7 +150,7 @@ unsigned long __init free_all_bootmem(void) { /* * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id - * because in some case like Node0 doesnt have RAM installed + * because in some case like Node0 doesn't have RAM installed * low ram will be on Node1 * Use MAX_NUMNODES will make sure all ranges in early_node_map[] * will be used instead of only Node0 related diff --git a/mm/nommu.c b/mm/nommu.c index f59e1424d3db..c4c542c736a9 100644 --- a/mm/nommu.c +++ b/mm/nommu.c @@ -1842,10 +1842,6 @@ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, } EXPORT_SYMBOL(remap_vmalloc_range); -void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) -{ -} - unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { @@ -1963,7 +1959,7 @@ error: return -ENOMEM; } -int in_gate_area_no_task(unsigned long addr) +int in_gate_area_no_mm(unsigned long addr) { return 0; } @@ -1975,21 +1971,10 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) } EXPORT_SYMBOL(filemap_fault); -/* - * Access another process' address space. - * - source/target buffer must be kernel space - */ -int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) +static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, + unsigned long addr, void *buf, int len, int write) { struct vm_area_struct *vma; - struct mm_struct *mm; - - if (addr + len < addr) - return 0; - - mm = get_task_mm(tsk); - if (!mm) - return 0; down_read(&mm->mmap_sem); @@ -2014,6 +1999,43 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, in } up_read(&mm->mmap_sem); + + return len; +} + +/** + * @access_remote_vm - access another process' address space + * @mm: the mm_struct of the target address space + * @addr: start address to access + * @buf: source or destination buffer + * @len: number of bytes to transfer + * @write: whether the access is a write + * + * The caller must hold a reference on @mm. + */ +int access_remote_vm(struct mm_struct *mm, unsigned long addr, + void *buf, int len, int write) +{ + return __access_remote_vm(NULL, mm, addr, buf, len, write); +} + +/* + * Access another process' address space. + * - source/target buffer must be kernel space + */ +int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) +{ + struct mm_struct *mm; + + if (addr + len < addr) + return 0; + + mm = get_task_mm(tsk); + if (!mm) + return 0; + + len = __access_remote_vm(tsk, mm, addr, buf, len, write); + mmput(mm); return len; } diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 7dcca55ede7c..83fb72c108b7 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c @@ -31,6 +31,7 @@ #include <linux/memcontrol.h> #include <linux/mempolicy.h> #include <linux/security.h> +#include <linux/ptrace.h> int sysctl_panic_on_oom; int sysctl_oom_kill_allocating_task; @@ -83,24 +84,6 @@ static bool has_intersects_mems_allowed(struct task_struct *tsk, #endif /* CONFIG_NUMA */ /* - * If this is a system OOM (not a memcg OOM) and the task selected to be - * killed is not already running at high (RT) priorities, speed up the - * recovery by boosting the dying task to the lowest FIFO priority. - * That helps with the recovery and avoids interfering with RT tasks. - */ -static void boost_dying_task_prio(struct task_struct *p, - struct mem_cgroup *mem) -{ - struct sched_param param = { .sched_priority = 1 }; - - if (mem) - return; - - if (!rt_task(p)) - sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); -} - -/* * The process p may have detached its own ->mm while exiting or through * use_mm(), but one or more of its subthreads may still have a valid * pointer. Return p, or any of its subthreads with a valid ->mm, with @@ -292,13 +275,15 @@ static struct task_struct *select_bad_process(unsigned int *ppoints, unsigned long totalpages, struct mem_cgroup *mem, const nodemask_t *nodemask) { - struct task_struct *p; + struct task_struct *g, *p; struct task_struct *chosen = NULL; *ppoints = 0; - for_each_process(p) { + do_each_thread(g, p) { unsigned int points; + if (!p->mm) + continue; if (oom_unkillable_task(p, mem, nodemask)) continue; @@ -314,22 +299,29 @@ static struct task_struct *select_bad_process(unsigned int *ppoints, if (test_tsk_thread_flag(p, TIF_MEMDIE)) return ERR_PTR(-1UL); - /* - * This is in the process of releasing memory so wait for it - * to finish before killing some other task by mistake. - * - * However, if p is the current task, we allow the 'kill' to - * go ahead if it is exiting: this will simply set TIF_MEMDIE, - * which will allow it to gain access to memory reserves in - * the process of exiting and releasing its resources. - * Otherwise we could get an easy OOM deadlock. - */ - if (thread_group_empty(p) && (p->flags & PF_EXITING) && p->mm) { - if (p != current) - return ERR_PTR(-1UL); - - chosen = p; - *ppoints = 1000; + if (p->flags & PF_EXITING) { + /* + * If p is the current task and is in the process of + * releasing memory, we allow the "kill" to set + * TIF_MEMDIE, which will allow it to gain access to + * memory reserves. Otherwise, it may stall forever. + * + * The loop isn't broken here, however, in case other + * threads are found to have already been oom killed. + */ + if (p == current) { + chosen = p; + *ppoints = 1000; + } else { + /* + * If this task is not being ptraced on exit, + * then wait for it to finish before killing + * some other task unnecessarily. + */ + if (!(task_ptrace(p->group_leader) & + PT_TRACE_EXIT)) + return ERR_PTR(-1UL); + } } points = oom_badness(p, mem, nodemask, totalpages); @@ -337,7 +329,7 @@ static struct task_struct *select_bad_process(unsigned int *ppoints, chosen = p; *ppoints = points; } - } + } while_each_thread(g, p); return chosen; } @@ -396,7 +388,7 @@ static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, task_unlock(current); dump_stack(); mem_cgroup_print_oom_info(mem, p); - show_mem(); + show_mem(SHOW_MEM_FILTER_NODES); if (sysctl_oom_dump_tasks) dump_tasks(mem, nodemask); } @@ -442,13 +434,6 @@ static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) set_tsk_thread_flag(p, TIF_MEMDIE); force_sig(SIGKILL, p); - /* - * We give our sacrificial lamb high priority and access to - * all the memory it needs. That way it should be able to - * exit() and clear out its resources quickly... - */ - boost_dying_task_prio(p, mem); - return 0; } #undef K @@ -472,7 +457,6 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, */ if (p->flags & PF_EXITING) { set_tsk_thread_flag(p, TIF_MEMDIE); - boost_dying_task_prio(p, mem); return 0; } @@ -491,6 +475,8 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, list_for_each_entry(child, &t->children, sibling) { unsigned int child_points; + if (child->mm == p->mm) + continue; /* * oom_badness() returns 0 if the thread is unkillable */ @@ -537,6 +523,16 @@ void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) unsigned int points = 0; struct task_struct *p; + /* + * If current has a pending SIGKILL, then automatically select it. The + * goal is to allow it to allocate so that it may quickly exit and free + * its memory. + */ + if (fatal_signal_pending(current)) { + set_thread_flag(TIF_MEMDIE); + return; + } + check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL); limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; read_lock(&tasklist_lock); @@ -689,7 +685,6 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, */ if (fatal_signal_pending(current)) { set_thread_flag(TIF_MEMDIE); - boost_dying_task_prio(current, NULL); return; } diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 2cb01f6ec5d0..31f698862420 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -927,7 +927,7 @@ retry: break; } - done_index = page->index + 1; + done_index = page->index; lock_page(page); @@ -977,6 +977,7 @@ continue_unlock: * not be suitable for data integrity * writeout). */ + done_index = page->index + 1; done = 1; break; } @@ -1039,11 +1040,17 @@ static int __writepage(struct page *page, struct writeback_control *wbc, int generic_writepages(struct address_space *mapping, struct writeback_control *wbc) { + struct blk_plug plug; + int ret; + /* deal with chardevs and other special file */ if (!mapping->a_ops->writepage) return 0; - return write_cache_pages(mapping, wbc, __writepage, mapping); + blk_start_plug(&plug); + ret = write_cache_pages(mapping, wbc, __writepage, mapping); + blk_finish_plug(&plug); + return ret; } EXPORT_SYMBOL(generic_writepages); @@ -1211,6 +1218,17 @@ int set_page_dirty(struct page *page) if (likely(mapping)) { int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; + /* + * readahead/lru_deactivate_page could remain + * PG_readahead/PG_reclaim due to race with end_page_writeback + * About readahead, if the page is written, the flags would be + * reset. So no problem. + * About lru_deactivate_page, if the page is redirty, the flag + * will be reset. So no problem. but if the page is used by readahead + * it will confuse readahead and make it restart the size rampup + * process. But it's a trivial problem. + */ + ClearPageReclaim(page); #ifdef CONFIG_BLOCK if (!spd) spd = __set_page_dirty_buffers; @@ -1239,7 +1257,7 @@ int set_page_dirty_lock(struct page *page) { int ret; - lock_page_nosync(page); + lock_page(page); ret = set_page_dirty(page); unlock_page(page); return ret; @@ -1266,7 +1284,6 @@ int clear_page_dirty_for_io(struct page *page) BUG_ON(!PageLocked(page)); - ClearPageReclaim(page); if (mapping && mapping_cap_account_dirty(mapping)) { /* * Yes, Virginia, this is indeed insane. diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 48c9737ad49a..df9fc3385fb2 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -53,6 +53,7 @@ #include <linux/compaction.h> #include <trace/events/kmem.h> #include <linux/ftrace_event.h> +#include <linux/memcontrol.h> #include <asm/tlbflush.h> #include <asm/div64.h> @@ -565,7 +566,8 @@ static inline int free_pages_check(struct page *page) if (unlikely(page_mapcount(page) | (page->mapping != NULL) | (atomic_read(&page->_count) != 0) | - (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { + (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | + (mem_cgroup_bad_page_check(page)))) { bad_page(page); return 1; } @@ -614,6 +616,10 @@ static void free_pcppages_bulk(struct zone *zone, int count, list = &pcp->lists[migratetype]; } while (list_empty(list)); + /* This is the only non-empty list. Free them all. */ + if (batch_free == MIGRATE_PCPTYPES) + batch_free = to_free; + do { page = list_entry(list->prev, struct page, lru); /* must delete as __free_one_page list manipulates */ @@ -750,7 +756,8 @@ static inline int check_new_page(struct page *page) if (unlikely(page_mapcount(page) | (page->mapping != NULL) | (atomic_read(&page->_count) != 0) | - (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { + (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | + (mem_cgroup_bad_page_check(page)))) { bad_page(page); return 1; } @@ -863,9 +870,8 @@ static int move_freepages(struct zone *zone, } order = page_order(page); - list_del(&page->lru); - list_add(&page->lru, - &zone->free_area[order].free_list[migratetype]); + list_move(&page->lru, + &zone->free_area[order].free_list[migratetype]); page += 1 << order; pages_moved += 1 << order; } @@ -936,7 +942,7 @@ __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) * If breaking a large block of pages, move all free * pages to the preferred allocation list. If falling * back for a reclaimable kernel allocation, be more - * agressive about taking ownership of free pages + * aggressive about taking ownership of free pages */ if (unlikely(current_order >= (pageblock_order >> 1)) || start_migratetype == MIGRATE_RECLAIMABLE || @@ -1333,7 +1339,7 @@ again: } __count_zone_vm_events(PGALLOC, zone, 1 << order); - zone_statistics(preferred_zone, zone); + zone_statistics(preferred_zone, zone, gfp_flags); local_irq_restore(flags); VM_BUG_ON(bad_range(zone, page)); @@ -1714,6 +1720,20 @@ try_next_zone: return page; } +/* + * Large machines with many possible nodes should not always dump per-node + * meminfo in irq context. + */ +static inline bool should_suppress_show_mem(void) +{ + bool ret = false; + +#if NODES_SHIFT > 8 + ret = in_interrupt(); +#endif + return ret; +} + static inline int should_alloc_retry(gfp_t gfp_mask, unsigned int order, unsigned long pages_reclaimed) @@ -2085,7 +2105,7 @@ rebalance: sync_migration); if (page) goto got_pg; - sync_migration = true; + sync_migration = !(gfp_mask & __GFP_NO_KSWAPD); /* Try direct reclaim and then allocating */ page = __alloc_pages_direct_reclaim(gfp_mask, order, @@ -2157,11 +2177,25 @@ rebalance: nopage: if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { - printk(KERN_WARNING "%s: page allocation failure." - " order:%d, mode:0x%x\n", + unsigned int filter = SHOW_MEM_FILTER_NODES; + + /* + * This documents exceptions given to allocations in certain + * contexts that are allowed to allocate outside current's set + * of allowed nodes. + */ + if (!(gfp_mask & __GFP_NOMEMALLOC)) + if (test_thread_flag(TIF_MEMDIE) || + (current->flags & (PF_MEMALLOC | PF_EXITING))) + filter &= ~SHOW_MEM_FILTER_NODES; + if (in_interrupt() || !wait) + filter &= ~SHOW_MEM_FILTER_NODES; + + pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n", current->comm, order, gfp_mask); dump_stack(); - show_mem(); + if (!should_suppress_show_mem()) + show_mem(filter); } return page; got_pg: @@ -2411,19 +2445,42 @@ void si_meminfo_node(struct sysinfo *val, int nid) } #endif +/* + * Determine whether the zone's node should be displayed or not, depending on + * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas(). + */ +static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone) +{ + bool ret = false; + + if (!(flags & SHOW_MEM_FILTER_NODES)) + goto out; + + get_mems_allowed(); + ret = !node_isset(zone->zone_pgdat->node_id, + cpuset_current_mems_allowed); + put_mems_allowed(); +out: + return ret; +} + #define K(x) ((x) << (PAGE_SHIFT-10)) /* * Show free area list (used inside shift_scroll-lock stuff) * We also calculate the percentage fragmentation. We do this by counting the * memory on each free list with the exception of the first item on the list. + * Suppresses nodes that are not allowed by current's cpuset if + * SHOW_MEM_FILTER_NODES is passed. */ -void show_free_areas(void) +void __show_free_areas(unsigned int filter) { int cpu; struct zone *zone; for_each_populated_zone(zone) { + if (skip_free_areas_zone(filter, zone)) + continue; show_node(zone); printk("%s per-cpu:\n", zone->name); @@ -2465,6 +2522,8 @@ void show_free_areas(void) for_each_populated_zone(zone) { int i; + if (skip_free_areas_zone(filter, zone)) + continue; show_node(zone); printk("%s" " free:%lukB" @@ -2532,6 +2591,8 @@ void show_free_areas(void) for_each_populated_zone(zone) { unsigned long nr[MAX_ORDER], flags, order, total = 0; + if (skip_free_areas_zone(filter, zone)) + continue; show_node(zone); printk("%s: ", zone->name); @@ -2551,6 +2612,11 @@ void show_free_areas(void) show_swap_cache_info(); } +void show_free_areas(void) +{ + __show_free_areas(0); +} + static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) { zoneref->zone = zone; @@ -3110,7 +3176,7 @@ static __init_refok int __build_all_zonelists(void *data) * Called with zonelists_mutex held always * unless system_state == SYSTEM_BOOTING. */ -void build_all_zonelists(void *data) +void __ref build_all_zonelists(void *data) { set_zonelist_order(); @@ -3860,7 +3926,7 @@ static void __init find_usable_zone_for_movable(void) /* * The zone ranges provided by the architecture do not include ZONE_MOVABLE - * because it is sized independant of architecture. Unlike the other zones, + * because it is sized independent of architecture. Unlike the other zones, * the starting point for ZONE_MOVABLE is not fixed. It may be different * in each node depending on the size of each node and how evenly kernelcore * is distributed. This helper function adjusts the zone ranges @@ -5621,4 +5687,5 @@ void dump_page(struct page *page) page, atomic_read(&page->_count), page_mapcount(page), page->mapping, page->index); dump_page_flags(page->flags); + mem_cgroup_print_bad_page(page); } diff --git a/mm/page_cgroup.c b/mm/page_cgroup.c index 5bffada7cde1..99055010cece 100644 --- a/mm/page_cgroup.c +++ b/mm/page_cgroup.c @@ -11,12 +11,11 @@ #include <linux/swapops.h> #include <linux/kmemleak.h> -static void __meminit -__init_page_cgroup(struct page_cgroup *pc, unsigned long pfn) +static void __meminit init_page_cgroup(struct page_cgroup *pc, unsigned long id) { pc->flags = 0; + set_page_cgroup_array_id(pc, id); pc->mem_cgroup = NULL; - pc->page = pfn_to_page(pfn); INIT_LIST_HEAD(&pc->lru); } static unsigned long total_usage; @@ -43,6 +42,19 @@ struct page_cgroup *lookup_page_cgroup(struct page *page) return base + offset; } +struct page *lookup_cgroup_page(struct page_cgroup *pc) +{ + unsigned long pfn; + struct page *page; + pg_data_t *pgdat; + + pgdat = NODE_DATA(page_cgroup_array_id(pc)); + pfn = pc - pgdat->node_page_cgroup + pgdat->node_start_pfn; + page = pfn_to_page(pfn); + VM_BUG_ON(pc != lookup_page_cgroup(page)); + return page; +} + static int __init alloc_node_page_cgroup(int nid) { struct page_cgroup *base, *pc; @@ -63,7 +75,7 @@ static int __init alloc_node_page_cgroup(int nid) return -ENOMEM; for (index = 0; index < nr_pages; index++) { pc = base + index; - __init_page_cgroup(pc, start_pfn + index); + init_page_cgroup(pc, nid); } NODE_DATA(nid)->node_page_cgroup = base; total_usage += table_size; @@ -105,46 +117,75 @@ struct page_cgroup *lookup_page_cgroup(struct page *page) return section->page_cgroup + pfn; } -/* __alloc_bootmem...() is protected by !slab_available() */ +struct page *lookup_cgroup_page(struct page_cgroup *pc) +{ + struct mem_section *section; + struct page *page; + unsigned long nr; + + nr = page_cgroup_array_id(pc); + section = __nr_to_section(nr); + page = pfn_to_page(pc - section->page_cgroup); + VM_BUG_ON(pc != lookup_page_cgroup(page)); + return page; +} + +static void *__init_refok alloc_page_cgroup(size_t size, int nid) +{ + void *addr = NULL; + + addr = alloc_pages_exact(size, GFP_KERNEL | __GFP_NOWARN); + if (addr) + return addr; + + if (node_state(nid, N_HIGH_MEMORY)) + addr = vmalloc_node(size, nid); + else + addr = vmalloc(size); + + return addr; +} + +#ifdef CONFIG_MEMORY_HOTPLUG +static void free_page_cgroup(void *addr) +{ + if (is_vmalloc_addr(addr)) { + vfree(addr); + } else { + struct page *page = virt_to_page(addr); + size_t table_size = + sizeof(struct page_cgroup) * PAGES_PER_SECTION; + + BUG_ON(PageReserved(page)); + free_pages_exact(addr, table_size); + } +} +#endif + static int __init_refok init_section_page_cgroup(unsigned long pfn) { - struct mem_section *section = __pfn_to_section(pfn); struct page_cgroup *base, *pc; + struct mem_section *section; unsigned long table_size; + unsigned long nr; int nid, index; - if (!section->page_cgroup) { - nid = page_to_nid(pfn_to_page(pfn)); - table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION; - VM_BUG_ON(!slab_is_available()); - if (node_state(nid, N_HIGH_MEMORY)) { - base = kmalloc_node(table_size, - GFP_KERNEL | __GFP_NOWARN, nid); - if (!base) - base = vmalloc_node(table_size, nid); - } else { - base = kmalloc(table_size, GFP_KERNEL | __GFP_NOWARN); - if (!base) - base = vmalloc(table_size); - } - /* - * The value stored in section->page_cgroup is (base - pfn) - * and it does not point to the memory block allocated above, - * causing kmemleak false positives. - */ - kmemleak_not_leak(base); - } else { - /* - * We don't have to allocate page_cgroup again, but - * address of memmap may be changed. So, we have to initialize - * again. - */ - base = section->page_cgroup + pfn; - table_size = 0; - /* check address of memmap is changed or not. */ - if (base->page == pfn_to_page(pfn)) - return 0; - } + nr = pfn_to_section_nr(pfn); + section = __nr_to_section(nr); + + if (section->page_cgroup) + return 0; + + nid = page_to_nid(pfn_to_page(pfn)); + table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION; + base = alloc_page_cgroup(table_size, nid); + + /* + * The value stored in section->page_cgroup is (base - pfn) + * and it does not point to the memory block allocated above, + * causing kmemleak false positives. + */ + kmemleak_not_leak(base); if (!base) { printk(KERN_ERR "page cgroup allocation failure\n"); @@ -153,7 +194,7 @@ static int __init_refok init_section_page_cgroup(unsigned long pfn) for (index = 0; index < PAGES_PER_SECTION; index++) { pc = base + index; - __init_page_cgroup(pc, pfn + index); + init_page_cgroup(pc, nr); } section->page_cgroup = base - pfn; @@ -170,16 +211,8 @@ void __free_page_cgroup(unsigned long pfn) if (!ms || !ms->page_cgroup) return; base = ms->page_cgroup + pfn; - if (is_vmalloc_addr(base)) { - vfree(base); - ms->page_cgroup = NULL; - } else { - struct page *page = virt_to_page(base); - if (!PageReserved(page)) { /* Is bootmem ? */ - kfree(base); - ms->page_cgroup = NULL; - } - } + free_page_cgroup(base); + ms->page_cgroup = NULL; } int __meminit online_page_cgroup(unsigned long start_pfn, @@ -243,12 +276,7 @@ static int __meminit page_cgroup_callback(struct notifier_block *self, break; } - if (ret) - ret = notifier_from_errno(ret); - else - ret = NOTIFY_OK; - - return ret; + return notifier_from_errno(ret); } #endif @@ -349,7 +377,7 @@ not_enough_page: * @new: new id * * Returns old id at success, 0 at failure. - * (There is no mem_cgroup useing 0 as its id) + * (There is no mem_cgroup using 0 as its id) */ unsigned short swap_cgroup_cmpxchg(swp_entry_t ent, unsigned short old, unsigned short new) diff --git a/mm/page_io.c b/mm/page_io.c index 2dee975bf469..dc76b4d0611e 100644 --- a/mm/page_io.c +++ b/mm/page_io.c @@ -106,7 +106,7 @@ int swap_writepage(struct page *page, struct writeback_control *wbc) goto out; } if (wbc->sync_mode == WB_SYNC_ALL) - rw |= REQ_SYNC | REQ_UNPLUG; + rw |= REQ_SYNC; count_vm_event(PSWPOUT); set_page_writeback(page); unlock_page(page); diff --git a/mm/pagewalk.c b/mm/pagewalk.c index 7cfa6ae02303..c3450d533611 100644 --- a/mm/pagewalk.c +++ b/mm/pagewalk.c @@ -33,19 +33,35 @@ static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pmd = pmd_offset(pud, addr); do { +again: next = pmd_addr_end(addr, end); - split_huge_page_pmd(walk->mm, pmd); - if (pmd_none_or_clear_bad(pmd)) { + if (pmd_none(*pmd)) { if (walk->pte_hole) err = walk->pte_hole(addr, next, walk); if (err) break; continue; } + /* + * This implies that each ->pmd_entry() handler + * needs to know about pmd_trans_huge() pmds + */ if (walk->pmd_entry) err = walk->pmd_entry(pmd, addr, next, walk); - if (!err && walk->pte_entry) - err = walk_pte_range(pmd, addr, next, walk); + if (err) + break; + + /* + * Check this here so we only break down trans_huge + * pages when we _need_ to + */ + if (!walk->pte_entry) + continue; + + split_huge_page_pmd(walk->mm, pmd); + if (pmd_none_or_clear_bad(pmd)) + goto again; + err = walk_pte_range(pmd, addr, next, walk); if (err) break; } while (pmd++, addr = next, addr != end); diff --git a/mm/percpu.c b/mm/percpu.c index 3f930018aa60..a160db39b810 100644 --- a/mm/percpu.c +++ b/mm/percpu.c @@ -342,7 +342,7 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) * @chunk: chunk of interest * * Determine whether area map of @chunk needs to be extended to - * accomodate a new allocation. + * accommodate a new allocation. * * CONTEXT: * pcpu_lock. @@ -431,7 +431,7 @@ out_unlock: * depending on @head, is reduced by @tail bytes and @tail byte block * is inserted after the target block. * - * @chunk->map must have enough free slots to accomodate the split. + * @chunk->map must have enough free slots to accommodate the split. * * CONTEXT: * pcpu_lock. @@ -1008,8 +1008,7 @@ phys_addr_t per_cpu_ptr_to_phys(void *addr) } if (in_first_chunk) { - if ((unsigned long)addr < VMALLOC_START || - (unsigned long)addr >= VMALLOC_END) + if (!is_vmalloc_addr(addr)) return __pa(addr); else return page_to_phys(vmalloc_to_page(addr)); @@ -1436,7 +1435,7 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info( /* * Determine min_unit_size, alloc_size and max_upa such that * alloc_size is multiple of atom_size and is the smallest - * which can accomodate 4k aligned segments which are equal to + * which can accommodate 4k aligned segments which are equal to * or larger than min_unit_size. */ min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); @@ -1551,7 +1550,7 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info( * @atom_size: allocation atom size * @cpu_distance_fn: callback to determine distance between cpus, optional * @alloc_fn: function to allocate percpu page - * @free_fn: funtion to free percpu page + * @free_fn: function to free percpu page * * This is a helper to ease setting up embedded first percpu chunk and * can be called where pcpu_setup_first_chunk() is expected. @@ -1679,7 +1678,7 @@ out_free: * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages * @reserved_size: the size of reserved percpu area in bytes * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE - * @free_fn: funtion to free percpu page, always called with PAGE_SIZE + * @free_fn: function to free percpu page, always called with PAGE_SIZE * @populate_pte_fn: function to populate pte * * This is a helper to ease setting up page-remapped first percpu diff --git a/mm/readahead.c b/mm/readahead.c index 77506a291a2d..2c0cc489e288 100644 --- a/mm/readahead.c +++ b/mm/readahead.c @@ -109,9 +109,12 @@ EXPORT_SYMBOL(read_cache_pages); static int read_pages(struct address_space *mapping, struct file *filp, struct list_head *pages, unsigned nr_pages) { + struct blk_plug plug; unsigned page_idx; int ret; + blk_start_plug(&plug); + if (mapping->a_ops->readpages) { ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); /* Clean up the remaining pages */ @@ -129,7 +132,10 @@ static int read_pages(struct address_space *mapping, struct file *filp, page_cache_release(page); } ret = 0; + out: + blk_finish_plug(&plug); + return ret; } @@ -554,17 +560,5 @@ page_cache_async_readahead(struct address_space *mapping, /* do read-ahead */ ondemand_readahead(mapping, ra, filp, true, offset, req_size); - -#ifdef CONFIG_BLOCK - /* - * Normally the current page is !uptodate and lock_page() will be - * immediately called to implicitly unplug the device. However this - * is not always true for RAID conifgurations, where data arrives - * not strictly in their submission order. In this case we need to - * explicitly kick off the IO. - */ - if (PageUptodate(page)) - blk_run_backing_dev(mapping->backing_dev_info, NULL); -#endif } EXPORT_SYMBOL_GPL(page_cache_async_readahead); diff --git a/mm/rmap.c b/mm/rmap.c index 941bf82e8961..8da044a1db0f 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -31,11 +31,12 @@ * swap_lock (in swap_duplicate, swap_info_get) * mmlist_lock (in mmput, drain_mmlist and others) * mapping->private_lock (in __set_page_dirty_buffers) - * inode_lock (in set_page_dirty's __mark_inode_dirty) + * inode->i_lock (in set_page_dirty's __mark_inode_dirty) + * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty) * sb_lock (within inode_lock in fs/fs-writeback.c) * mapping->tree_lock (widely used, in set_page_dirty, * in arch-dependent flush_dcache_mmap_lock, - * within inode_lock in __sync_single_inode) + * within inode_wb_list_lock in __sync_single_inode) * * (code doesn't rely on that order so it could be switched around) * ->tasklist_lock @@ -67,11 +68,24 @@ static struct kmem_cache *anon_vma_chain_cachep; static inline struct anon_vma *anon_vma_alloc(void) { - return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); + struct anon_vma *anon_vma; + + anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); + if (anon_vma) { + atomic_set(&anon_vma->refcount, 1); + /* + * Initialise the anon_vma root to point to itself. If called + * from fork, the root will be reset to the parents anon_vma. + */ + anon_vma->root = anon_vma; + } + + return anon_vma; } -void anon_vma_free(struct anon_vma *anon_vma) +static inline void anon_vma_free(struct anon_vma *anon_vma) { + VM_BUG_ON(atomic_read(&anon_vma->refcount)); kmem_cache_free(anon_vma_cachep, anon_vma); } @@ -133,11 +147,6 @@ int anon_vma_prepare(struct vm_area_struct *vma) if (unlikely(!anon_vma)) goto out_enomem_free_avc; allocated = anon_vma; - /* - * This VMA had no anon_vma yet. This anon_vma is - * the root of any anon_vma tree that might form. - */ - anon_vma->root = anon_vma; } anon_vma_lock(anon_vma); @@ -156,7 +165,7 @@ int anon_vma_prepare(struct vm_area_struct *vma) anon_vma_unlock(anon_vma); if (unlikely(allocated)) - anon_vma_free(allocated); + put_anon_vma(allocated); if (unlikely(avc)) anon_vma_chain_free(avc); } @@ -241,9 +250,9 @@ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) */ anon_vma->root = pvma->anon_vma->root; /* - * With KSM refcounts, an anon_vma can stay around longer than the - * process it belongs to. The root anon_vma needs to be pinned - * until this anon_vma is freed, because the lock lives in the root. + * With refcounts, an anon_vma can stay around longer than the + * process it belongs to. The root anon_vma needs to be pinned until + * this anon_vma is freed, because the lock lives in the root. */ get_anon_vma(anon_vma->root); /* Mark this anon_vma as the one where our new (COWed) pages go. */ @@ -253,7 +262,7 @@ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) return 0; out_error_free_anon_vma: - anon_vma_free(anon_vma); + put_anon_vma(anon_vma); out_error: unlink_anon_vmas(vma); return -ENOMEM; @@ -272,15 +281,11 @@ static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) list_del(&anon_vma_chain->same_anon_vma); /* We must garbage collect the anon_vma if it's empty */ - empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); + empty = list_empty(&anon_vma->head); anon_vma_unlock(anon_vma); - if (empty) { - /* We no longer need the root anon_vma */ - if (anon_vma->root != anon_vma) - drop_anon_vma(anon_vma->root); - anon_vma_free(anon_vma); - } + if (empty) + put_anon_vma(anon_vma); } void unlink_anon_vmas(struct vm_area_struct *vma) @@ -303,7 +308,7 @@ static void anon_vma_ctor(void *data) struct anon_vma *anon_vma = data; spin_lock_init(&anon_vma->lock); - anonvma_external_refcount_init(anon_vma); + atomic_set(&anon_vma->refcount, 0); INIT_LIST_HEAD(&anon_vma->head); } @@ -1486,41 +1491,15 @@ int try_to_munlock(struct page *page) return try_to_unmap_file(page, TTU_MUNLOCK); } -#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) -/* - * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root - * if necessary. Be careful to do all the tests under the lock. Once - * we know we are the last user, nobody else can get a reference and we - * can do the freeing without the lock. - */ -void drop_anon_vma(struct anon_vma *anon_vma) +void __put_anon_vma(struct anon_vma *anon_vma) { - BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); - if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { - struct anon_vma *root = anon_vma->root; - int empty = list_empty(&anon_vma->head); - int last_root_user = 0; - int root_empty = 0; + struct anon_vma *root = anon_vma->root; - /* - * The refcount on a non-root anon_vma got dropped. Drop - * the refcount on the root and check if we need to free it. - */ - if (empty && anon_vma != root) { - BUG_ON(atomic_read(&root->external_refcount) <= 0); - last_root_user = atomic_dec_and_test(&root->external_refcount); - root_empty = list_empty(&root->head); - } - anon_vma_unlock(anon_vma); + if (root != anon_vma && atomic_dec_and_test(&root->refcount)) + anon_vma_free(root); - if (empty) { - anon_vma_free(anon_vma); - if (root_empty && last_root_user) - anon_vma_free(root); - } - } + anon_vma_free(anon_vma); } -#endif #ifdef CONFIG_MIGRATION /* diff --git a/mm/shmem.c b/mm/shmem.c index 048a95a5244d..8fa27e4e582a 100644 --- a/mm/shmem.c +++ b/mm/shmem.c @@ -224,7 +224,6 @@ static const struct vm_operations_struct shmem_vm_ops; static struct backing_dev_info shmem_backing_dev_info __read_mostly = { .ra_pages = 0, /* No readahead */ .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, - .unplug_io_fn = default_unplug_io_fn, }; static LIST_HEAD(shmem_swaplist); @@ -422,7 +421,8 @@ static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long * a waste to allocate index if we cannot allocate data. */ if (sbinfo->max_blocks) { - if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0) + if (percpu_counter_compare(&sbinfo->used_blocks, + sbinfo->max_blocks - 1) >= 0) return ERR_PTR(-ENOSPC); percpu_counter_inc(&sbinfo->used_blocks); spin_lock(&inode->i_lock); @@ -1081,7 +1081,7 @@ static int shmem_writepage(struct page *page, struct writeback_control *wbc) shmem_recalc_inode(inode); if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { - remove_from_page_cache(page); + delete_from_page_cache(page); shmem_swp_set(info, entry, swap.val); shmem_swp_unmap(entry); if (list_empty(&info->swaplist)) @@ -1091,7 +1091,6 @@ static int shmem_writepage(struct page *page, struct writeback_control *wbc) spin_unlock(&info->lock); swap_shmem_alloc(swap); BUG_ON(page_mapped(page)); - page_cache_release(page); /* pagecache ref */ swap_writepage(page, wbc); if (inode) { mutex_lock(&shmem_swaplist_mutex); @@ -1399,7 +1398,8 @@ repeat: shmem_swp_unmap(entry); sbinfo = SHMEM_SB(inode->i_sb); if (sbinfo->max_blocks) { - if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) || + if (percpu_counter_compare(&sbinfo->used_blocks, + sbinfo->max_blocks) >= 0 || shmem_acct_block(info->flags)) { spin_unlock(&info->lock); error = -ENOSPC; @@ -2794,5 +2794,6 @@ int shmem_zero_setup(struct vm_area_struct *vma) fput(vma->vm_file); vma->vm_file = file; vma->vm_ops = &shmem_vm_ops; + vma->vm_flags |= VM_CAN_NONLINEAR; return 0; } diff --git a/mm/slab.c b/mm/slab.c index 37961d1f584f..46a9c163a92f 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -191,22 +191,6 @@ typedef unsigned int kmem_bufctl_t; #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) /* - * struct slab - * - * Manages the objs in a slab. Placed either at the beginning of mem allocated - * for a slab, or allocated from an general cache. - * Slabs are chained into three list: fully used, partial, fully free slabs. - */ -struct slab { - struct list_head list; - unsigned long colouroff; - void *s_mem; /* including colour offset */ - unsigned int inuse; /* num of objs active in slab */ - kmem_bufctl_t free; - unsigned short nodeid; -}; - -/* * struct slab_rcu * * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to @@ -219,8 +203,6 @@ struct slab { * * rcu_read_lock before reading the address, then rcu_read_unlock after * taking the spinlock within the structure expected at that address. - * - * We assume struct slab_rcu can overlay struct slab when destroying. */ struct slab_rcu { struct rcu_head head; @@ -229,6 +211,27 @@ struct slab_rcu { }; /* + * struct slab + * + * Manages the objs in a slab. Placed either at the beginning of mem allocated + * for a slab, or allocated from an general cache. + * Slabs are chained into three list: fully used, partial, fully free slabs. + */ +struct slab { + union { + struct { + struct list_head list; + unsigned long colouroff; + void *s_mem; /* including colour offset */ + unsigned int inuse; /* num of objs active in slab */ + kmem_bufctl_t free; + unsigned short nodeid; + }; + struct slab_rcu __slab_cover_slab_rcu; + }; +}; + +/* * struct array_cache * * Purpose: @@ -875,7 +878,7 @@ static struct array_cache *alloc_arraycache(int node, int entries, nc = kmalloc_node(memsize, gfp, node); /* * The array_cache structures contain pointers to free object. - * However, when such objects are allocated or transfered to another + * However, when such objects are allocated or transferred to another * cache the pointers are not cleared and they could be counted as * valid references during a kmemleak scan. Therefore, kmemleak must * not scan such objects. @@ -1387,7 +1390,7 @@ static int __meminit slab_memory_callback(struct notifier_block *self, break; } out: - return ret ? notifier_from_errno(ret) : NOTIFY_OK; + return notifier_from_errno(ret); } #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ @@ -2147,8 +2150,6 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) * * @name must be valid until the cache is destroyed. This implies that * the module calling this has to destroy the cache before getting unloaded. - * Note that kmem_cache_name() is not guaranteed to return the same pointer, - * therefore applications must manage it themselves. * * The flags are * @@ -2288,8 +2289,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, if (ralign < align) { ralign = align; } - /* disable debug if not aligning with REDZONE_ALIGN */ - if (ralign & (__alignof__(unsigned long long) - 1)) + /* disable debug if necessary */ + if (ralign > __alignof__(unsigned long long)) flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); /* * 4) Store it. @@ -2315,8 +2316,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, */ if (flags & SLAB_RED_ZONE) { /* add space for red zone words */ - cachep->obj_offset += align; - size += align + sizeof(unsigned long long); + cachep->obj_offset += sizeof(unsigned long long); + size += 2 * sizeof(unsigned long long); } if (flags & SLAB_STORE_USER) { /* user store requires one word storage behind the end of @@ -2605,7 +2606,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); * * The cache must be empty before calling this function. * - * The caller must guarantee that noone will allocate memory from the cache + * The caller must guarantee that no one will allocate memory from the cache * during the kmem_cache_destroy(). */ void kmem_cache_destroy(struct kmem_cache *cachep) @@ -3840,12 +3841,6 @@ unsigned int kmem_cache_size(struct kmem_cache *cachep) } EXPORT_SYMBOL(kmem_cache_size); -const char *kmem_cache_name(struct kmem_cache *cachep) -{ - return cachep->name; -} -EXPORT_SYMBOL_GPL(kmem_cache_name); - /* * This initializes kmem_list3 or resizes various caches for all nodes. */ diff --git a/mm/slob.c b/mm/slob.c index 3588eaaef726..46e0aee33a23 100644 --- a/mm/slob.c +++ b/mm/slob.c @@ -666,12 +666,6 @@ unsigned int kmem_cache_size(struct kmem_cache *c) } EXPORT_SYMBOL(kmem_cache_size); -const char *kmem_cache_name(struct kmem_cache *c) -{ - return c->name; -} -EXPORT_SYMBOL(kmem_cache_name); - int kmem_cache_shrink(struct kmem_cache *d) { return 0; diff --git a/mm/slub.c b/mm/slub.c index e15aa7f193c9..94d2a33a866e 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -64,7 +64,7 @@ * we must stay away from it for a while since we may cause a bouncing * cacheline if we try to acquire the lock. So go onto the next slab. * If all pages are busy then we may allocate a new slab instead of reusing - * a partial slab. A new slab has noone operating on it and thus there is + * a partial slab. A new slab has no one operating on it and thus there is * no danger of cacheline contention. * * Interrupts are disabled during allocation and deallocation in order to @@ -217,7 +217,7 @@ static inline void sysfs_slab_remove(struct kmem_cache *s) #endif -static inline void stat(struct kmem_cache *s, enum stat_item si) +static inline void stat(const struct kmem_cache *s, enum stat_item si) { #ifdef CONFIG_SLUB_STATS __this_cpu_inc(s->cpu_slab->stat[si]); @@ -281,11 +281,40 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr) return (p - addr) / s->size; } +static inline size_t slab_ksize(const struct kmem_cache *s) +{ +#ifdef CONFIG_SLUB_DEBUG + /* + * Debugging requires use of the padding between object + * and whatever may come after it. + */ + if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) + return s->objsize; + +#endif + /* + * If we have the need to store the freelist pointer + * back there or track user information then we can + * only use the space before that information. + */ + if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) + return s->inuse; + /* + * Else we can use all the padding etc for the allocation + */ + return s->size; +} + +static inline int order_objects(int order, unsigned long size, int reserved) +{ + return ((PAGE_SIZE << order) - reserved) / size; +} + static inline struct kmem_cache_order_objects oo_make(int order, - unsigned long size) + unsigned long size, int reserved) { struct kmem_cache_order_objects x = { - (order << OO_SHIFT) + (PAGE_SIZE << order) / size + (order << OO_SHIFT) + order_objects(order, size, reserved) }; return x; @@ -617,7 +646,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page) return 1; start = page_address(page); - length = (PAGE_SIZE << compound_order(page)); + length = (PAGE_SIZE << compound_order(page)) - s->reserved; end = start + length; remainder = length % s->size; if (!remainder) @@ -698,7 +727,7 @@ static int check_slab(struct kmem_cache *s, struct page *page) return 0; } - maxobj = (PAGE_SIZE << compound_order(page)) / s->size; + maxobj = order_objects(compound_order(page), s->size, s->reserved); if (page->objects > maxobj) { slab_err(s, page, "objects %u > max %u", s->name, page->objects, maxobj); @@ -748,7 +777,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search) nr++; } - max_objects = (PAGE_SIZE << compound_order(page)) / s->size; + max_objects = order_objects(compound_order(page), s->size, s->reserved); if (max_objects > MAX_OBJS_PER_PAGE) max_objects = MAX_OBJS_PER_PAGE; @@ -800,21 +829,31 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) { flags &= gfp_allowed_mask; - kmemcheck_slab_alloc(s, flags, object, s->objsize); + kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); } static inline void slab_free_hook(struct kmem_cache *s, void *x) { kmemleak_free_recursive(x, s->flags); -} -static inline void slab_free_hook_irq(struct kmem_cache *s, void *object) -{ - kmemcheck_slab_free(s, object, s->objsize); - debug_check_no_locks_freed(object, s->objsize); + /* + * Trouble is that we may no longer disable interupts in the fast path + * So in order to make the debug calls that expect irqs to be + * disabled we need to disable interrupts temporarily. + */ +#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) + { + unsigned long flags; + + local_irq_save(flags); + kmemcheck_slab_free(s, x, s->objsize); + debug_check_no_locks_freed(x, s->objsize); + local_irq_restore(flags); + } +#endif if (!(s->flags & SLAB_DEBUG_OBJECTS)) - debug_check_no_obj_freed(object, s->objsize); + debug_check_no_obj_freed(x, s->objsize); } /* @@ -1101,9 +1140,6 @@ static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, static inline void slab_free_hook(struct kmem_cache *s, void *x) {} -static inline void slab_free_hook_irq(struct kmem_cache *s, - void *object) {} - #endif /* CONFIG_SLUB_DEBUG */ /* @@ -1249,21 +1285,38 @@ static void __free_slab(struct kmem_cache *s, struct page *page) __free_pages(page, order); } +#define need_reserve_slab_rcu \ + (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) + static void rcu_free_slab(struct rcu_head *h) { struct page *page; - page = container_of((struct list_head *)h, struct page, lru); + if (need_reserve_slab_rcu) + page = virt_to_head_page(h); + else + page = container_of((struct list_head *)h, struct page, lru); + __free_slab(page->slab, page); } static void free_slab(struct kmem_cache *s, struct page *page) { if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { - /* - * RCU free overloads the RCU head over the LRU - */ - struct rcu_head *head = (void *)&page->lru; + struct rcu_head *head; + + if (need_reserve_slab_rcu) { + int order = compound_order(page); + int offset = (PAGE_SIZE << order) - s->reserved; + + VM_BUG_ON(s->reserved != sizeof(*head)); + head = page_address(page) + offset; + } else { + /* + * RCU free overloads the RCU head over the LRU + */ + head = (void *)&page->lru; + } call_rcu(head, rcu_free_slab); } else @@ -1487,6 +1540,78 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) } } +#ifdef CONFIG_CMPXCHG_LOCAL +#ifdef CONFIG_PREEMPT +/* + * Calculate the next globally unique transaction for disambiguiation + * during cmpxchg. The transactions start with the cpu number and are then + * incremented by CONFIG_NR_CPUS. + */ +#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) +#else +/* + * No preemption supported therefore also no need to check for + * different cpus. + */ +#define TID_STEP 1 +#endif + +static inline unsigned long next_tid(unsigned long tid) +{ + return tid + TID_STEP; +} + +static inline unsigned int tid_to_cpu(unsigned long tid) +{ + return tid % TID_STEP; +} + +static inline unsigned long tid_to_event(unsigned long tid) +{ + return tid / TID_STEP; +} + +static inline unsigned int init_tid(int cpu) +{ + return cpu; +} + +static inline void note_cmpxchg_failure(const char *n, + const struct kmem_cache *s, unsigned long tid) +{ +#ifdef SLUB_DEBUG_CMPXCHG + unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); + + printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); + +#ifdef CONFIG_PREEMPT + if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) + printk("due to cpu change %d -> %d\n", + tid_to_cpu(tid), tid_to_cpu(actual_tid)); + else +#endif + if (tid_to_event(tid) != tid_to_event(actual_tid)) + printk("due to cpu running other code. Event %ld->%ld\n", + tid_to_event(tid), tid_to_event(actual_tid)); + else + printk("for unknown reason: actual=%lx was=%lx target=%lx\n", + actual_tid, tid, next_tid(tid)); +#endif + stat(s, CMPXCHG_DOUBLE_CPU_FAIL); +} + +#endif + +void init_kmem_cache_cpus(struct kmem_cache *s) +{ +#ifdef CONFIG_CMPXCHG_LOCAL + int cpu; + + for_each_possible_cpu(cpu) + per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); +#endif + +} /* * Remove the cpu slab */ @@ -1518,6 +1643,9 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) page->inuse--; } c->page = NULL; +#ifdef CONFIG_CMPXCHG_LOCAL + c->tid = next_tid(c->tid); +#endif unfreeze_slab(s, page, tail); } @@ -1652,6 +1780,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, { void **object; struct page *new; +#ifdef CONFIG_CMPXCHG_LOCAL + unsigned long flags; + + local_irq_save(flags); +#ifdef CONFIG_PREEMPT + /* + * We may have been preempted and rescheduled on a different + * cpu before disabling interrupts. Need to reload cpu area + * pointer. + */ + c = this_cpu_ptr(s->cpu_slab); +#endif +#endif /* We handle __GFP_ZERO in the caller */ gfpflags &= ~__GFP_ZERO; @@ -1678,6 +1819,10 @@ load_freelist: c->node = page_to_nid(c->page); unlock_out: slab_unlock(c->page); +#ifdef CONFIG_CMPXCHG_LOCAL + c->tid = next_tid(c->tid); + local_irq_restore(flags); +#endif stat(s, ALLOC_SLOWPATH); return object; @@ -1713,6 +1858,9 @@ new_slab: } if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) slab_out_of_memory(s, gfpflags, node); +#ifdef CONFIG_CMPXCHG_LOCAL + local_irq_restore(flags); +#endif return NULL; debug: if (!alloc_debug_processing(s, c->page, object, addr)) @@ -1739,23 +1887,76 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, { void **object; struct kmem_cache_cpu *c; +#ifdef CONFIG_CMPXCHG_LOCAL + unsigned long tid; +#else unsigned long flags; +#endif if (slab_pre_alloc_hook(s, gfpflags)) return NULL; +#ifndef CONFIG_CMPXCHG_LOCAL local_irq_save(flags); +#else +redo: +#endif + + /* + * Must read kmem_cache cpu data via this cpu ptr. Preemption is + * enabled. We may switch back and forth between cpus while + * reading from one cpu area. That does not matter as long + * as we end up on the original cpu again when doing the cmpxchg. + */ c = __this_cpu_ptr(s->cpu_slab); + +#ifdef CONFIG_CMPXCHG_LOCAL + /* + * The transaction ids are globally unique per cpu and per operation on + * a per cpu queue. Thus they can be guarantee that the cmpxchg_double + * occurs on the right processor and that there was no operation on the + * linked list in between. + */ + tid = c->tid; + barrier(); +#endif + object = c->freelist; if (unlikely(!object || !node_match(c, node))) object = __slab_alloc(s, gfpflags, node, addr, c); else { +#ifdef CONFIG_CMPXCHG_LOCAL + /* + * The cmpxchg will only match if there was no additional + * operation and if we are on the right processor. + * + * The cmpxchg does the following atomically (without lock semantics!) + * 1. Relocate first pointer to the current per cpu area. + * 2. Verify that tid and freelist have not been changed + * 3. If they were not changed replace tid and freelist + * + * Since this is without lock semantics the protection is only against + * code executing on this cpu *not* from access by other cpus. + */ + if (unlikely(!this_cpu_cmpxchg_double( + s->cpu_slab->freelist, s->cpu_slab->tid, + object, tid, + get_freepointer(s, object), next_tid(tid)))) { + + note_cmpxchg_failure("slab_alloc", s, tid); + goto redo; + } +#else c->freelist = get_freepointer(s, object); +#endif stat(s, ALLOC_FASTPATH); } + +#ifndef CONFIG_CMPXCHG_LOCAL local_irq_restore(flags); +#endif if (unlikely(gfpflags & __GFP_ZERO) && object) memset(object, 0, s->objsize); @@ -1833,9 +2034,13 @@ static void __slab_free(struct kmem_cache *s, struct page *page, { void *prior; void **object = (void *)x; +#ifdef CONFIG_CMPXCHG_LOCAL + unsigned long flags; - stat(s, FREE_SLOWPATH); + local_irq_save(flags); +#endif slab_lock(page); + stat(s, FREE_SLOWPATH); if (kmem_cache_debug(s)) goto debug; @@ -1865,6 +2070,9 @@ checks_ok: out_unlock: slab_unlock(page); +#ifdef CONFIG_CMPXCHG_LOCAL + local_irq_restore(flags); +#endif return; slab_empty: @@ -1876,6 +2084,9 @@ slab_empty: stat(s, FREE_REMOVE_PARTIAL); } slab_unlock(page); +#ifdef CONFIG_CMPXCHG_LOCAL + local_irq_restore(flags); +#endif stat(s, FREE_SLAB); discard_slab(s, page); return; @@ -1902,23 +2113,56 @@ static __always_inline void slab_free(struct kmem_cache *s, { void **object = (void *)x; struct kmem_cache_cpu *c; +#ifdef CONFIG_CMPXCHG_LOCAL + unsigned long tid; +#else unsigned long flags; +#endif slab_free_hook(s, x); +#ifndef CONFIG_CMPXCHG_LOCAL local_irq_save(flags); + +#else +redo: +#endif + + /* + * Determine the currently cpus per cpu slab. + * The cpu may change afterward. However that does not matter since + * data is retrieved via this pointer. If we are on the same cpu + * during the cmpxchg then the free will succedd. + */ c = __this_cpu_ptr(s->cpu_slab); - slab_free_hook_irq(s, x); +#ifdef CONFIG_CMPXCHG_LOCAL + tid = c->tid; + barrier(); +#endif if (likely(page == c->page && c->node != NUMA_NO_NODE)) { set_freepointer(s, object, c->freelist); + +#ifdef CONFIG_CMPXCHG_LOCAL + if (unlikely(!this_cpu_cmpxchg_double( + s->cpu_slab->freelist, s->cpu_slab->tid, + c->freelist, tid, + object, next_tid(tid)))) { + + note_cmpxchg_failure("slab_free", s, tid); + goto redo; + } +#else c->freelist = object; +#endif stat(s, FREE_FASTPATH); } else __slab_free(s, page, x, addr); +#ifndef CONFIG_CMPXCHG_LOCAL local_irq_restore(flags); +#endif } void kmem_cache_free(struct kmem_cache *s, void *x) @@ -1988,13 +2232,13 @@ static int slub_nomerge; * the smallest order which will fit the object. */ static inline int slab_order(int size, int min_objects, - int max_order, int fract_leftover) + int max_order, int fract_leftover, int reserved) { int order; int rem; int min_order = slub_min_order; - if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) + if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) return get_order(size * MAX_OBJS_PER_PAGE) - 1; for (order = max(min_order, @@ -2003,10 +2247,10 @@ static inline int slab_order(int size, int min_objects, unsigned long slab_size = PAGE_SIZE << order; - if (slab_size < min_objects * size) + if (slab_size < min_objects * size + reserved) continue; - rem = slab_size % size; + rem = (slab_size - reserved) % size; if (rem <= slab_size / fract_leftover) break; @@ -2016,7 +2260,7 @@ static inline int slab_order(int size, int min_objects, return order; } -static inline int calculate_order(int size) +static inline int calculate_order(int size, int reserved) { int order; int min_objects; @@ -2034,14 +2278,14 @@ static inline int calculate_order(int size) min_objects = slub_min_objects; if (!min_objects) min_objects = 4 * (fls(nr_cpu_ids) + 1); - max_objects = (PAGE_SIZE << slub_max_order)/size; + max_objects = order_objects(slub_max_order, size, reserved); min_objects = min(min_objects, max_objects); while (min_objects > 1) { fraction = 16; while (fraction >= 4) { order = slab_order(size, min_objects, - slub_max_order, fraction); + slub_max_order, fraction, reserved); if (order <= slub_max_order) return order; fraction /= 2; @@ -2053,14 +2297,14 @@ static inline int calculate_order(int size) * We were unable to place multiple objects in a slab. Now * lets see if we can place a single object there. */ - order = slab_order(size, 1, slub_max_order, 1); + order = slab_order(size, 1, slub_max_order, 1, reserved); if (order <= slub_max_order) return order; /* * Doh this slab cannot be placed using slub_max_order. */ - order = slab_order(size, 1, MAX_ORDER, 1); + order = slab_order(size, 1, MAX_ORDER, 1, reserved); if (order < MAX_ORDER) return order; return -ENOSYS; @@ -2110,9 +2354,23 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); +#ifdef CONFIG_CMPXCHG_LOCAL + /* + * Must align to double word boundary for the double cmpxchg instructions + * to work. + */ + s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *)); +#else + /* Regular alignment is sufficient */ s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); +#endif + + if (!s->cpu_slab) + return 0; - return s->cpu_slab != NULL; + init_kmem_cache_cpus(s); + + return 1; } static struct kmem_cache *kmem_cache_node; @@ -2311,7 +2569,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) if (forced_order >= 0) order = forced_order; else - order = calculate_order(size); + order = calculate_order(size, s->reserved); if (order < 0) return 0; @@ -2329,8 +2587,8 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) /* * Determine the number of objects per slab */ - s->oo = oo_make(order, size); - s->min = oo_make(get_order(size), size); + s->oo = oo_make(order, size, s->reserved); + s->min = oo_make(get_order(size), size, s->reserved); if (oo_objects(s->oo) > oo_objects(s->max)) s->max = s->oo; @@ -2349,6 +2607,10 @@ static int kmem_cache_open(struct kmem_cache *s, s->objsize = size; s->align = align; s->flags = kmem_cache_flags(size, flags, name, ctor); + s->reserved = 0; + + if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) + s->reserved = sizeof(struct rcu_head); if (!calculate_sizes(s, -1)) goto error; @@ -2399,12 +2661,6 @@ unsigned int kmem_cache_size(struct kmem_cache *s) } EXPORT_SYMBOL(kmem_cache_size); -const char *kmem_cache_name(struct kmem_cache *s) -{ - return s->name; -} -EXPORT_SYMBOL(kmem_cache_name); - static void list_slab_objects(struct kmem_cache *s, struct page *page, const char *text) { @@ -2696,7 +2952,6 @@ EXPORT_SYMBOL(__kmalloc_node); size_t ksize(const void *object) { struct page *page; - struct kmem_cache *s; if (unlikely(object == ZERO_SIZE_PTR)) return 0; @@ -2707,28 +2962,8 @@ size_t ksize(const void *object) WARN_ON(!PageCompound(page)); return PAGE_SIZE << compound_order(page); } - s = page->slab; - -#ifdef CONFIG_SLUB_DEBUG - /* - * Debugging requires use of the padding between object - * and whatever may come after it. - */ - if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) - return s->objsize; -#endif - /* - * If we have the need to store the freelist pointer - * back there or track user information then we can - * only use the space before that information. - */ - if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) - return s->inuse; - /* - * Else we can use all the padding etc for the allocation - */ - return s->size; + return slab_ksize(page->slab); } EXPORT_SYMBOL(ksize); @@ -3312,7 +3547,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); - /* Honor the call site pointer we recieved. */ + /* Honor the call site pointer we received. */ trace_kmalloc(caller, ret, size, s->size, gfpflags); return ret; @@ -3342,7 +3577,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, ret = slab_alloc(s, gfpflags, node, caller); - /* Honor the call site pointer we recieved. */ + /* Honor the call site pointer we received. */ trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); return ret; @@ -4017,6 +4252,12 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) } SLAB_ATTR_RO(destroy_by_rcu); +static ssize_t reserved_show(struct kmem_cache *s, char *buf) +{ + return sprintf(buf, "%d\n", s->reserved); +} +SLAB_ATTR_RO(reserved); + #ifdef CONFIG_SLUB_DEBUG static ssize_t slabs_show(struct kmem_cache *s, char *buf) { @@ -4303,6 +4544,7 @@ static struct attribute *slab_attrs[] = { &reclaim_account_attr.attr, &destroy_by_rcu_attr.attr, &shrink_attr.attr, + &reserved_attr.attr, #ifdef CONFIG_SLUB_DEBUG &total_objects_attr.attr, &slabs_attr.attr, diff --git a/mm/sparse.c b/mm/sparse.c index 93250207c5cf..aa64b12831a2 100644 --- a/mm/sparse.c +++ b/mm/sparse.c @@ -500,7 +500,7 @@ void __init sparse_init(void) * so alloc 2M (with 2M align) and 24 bytes in turn will * make next 2M slip to one more 2M later. * then in big system, the memory will have a lot of holes... - * here try to allocate 2M pages continously. + * here try to allocate 2M pages continuously. * * powerpc need to call sparse_init_one_section right after each * sparse_early_mem_map_alloc, so allocate usemap_map at first. diff --git a/mm/swap.c b/mm/swap.c index c02f93611a84..a448db377cb0 100644 --- a/mm/swap.c +++ b/mm/swap.c @@ -39,6 +39,7 @@ int page_cluster; static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); +static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); /* * This path almost never happens for VM activity - pages are normally @@ -178,15 +179,13 @@ void put_pages_list(struct list_head *pages) } EXPORT_SYMBOL(put_pages_list); -/* - * pagevec_move_tail() must be called with IRQ disabled. - * Otherwise this may cause nasty races. - */ -static void pagevec_move_tail(struct pagevec *pvec) +static void pagevec_lru_move_fn(struct pagevec *pvec, + void (*move_fn)(struct page *page, void *arg), + void *arg) { int i; - int pgmoved = 0; struct zone *zone = NULL; + unsigned long flags = 0; for (i = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; @@ -194,29 +193,50 @@ static void pagevec_move_tail(struct pagevec *pvec) if (pagezone != zone) { if (zone) - spin_unlock(&zone->lru_lock); + spin_unlock_irqrestore(&zone->lru_lock, flags); zone = pagezone; - spin_lock(&zone->lru_lock); - } - if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { - int lru = page_lru_base_type(page); - list_move_tail(&page->lru, &zone->lru[lru].list); - pgmoved++; + spin_lock_irqsave(&zone->lru_lock, flags); } + + (*move_fn)(page, arg); } if (zone) - spin_unlock(&zone->lru_lock); - __count_vm_events(PGROTATED, pgmoved); + spin_unlock_irqrestore(&zone->lru_lock, flags); release_pages(pvec->pages, pvec->nr, pvec->cold); pagevec_reinit(pvec); } +static void pagevec_move_tail_fn(struct page *page, void *arg) +{ + int *pgmoved = arg; + struct zone *zone = page_zone(page); + + if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { + enum lru_list lru = page_lru_base_type(page); + list_move_tail(&page->lru, &zone->lru[lru].list); + mem_cgroup_rotate_reclaimable_page(page); + (*pgmoved)++; + } +} + +/* + * pagevec_move_tail() must be called with IRQ disabled. + * Otherwise this may cause nasty races. + */ +static void pagevec_move_tail(struct pagevec *pvec) +{ + int pgmoved = 0; + + pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); + __count_vm_events(PGROTATED, pgmoved); +} + /* * Writeback is about to end against a page which has been marked for immediate * reclaim. If it still appears to be reclaimable, move it to the tail of the * inactive list. */ -void rotate_reclaimable_page(struct page *page) +void rotate_reclaimable_page(struct page *page) { if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && !PageUnevictable(page) && PageLRU(page)) { @@ -347,6 +367,71 @@ void add_page_to_unevictable_list(struct page *page) } /* + * If the page can not be invalidated, it is moved to the + * inactive list to speed up its reclaim. It is moved to the + * head of the list, rather than the tail, to give the flusher + * threads some time to write it out, as this is much more + * effective than the single-page writeout from reclaim. + * + * If the page isn't page_mapped and dirty/writeback, the page + * could reclaim asap using PG_reclaim. + * + * 1. active, mapped page -> none + * 2. active, dirty/writeback page -> inactive, head, PG_reclaim + * 3. inactive, mapped page -> none + * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim + * 5. inactive, clean -> inactive, tail + * 6. Others -> none + * + * In 4, why it moves inactive's head, the VM expects the page would + * be write it out by flusher threads as this is much more effective + * than the single-page writeout from reclaim. + */ +static void lru_deactivate_fn(struct page *page, void *arg) +{ + int lru, file; + bool active; + struct zone *zone = page_zone(page); + + if (!PageLRU(page)) + return; + + /* Some processes are using the page */ + if (page_mapped(page)) + return; + + active = PageActive(page); + + file = page_is_file_cache(page); + lru = page_lru_base_type(page); + del_page_from_lru_list(zone, page, lru + active); + ClearPageActive(page); + ClearPageReferenced(page); + add_page_to_lru_list(zone, page, lru); + + if (PageWriteback(page) || PageDirty(page)) { + /* + * PG_reclaim could be raced with end_page_writeback + * It can make readahead confusing. But race window + * is _really_ small and it's non-critical problem. + */ + SetPageReclaim(page); + } else { + /* + * The page's writeback ends up during pagevec + * We moves tha page into tail of inactive. + */ + list_move_tail(&page->lru, &zone->lru[lru].list); + mem_cgroup_rotate_reclaimable_page(page); + __count_vm_event(PGROTATED); + } + + if (active) + __count_vm_event(PGDEACTIVATE); + update_page_reclaim_stat(zone, page, file, 0); +} + +/* * Drain pages out of the cpu's pagevecs. * Either "cpu" is the current CPU, and preemption has already been * disabled; or "cpu" is being hot-unplugged, and is already dead. @@ -372,6 +457,29 @@ static void drain_cpu_pagevecs(int cpu) pagevec_move_tail(pvec); local_irq_restore(flags); } + + pvec = &per_cpu(lru_deactivate_pvecs, cpu); + if (pagevec_count(pvec)) + pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); +} + +/** + * deactivate_page - forcefully deactivate a page + * @page: page to deactivate + * + * This function hints the VM that @page is a good reclaim candidate, + * for example if its invalidation fails due to the page being dirty + * or under writeback. + */ +void deactivate_page(struct page *page) +{ + if (likely(get_page_unless_zero(page))) { + struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); + + if (!pagevec_add(pvec, page)) + pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); + put_cpu_var(lru_deactivate_pvecs); + } } void lru_add_drain(void) @@ -516,44 +624,33 @@ void lru_add_page_tail(struct zone* zone, } } +static void ____pagevec_lru_add_fn(struct page *page, void *arg) +{ + enum lru_list lru = (enum lru_list)arg; + struct zone *zone = page_zone(page); + int file = is_file_lru(lru); + int active = is_active_lru(lru); + + VM_BUG_ON(PageActive(page)); + VM_BUG_ON(PageUnevictable(page)); + VM_BUG_ON(PageLRU(page)); + + SetPageLRU(page); + if (active) + SetPageActive(page); + update_page_reclaim_stat(zone, page, file, active); + add_page_to_lru_list(zone, page, lru); +} + /* * Add the passed pages to the LRU, then drop the caller's refcount * on them. Reinitialises the caller's pagevec. */ void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) { - int i; - struct zone *zone = NULL; - VM_BUG_ON(is_unevictable_lru(lru)); - for (i = 0; i < pagevec_count(pvec); i++) { - struct page *page = pvec->pages[i]; - struct zone *pagezone = page_zone(page); - int file; - int active; - - if (pagezone != zone) { - if (zone) - spin_unlock_irq(&zone->lru_lock); - zone = pagezone; - spin_lock_irq(&zone->lru_lock); - } - VM_BUG_ON(PageActive(page)); - VM_BUG_ON(PageUnevictable(page)); - VM_BUG_ON(PageLRU(page)); - SetPageLRU(page); - active = is_active_lru(lru); - file = is_file_lru(lru); - if (active) - SetPageActive(page); - update_page_reclaim_stat(zone, page, file, active); - add_page_to_lru_list(zone, page, lru); - } - if (zone) - spin_unlock_irq(&zone->lru_lock); - release_pages(pvec->pages, pvec->nr, pvec->cold); - pagevec_reinit(pvec); + pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru); } EXPORT_SYMBOL(____pagevec_lru_add); diff --git a/mm/swap_state.c b/mm/swap_state.c index 5c8cfabbc9bc..46680461785b 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -24,12 +24,10 @@ /* * swapper_space is a fiction, retained to simplify the path through - * vmscan's shrink_page_list, to make sync_page look nicer, and to allow - * future use of radix_tree tags in the swap cache. + * vmscan's shrink_page_list. */ static const struct address_space_operations swap_aops = { .writepage = swap_writepage, - .sync_page = block_sync_page, .set_page_dirty = __set_page_dirty_nobuffers, .migratepage = migrate_page, }; @@ -37,7 +35,6 @@ static const struct address_space_operations swap_aops = { static struct backing_dev_info swap_backing_dev_info = { .name = "swap", .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, - .unplug_io_fn = swap_unplug_io_fn, }; struct address_space swapper_space = { diff --git a/mm/swapfile.c b/mm/swapfile.c index 0341c5700e34..8c6b3ce38f09 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c @@ -95,39 +95,6 @@ __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) } /* - * We need this because the bdev->unplug_fn can sleep and we cannot - * hold swap_lock while calling the unplug_fn. And swap_lock - * cannot be turned into a mutex. - */ -static DECLARE_RWSEM(swap_unplug_sem); - -void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) -{ - swp_entry_t entry; - - down_read(&swap_unplug_sem); - entry.val = page_private(page); - if (PageSwapCache(page)) { - struct block_device *bdev = swap_info[swp_type(entry)]->bdev; - struct backing_dev_info *bdi; - - /* - * If the page is removed from swapcache from under us (with a - * racy try_to_unuse/swapoff) we need an additional reference - * count to avoid reading garbage from page_private(page) above. - * If the WARN_ON triggers during a swapoff it maybe the race - * condition and it's harmless. However if it triggers without - * swapoff it signals a problem. - */ - WARN_ON(page_count(page) <= 1); - - bdi = bdev->bd_inode->i_mapping->backing_dev_info; - blk_run_backing_dev(bdi, page); - } - up_read(&swap_unplug_sem); -} - -/* * swapon tell device that all the old swap contents can be discarded, * to allow the swap device to optimize its wear-levelling. */ @@ -212,8 +179,8 @@ static int wait_for_discard(void *word) #define SWAPFILE_CLUSTER 256 #define LATENCY_LIMIT 256 -static inline unsigned long scan_swap_map(struct swap_info_struct *si, - unsigned char usage) +static unsigned long scan_swap_map(struct swap_info_struct *si, + unsigned char usage) { unsigned long offset; unsigned long scan_base; @@ -880,7 +847,7 @@ unsigned int count_swap_pages(int type, int free) static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, swp_entry_t entry, struct page *page) { - struct mem_cgroup *ptr = NULL; + struct mem_cgroup *ptr; spinlock_t *ptl; pte_t *pte; int ret = 1; @@ -1550,6 +1517,36 @@ bad_bmap: goto out; } +static void enable_swap_info(struct swap_info_struct *p, int prio, + unsigned char *swap_map) +{ + int i, prev; + + spin_lock(&swap_lock); + if (prio >= 0) + p->prio = prio; + else + p->prio = --least_priority; + p->swap_map = swap_map; + p->flags |= SWP_WRITEOK; + nr_swap_pages += p->pages; + total_swap_pages += p->pages; + + /* insert swap space into swap_list: */ + prev = -1; + for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { + if (p->prio >= swap_info[i]->prio) + break; + prev = i; + } + p->next = i; + if (prev < 0) + swap_list.head = swap_list.next = p->type; + else + swap_info[prev]->next = p->type; + spin_unlock(&swap_lock); +} + SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) { struct swap_info_struct *p = NULL; @@ -1621,32 +1618,17 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) current->flags &= ~PF_OOM_ORIGIN; if (err) { + /* + * reading p->prio and p->swap_map outside the lock is + * safe here because only sys_swapon and sys_swapoff + * change them, and there can be no other sys_swapon or + * sys_swapoff for this swap_info_struct at this point. + */ /* re-insert swap space back into swap_list */ - spin_lock(&swap_lock); - if (p->prio < 0) - p->prio = --least_priority; - prev = -1; - for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { - if (p->prio >= swap_info[i]->prio) - break; - prev = i; - } - p->next = i; - if (prev < 0) - swap_list.head = swap_list.next = type; - else - swap_info[prev]->next = type; - nr_swap_pages += p->pages; - total_swap_pages += p->pages; - p->flags |= SWP_WRITEOK; - spin_unlock(&swap_lock); + enable_swap_info(p, p->prio, p->swap_map); goto out_dput; } - /* wait for any unplug function to finish */ - down_write(&swap_unplug_sem); - up_write(&swap_unplug_sem); - destroy_swap_extents(p); if (p->flags & SWP_CONTINUED) free_swap_count_continuations(p); @@ -1844,49 +1826,24 @@ static int __init max_swapfiles_check(void) late_initcall(max_swapfiles_check); #endif -/* - * Written 01/25/92 by Simmule Turner, heavily changed by Linus. - * - * The swapon system call - */ -SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) +static struct swap_info_struct *alloc_swap_info(void) { struct swap_info_struct *p; - char *name = NULL; - struct block_device *bdev = NULL; - struct file *swap_file = NULL; - struct address_space *mapping; unsigned int type; - int i, prev; - int error; - union swap_header *swap_header; - unsigned int nr_good_pages; - int nr_extents = 0; - sector_t span; - unsigned long maxpages; - unsigned long swapfilepages; - unsigned char *swap_map = NULL; - struct page *page = NULL; - struct inode *inode = NULL; - int did_down = 0; - - if (!capable(CAP_SYS_ADMIN)) - return -EPERM; p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) - return -ENOMEM; + return ERR_PTR(-ENOMEM); spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { if (!(swap_info[type]->flags & SWP_USED)) break; } - error = -EPERM; if (type >= MAX_SWAPFILES) { spin_unlock(&swap_lock); kfree(p); - goto out; + return ERR_PTR(-EPERM); } if (type >= nr_swapfiles) { p->type = type; @@ -1911,81 +1868,49 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) p->next = -1; spin_unlock(&swap_lock); - name = getname(specialfile); - error = PTR_ERR(name); - if (IS_ERR(name)) { - name = NULL; - goto bad_swap_2; - } - swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); - error = PTR_ERR(swap_file); - if (IS_ERR(swap_file)) { - swap_file = NULL; - goto bad_swap_2; - } - - p->swap_file = swap_file; - mapping = swap_file->f_mapping; - inode = mapping->host; - - error = -EBUSY; - for (i = 0; i < nr_swapfiles; i++) { - struct swap_info_struct *q = swap_info[i]; + return p; +} - if (i == type || !q->swap_file) - continue; - if (mapping == q->swap_file->f_mapping) - goto bad_swap; - } +static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) +{ + int error; - error = -EINVAL; if (S_ISBLK(inode->i_mode)) { - bdev = bdgrab(I_BDEV(inode)); - error = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, + p->bdev = bdgrab(I_BDEV(inode)); + error = blkdev_get(p->bdev, + FMODE_READ | FMODE_WRITE | FMODE_EXCL, sys_swapon); if (error < 0) { - bdev = NULL; - error = -EINVAL; - goto bad_swap; + p->bdev = NULL; + return -EINVAL; } - p->old_block_size = block_size(bdev); - error = set_blocksize(bdev, PAGE_SIZE); + p->old_block_size = block_size(p->bdev); + error = set_blocksize(p->bdev, PAGE_SIZE); if (error < 0) - goto bad_swap; - p->bdev = bdev; + return error; p->flags |= SWP_BLKDEV; } else if (S_ISREG(inode->i_mode)) { p->bdev = inode->i_sb->s_bdev; mutex_lock(&inode->i_mutex); - did_down = 1; - if (IS_SWAPFILE(inode)) { - error = -EBUSY; - goto bad_swap; - } - } else { - goto bad_swap; - } + if (IS_SWAPFILE(inode)) + return -EBUSY; + } else + return -EINVAL; - swapfilepages = i_size_read(inode) >> PAGE_SHIFT; + return 0; +} - /* - * Read the swap header. - */ - if (!mapping->a_ops->readpage) { - error = -EINVAL; - goto bad_swap; - } - page = read_mapping_page(mapping, 0, swap_file); - if (IS_ERR(page)) { - error = PTR_ERR(page); - goto bad_swap; - } - swap_header = kmap(page); +static unsigned long read_swap_header(struct swap_info_struct *p, + union swap_header *swap_header, + struct inode *inode) +{ + int i; + unsigned long maxpages; + unsigned long swapfilepages; if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { printk(KERN_ERR "Unable to find swap-space signature\n"); - error = -EINVAL; - goto bad_swap; + return 0; } /* swap partition endianess hack... */ @@ -2001,8 +1926,7 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) printk(KERN_WARNING "Unable to handle swap header version %d\n", swap_header->info.version); - error = -EINVAL; - goto bad_swap; + return 0; } p->lowest_bit = 1; @@ -2033,61 +1957,155 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) } p->highest_bit = maxpages - 1; - error = -EINVAL; if (!maxpages) - goto bad_swap; + return 0; + swapfilepages = i_size_read(inode) >> PAGE_SHIFT; if (swapfilepages && maxpages > swapfilepages) { printk(KERN_WARNING "Swap area shorter than signature indicates\n"); - goto bad_swap; + return 0; } if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) - goto bad_swap; + return 0; if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) - goto bad_swap; + return 0; - /* OK, set up the swap map and apply the bad block list */ - swap_map = vmalloc(maxpages); - if (!swap_map) { - error = -ENOMEM; - goto bad_swap; - } + return maxpages; +} + +static int setup_swap_map_and_extents(struct swap_info_struct *p, + union swap_header *swap_header, + unsigned char *swap_map, + unsigned long maxpages, + sector_t *span) +{ + int i; + unsigned int nr_good_pages; + int nr_extents; - memset(swap_map, 0, maxpages); nr_good_pages = maxpages - 1; /* omit header page */ for (i = 0; i < swap_header->info.nr_badpages; i++) { unsigned int page_nr = swap_header->info.badpages[i]; - if (page_nr == 0 || page_nr > swap_header->info.last_page) { - error = -EINVAL; - goto bad_swap; - } + if (page_nr == 0 || page_nr > swap_header->info.last_page) + return -EINVAL; if (page_nr < maxpages) { swap_map[page_nr] = SWAP_MAP_BAD; nr_good_pages--; } } - error = swap_cgroup_swapon(type, maxpages); - if (error) - goto bad_swap; - if (nr_good_pages) { swap_map[0] = SWAP_MAP_BAD; p->max = maxpages; p->pages = nr_good_pages; - nr_extents = setup_swap_extents(p, &span); - if (nr_extents < 0) { - error = nr_extents; - goto bad_swap; - } + nr_extents = setup_swap_extents(p, span); + if (nr_extents < 0) + return nr_extents; nr_good_pages = p->pages; } if (!nr_good_pages) { printk(KERN_WARNING "Empty swap-file\n"); + return -EINVAL; + } + + return nr_extents; +} + +SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) +{ + struct swap_info_struct *p; + char *name; + struct file *swap_file = NULL; + struct address_space *mapping; + int i; + int prio; + int error; + union swap_header *swap_header; + int nr_extents; + sector_t span; + unsigned long maxpages; + unsigned char *swap_map = NULL; + struct page *page = NULL; + struct inode *inode = NULL; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + p = alloc_swap_info(); + if (IS_ERR(p)) + return PTR_ERR(p); + + name = getname(specialfile); + if (IS_ERR(name)) { + error = PTR_ERR(name); + name = NULL; + goto bad_swap; + } + swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); + if (IS_ERR(swap_file)) { + error = PTR_ERR(swap_file); + swap_file = NULL; + goto bad_swap; + } + + p->swap_file = swap_file; + mapping = swap_file->f_mapping; + + for (i = 0; i < nr_swapfiles; i++) { + struct swap_info_struct *q = swap_info[i]; + + if (q == p || !q->swap_file) + continue; + if (mapping == q->swap_file->f_mapping) { + error = -EBUSY; + goto bad_swap; + } + } + + inode = mapping->host; + /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ + error = claim_swapfile(p, inode); + if (unlikely(error)) + goto bad_swap; + + /* + * Read the swap header. + */ + if (!mapping->a_ops->readpage) { error = -EINVAL; goto bad_swap; } + page = read_mapping_page(mapping, 0, swap_file); + if (IS_ERR(page)) { + error = PTR_ERR(page); + goto bad_swap; + } + swap_header = kmap(page); + + maxpages = read_swap_header(p, swap_header, inode); + if (unlikely(!maxpages)) { + error = -EINVAL; + goto bad_swap; + } + + /* OK, set up the swap map and apply the bad block list */ + swap_map = vzalloc(maxpages); + if (!swap_map) { + error = -ENOMEM; + goto bad_swap; + } + + error = swap_cgroup_swapon(p->type, maxpages); + if (error) + goto bad_swap; + + nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, + maxpages, &span); + if (unlikely(nr_extents < 0)) { + error = nr_extents; + goto bad_swap; + } if (p->bdev) { if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { @@ -2099,58 +2117,46 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) } mutex_lock(&swapon_mutex); - spin_lock(&swap_lock); + prio = -1; if (swap_flags & SWAP_FLAG_PREFER) - p->prio = + prio = (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; - else - p->prio = --least_priority; - p->swap_map = swap_map; - p->flags |= SWP_WRITEOK; - nr_swap_pages += nr_good_pages; - total_swap_pages += nr_good_pages; + enable_swap_info(p, prio, swap_map); printk(KERN_INFO "Adding %uk swap on %s. " "Priority:%d extents:%d across:%lluk %s%s\n", - nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, + p->pages<<(PAGE_SHIFT-10), name, p->prio, nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), (p->flags & SWP_SOLIDSTATE) ? "SS" : "", (p->flags & SWP_DISCARDABLE) ? "D" : ""); - /* insert swap space into swap_list: */ - prev = -1; - for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { - if (p->prio >= swap_info[i]->prio) - break; - prev = i; - } - p->next = i; - if (prev < 0) - swap_list.head = swap_list.next = type; - else - swap_info[prev]->next = type; - spin_unlock(&swap_lock); mutex_unlock(&swapon_mutex); atomic_inc(&proc_poll_event); wake_up_interruptible(&proc_poll_wait); + if (S_ISREG(inode->i_mode)) + inode->i_flags |= S_SWAPFILE; error = 0; goto out; bad_swap: - if (bdev) { - set_blocksize(bdev, p->old_block_size); - blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); + if (inode && S_ISBLK(inode->i_mode) && p->bdev) { + set_blocksize(p->bdev, p->old_block_size); + blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); } destroy_swap_extents(p); - swap_cgroup_swapoff(type); -bad_swap_2: + swap_cgroup_swapoff(p->type); spin_lock(&swap_lock); p->swap_file = NULL; p->flags = 0; spin_unlock(&swap_lock); vfree(swap_map); - if (swap_file) + if (swap_file) { + if (inode && S_ISREG(inode->i_mode)) { + mutex_unlock(&inode->i_mutex); + inode = NULL; + } filp_close(swap_file, NULL); + } out: if (page && !IS_ERR(page)) { kunmap(page); @@ -2158,11 +2164,8 @@ out: } if (name) putname(name); - if (did_down) { - if (!error) - inode->i_flags |= S_SWAPFILE; + if (inode && S_ISREG(inode->i_mode)) mutex_unlock(&inode->i_mutex); - } return error; } diff --git a/mm/truncate.c b/mm/truncate.c index d64296be00d3..a95667529135 100644 --- a/mm/truncate.c +++ b/mm/truncate.c @@ -106,9 +106,8 @@ truncate_complete_page(struct address_space *mapping, struct page *page) cancel_dirty_page(page, PAGE_CACHE_SIZE); clear_page_mlock(page); - remove_from_page_cache(page); ClearPageMappedToDisk(page); - page_cache_release(page); /* pagecache ref */ + delete_from_page_cache(page); return 0; } @@ -322,11 +321,12 @@ EXPORT_SYMBOL(truncate_inode_pages); * pagetables. */ unsigned long invalidate_mapping_pages(struct address_space *mapping, - pgoff_t start, pgoff_t end) + pgoff_t start, pgoff_t end) { struct pagevec pvec; pgoff_t next = start; - unsigned long ret = 0; + unsigned long ret; + unsigned long count = 0; int i; pagevec_init(&pvec, 0); @@ -353,9 +353,15 @@ unsigned long invalidate_mapping_pages(struct address_space *mapping, if (lock_failed) continue; - ret += invalidate_inode_page(page); - + ret = invalidate_inode_page(page); unlock_page(page); + /* + * Invalidation is a hint that the page is no longer + * of interest and try to speed up its reclaim. + */ + if (!ret) + deactivate_page(page); + count += ret; if (next > end) break; } @@ -363,7 +369,7 @@ unsigned long invalidate_mapping_pages(struct address_space *mapping, mem_cgroup_uncharge_end(); cond_resched(); } - return ret; + return count; } EXPORT_SYMBOL(invalidate_mapping_pages); @@ -389,7 +395,7 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page) clear_page_mlock(page); BUG_ON(page_has_private(page)); - __remove_from_page_cache(page); + __delete_from_page_cache(page); spin_unlock_irq(&mapping->tree_lock); mem_cgroup_uncharge_cache_page(page); diff --git a/mm/util.c b/mm/util.c index f126975ef23e..e7b103a6fd21 100644 --- a/mm/util.c +++ b/mm/util.c @@ -227,7 +227,7 @@ void arch_pick_mmap_layout(struct mm_struct *mm) /* * Like get_user_pages_fast() except its IRQ-safe in that it won't fall * back to the regular GUP. - * If the architecture not support this fucntion, simply return with no + * If the architecture not support this function, simply return with no * page pinned */ int __attribute__((weak)) __get_user_pages_fast(unsigned long start, diff --git a/mm/vmalloc.c b/mm/vmalloc.c index f9b166732e70..5d6030235d7a 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -261,8 +261,15 @@ struct vmap_area { }; static DEFINE_SPINLOCK(vmap_area_lock); -static struct rb_root vmap_area_root = RB_ROOT; static LIST_HEAD(vmap_area_list); +static struct rb_root vmap_area_root = RB_ROOT; + +/* The vmap cache globals are protected by vmap_area_lock */ +static struct rb_node *free_vmap_cache; +static unsigned long cached_hole_size; +static unsigned long cached_vstart; +static unsigned long cached_align; + static unsigned long vmap_area_pcpu_hole; static struct vmap_area *__find_vmap_area(unsigned long addr) @@ -331,9 +338,11 @@ static struct vmap_area *alloc_vmap_area(unsigned long size, struct rb_node *n; unsigned long addr; int purged = 0; + struct vmap_area *first; BUG_ON(!size); BUG_ON(size & ~PAGE_MASK); + BUG_ON(!is_power_of_2(align)); va = kmalloc_node(sizeof(struct vmap_area), gfp_mask & GFP_RECLAIM_MASK, node); @@ -341,79 +350,106 @@ static struct vmap_area *alloc_vmap_area(unsigned long size, return ERR_PTR(-ENOMEM); retry: - addr = ALIGN(vstart, align); - spin_lock(&vmap_area_lock); - if (addr + size - 1 < addr) - goto overflow; + /* + * Invalidate cache if we have more permissive parameters. + * cached_hole_size notes the largest hole noticed _below_ + * the vmap_area cached in free_vmap_cache: if size fits + * into that hole, we want to scan from vstart to reuse + * the hole instead of allocating above free_vmap_cache. + * Note that __free_vmap_area may update free_vmap_cache + * without updating cached_hole_size or cached_align. + */ + if (!free_vmap_cache || + size < cached_hole_size || + vstart < cached_vstart || + align < cached_align) { +nocache: + cached_hole_size = 0; + free_vmap_cache = NULL; + } + /* record if we encounter less permissive parameters */ + cached_vstart = vstart; + cached_align = align; + + /* find starting point for our search */ + if (free_vmap_cache) { + first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); + addr = ALIGN(first->va_end + PAGE_SIZE, align); + if (addr < vstart) + goto nocache; + if (addr + size - 1 < addr) + goto overflow; + + } else { + addr = ALIGN(vstart, align); + if (addr + size - 1 < addr) + goto overflow; - /* XXX: could have a last_hole cache */ - n = vmap_area_root.rb_node; - if (n) { - struct vmap_area *first = NULL; + n = vmap_area_root.rb_node; + first = NULL; - do { + while (n) { struct vmap_area *tmp; tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_end >= addr) { - if (!first && tmp->va_start < addr + size) - first = tmp; - n = n->rb_left; - } else { first = tmp; + if (tmp->va_start <= addr) + break; + n = n->rb_left; + } else n = n->rb_right; - } - } while (n); + } if (!first) goto found; - - if (first->va_end < addr) { - n = rb_next(&first->rb_node); - if (n) - first = rb_entry(n, struct vmap_area, rb_node); - else - goto found; - } - - while (addr + size > first->va_start && addr + size <= vend) { - addr = ALIGN(first->va_end + PAGE_SIZE, align); - if (addr + size - 1 < addr) - goto overflow; - - n = rb_next(&first->rb_node); - if (n) - first = rb_entry(n, struct vmap_area, rb_node); - else - goto found; - } } -found: - if (addr + size > vend) { -overflow: - spin_unlock(&vmap_area_lock); - if (!purged) { - purge_vmap_area_lazy(); - purged = 1; - goto retry; - } - if (printk_ratelimit()) - printk(KERN_WARNING - "vmap allocation for size %lu failed: " - "use vmalloc=<size> to increase size.\n", size); - kfree(va); - return ERR_PTR(-EBUSY); + + /* from the starting point, walk areas until a suitable hole is found */ + while (addr + size >= first->va_start && addr + size <= vend) { + if (addr + cached_hole_size < first->va_start) + cached_hole_size = first->va_start - addr; + addr = ALIGN(first->va_end + PAGE_SIZE, align); + if (addr + size - 1 < addr) + goto overflow; + + n = rb_next(&first->rb_node); + if (n) + first = rb_entry(n, struct vmap_area, rb_node); + else + goto found; } - BUG_ON(addr & (align-1)); +found: + if (addr + size > vend) + goto overflow; va->va_start = addr; va->va_end = addr + size; va->flags = 0; __insert_vmap_area(va); + free_vmap_cache = &va->rb_node; spin_unlock(&vmap_area_lock); + BUG_ON(va->va_start & (align-1)); + BUG_ON(va->va_start < vstart); + BUG_ON(va->va_end > vend); + return va; + +overflow: + spin_unlock(&vmap_area_lock); + if (!purged) { + purge_vmap_area_lazy(); + purged = 1; + goto retry; + } + if (printk_ratelimit()) + printk(KERN_WARNING + "vmap allocation for size %lu failed: " + "use vmalloc=<size> to increase size.\n", size); + kfree(va); + return ERR_PTR(-EBUSY); } static void rcu_free_va(struct rcu_head *head) @@ -426,6 +462,22 @@ static void rcu_free_va(struct rcu_head *head) static void __free_vmap_area(struct vmap_area *va) { BUG_ON(RB_EMPTY_NODE(&va->rb_node)); + + if (free_vmap_cache) { + if (va->va_end < cached_vstart) { + free_vmap_cache = NULL; + } else { + struct vmap_area *cache; + cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); + if (va->va_start <= cache->va_start) { + free_vmap_cache = rb_prev(&va->rb_node); + /* + * We don't try to update cached_hole_size or + * cached_align, but it won't go very wrong. + */ + } + } + } rb_erase(&va->rb_node, &vmap_area_root); RB_CLEAR_NODE(&va->rb_node); list_del_rcu(&va->list); @@ -1951,8 +2003,6 @@ finished: * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without * any informaion, as /dev/kmem. - * - * The caller should guarantee KM_USER1 is not used. */ long vwrite(char *buf, char *addr, unsigned long count) diff --git a/mm/vmscan.c b/mm/vmscan.c index 6771ea70bfe7..f6b435c80079 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -41,6 +41,7 @@ #include <linux/memcontrol.h> #include <linux/delayacct.h> #include <linux/sysctl.h> +#include <linux/oom.h> #include <asm/tlbflush.h> #include <asm/div64.h> @@ -358,7 +359,7 @@ static int may_write_to_queue(struct backing_dev_info *bdi, static void handle_write_error(struct address_space *mapping, struct page *page, int error) { - lock_page_nosync(page); + lock_page(page); if (page_mapping(page) == mapping) mapping_set_error(mapping, error); unlock_page(page); @@ -514,7 +515,7 @@ static int __remove_mapping(struct address_space *mapping, struct page *page) freepage = mapping->a_ops->freepage; - __remove_from_page_cache(page); + __delete_from_page_cache(page); spin_unlock_irq(&mapping->tree_lock); mem_cgroup_uncharge_cache_page(page); @@ -1065,7 +1066,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, * surrounding the tag page. Only take those pages of * the same active state as that tag page. We may safely * round the target page pfn down to the requested order - * as the mem_map is guarenteed valid out to MAX_ORDER, + * as the mem_map is guaranteed valid out to MAX_ORDER, * where that page is in a different zone we will detect * it from its zone id and abort this block scan. */ @@ -1988,17 +1989,12 @@ static bool zone_reclaimable(struct zone *zone) return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; } -/* - * As hibernation is going on, kswapd is freezed so that it can't mark - * the zone into all_unreclaimable. It can't handle OOM during hibernation. - * So let's check zone's unreclaimable in direct reclaim as well as kswapd. - */ +/* All zones in zonelist are unreclaimable? */ static bool all_unreclaimable(struct zonelist *zonelist, struct scan_control *sc) { struct zoneref *z; struct zone *zone; - bool all_unreclaimable = true; for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(sc->gfp_mask), sc->nodemask) { @@ -2006,13 +2002,11 @@ static bool all_unreclaimable(struct zonelist *zonelist, continue; if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) continue; - if (zone_reclaimable(zone)) { - all_unreclaimable = false; - break; - } + if (!zone->all_unreclaimable) + return false; } - return all_unreclaimable; + return true; } /* @@ -2108,6 +2102,14 @@ out: if (sc->nr_reclaimed) return sc->nr_reclaimed; + /* + * As hibernation is going on, kswapd is freezed so that it can't mark + * the zone into all_unreclaimable. Thus bypassing all_unreclaimable + * check. + */ + if (oom_killer_disabled) + return 0; + /* top priority shrink_zones still had more to do? don't OOM, then */ if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc)) return 1; @@ -2224,7 +2226,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, * o a 16M DMA zone that is balanced will not balance a zone on any * reasonable sized machine * o On all other machines, the top zone must be at least a reasonable - * precentage of the middle zones. For example, on 32-bit x86, highmem + * percentage of the middle zones. For example, on 32-bit x86, highmem * would need to be at least 256M for it to be balance a whole node. * Similarly, on x86-64 the Normal zone would need to be at least 1G * to balance a node on its own. These seemed like reasonable ratios. @@ -2397,9 +2399,9 @@ loop_again: * cause too much scanning of the lower zones. */ for (i = 0; i <= end_zone; i++) { - int compaction; struct zone *zone = pgdat->node_zones + i; int nr_slab; + unsigned long balance_gap; if (!populated_zone(zone)) continue; @@ -2416,11 +2418,20 @@ loop_again: mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); /* - * We put equal pressure on every zone, unless one - * zone has way too many pages free already. + * We put equal pressure on every zone, unless + * one zone has way too many pages free + * already. The "too many pages" is defined + * as the high wmark plus a "gap" where the + * gap is either the low watermark or 1% + * of the zone, whichever is smaller. */ + balance_gap = min(low_wmark_pages(zone), + (zone->present_pages + + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / + KSWAPD_ZONE_BALANCE_GAP_RATIO); if (!zone_watermark_ok_safe(zone, order, - 8*high_wmark_pages(zone), end_zone, 0)) + high_wmark_pages(zone) + balance_gap, + end_zone, 0)) shrink_zone(priority, zone, &sc); reclaim_state->reclaimed_slab = 0; nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, @@ -2428,24 +2439,9 @@ loop_again: sc.nr_reclaimed += reclaim_state->reclaimed_slab; total_scanned += sc.nr_scanned; - compaction = 0; - if (order && - zone_watermark_ok(zone, 0, - high_wmark_pages(zone), - end_zone, 0) && - !zone_watermark_ok(zone, order, - high_wmark_pages(zone), - end_zone, 0)) { - compact_zone_order(zone, - order, - sc.gfp_mask, false, - COMPACT_MODE_KSWAPD); - compaction = 1; - } - if (zone->all_unreclaimable) continue; - if (!compaction && nr_slab == 0 && + if (nr_slab == 0 && !zone_reclaimable(zone)) zone->all_unreclaimable = 1; /* diff --git a/mm/vmstat.c b/mm/vmstat.c index 0c3b5048773e..897ea9e88238 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c @@ -321,9 +321,12 @@ static inline void mod_state(struct zone *zone, /* * The fetching of the stat_threshold is racy. We may apply * a counter threshold to the wrong the cpu if we get - * rescheduled while executing here. However, the following - * will apply the threshold again and therefore bring the - * counter under the threshold. + * rescheduled while executing here. However, the next + * counter update will apply the threshold again and + * therefore bring the counter under the threshold again. + * + * Most of the time the thresholds are the same anyways + * for all cpus in a zone. */ t = this_cpu_read(pcp->stat_threshold); @@ -500,8 +503,12 @@ void refresh_cpu_vm_stats(int cpu) * z = the zone from which the allocation occurred. * * Must be called with interrupts disabled. + * + * When __GFP_OTHER_NODE is set assume the node of the preferred + * zone is the local node. This is useful for daemons who allocate + * memory on behalf of other processes. */ -void zone_statistics(struct zone *preferred_zone, struct zone *z) +void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) { if (z->zone_pgdat == preferred_zone->zone_pgdat) { __inc_zone_state(z, NUMA_HIT); @@ -509,7 +516,8 @@ void zone_statistics(struct zone *preferred_zone, struct zone *z) __inc_zone_state(z, NUMA_MISS); __inc_zone_state(preferred_zone, NUMA_FOREIGN); } - if (z->node == numa_node_id()) + if (z->node == ((flags & __GFP_OTHER_NODE) ? + preferred_zone->node : numa_node_id())) __inc_zone_state(z, NUMA_LOCAL); else __inc_zone_state(z, NUMA_OTHER); @@ -940,7 +948,16 @@ static const char * const vmstat_text[] = { "unevictable_pgs_cleared", "unevictable_pgs_stranded", "unevictable_pgs_mlockfreed", + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + "thp_fault_alloc", + "thp_fault_fallback", + "thp_collapse_alloc", + "thp_collapse_alloc_failed", + "thp_split", #endif + +#endif /* CONFIG_VM_EVENTS_COUNTERS */ }; static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, |