summaryrefslogtreecommitdiffstats
path: root/net/hsr/hsr_device.c
diff options
context:
space:
mode:
authorSebastian Andrzej Siewior <bigeasy@linutronix.de>2022-11-29 17:48:08 +0100
committerJakub Kicinski <kuba@kernel.org>2022-12-02 05:26:20 +0100
commite012764cebf6e33097f6833ff15a936fbe7b846c (patch)
tree5d2d8264fbb340bd3a47b7f3812cd15e0bffc2b1 /net/hsr/hsr_device.c
parentsctp: delete free member from struct sctp_sched_ops (diff)
downloadlinux-e012764cebf6e33097f6833ff15a936fbe7b846c.tar.xz
linux-e012764cebf6e33097f6833ff15a936fbe7b846c.zip
Revert "net: hsr: use hlist_head instead of list_head for mac addresses"
The hlist optimisation (which not only uses hlist_head instead of list_head but also splits hsr_priv::node_db into an array of 256 slots) does not consider the "node merge": Upon starting the hsr network (with three nodes) a packet that is sent from node1 to node3 will also be sent from node1 to node2 and then forwarded to node3. As a result node3 will receive 2 packets because it is not able to filter out the duplicate. Each packet received will create a new struct hsr_node with macaddress_A only set the MAC address it received from (the two MAC addesses from node1). At some point (early in the process) two supervision frames will be received from node1. They will be processed by hsr_handle_sup_frame() and one frame will leave early ("Node has already been merged") and does nothing. The other frame will be merged as portB and have its MAC address written to macaddress_B and the hsr_node (that was created for it as macaddress_A) will be removed. From now on HSR is able to identify a duplicate because both packets sent from one node will result in the same struct hsr_node because hsr_get_node() will find the MAC address either on macaddress_A or macaddress_B. Things get tricky with the optimisation: If sender's MAC address is saved as macaddress_A then the lookup will work as usual. If the MAC address has been merged into macaddress_B of another hsr_node then the lookup won't work because it is likely that the data structure is in another bucket. This results in creating a new struct hsr_node and not recognising a possible duplicate. A way around it would be to add another hsr_node::mac_list_B and attach it to the other bucket to ensure that this hsr_node will be looked up either via macaddress_A _or_ macaddress_B. I however prefer to revert it because it sounds like an academic problem rather than real life workload plus it adds complexity. I'm not an HSR expert with what is usual size of a network but I would guess 40 to 60 nodes. With 10.000 nodes and assuming 60us for pass-through (from node to node) then it would take almost 600ms for a packet to almost wrap around which sounds a lot. Revert the hash MAC addresses optimisation. Fixes: 4acc45db71158 ("net: hsr: use hlist_head instead of list_head for mac addresses") Cc: Juhee Kang <claudiajkang@gmail.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Diffstat (limited to 'net/hsr/hsr_device.c')
-rw-r--r--net/hsr/hsr_device.c10
1 files changed, 3 insertions, 7 deletions
diff --git a/net/hsr/hsr_device.c b/net/hsr/hsr_device.c
index 6ffef47e9be5..7518f7e93043 100644
--- a/net/hsr/hsr_device.c
+++ b/net/hsr/hsr_device.c
@@ -485,16 +485,12 @@ int hsr_dev_finalize(struct net_device *hsr_dev, struct net_device *slave[2],
{
bool unregister = false;
struct hsr_priv *hsr;
- int res, i;
+ int res;
hsr = netdev_priv(hsr_dev);
INIT_LIST_HEAD(&hsr->ports);
- INIT_HLIST_HEAD(&hsr->self_node_db);
- hsr->hash_buckets = HSR_HSIZE;
- get_random_bytes(&hsr->hash_seed, sizeof(hsr->hash_seed));
- for (i = 0; i < hsr->hash_buckets; i++)
- INIT_HLIST_HEAD(&hsr->node_db[i]);
-
+ INIT_LIST_HEAD(&hsr->node_db);
+ INIT_LIST_HEAD(&hsr->self_node_db);
spin_lock_init(&hsr->list_lock);
eth_hw_addr_set(hsr_dev, slave[0]->dev_addr);