diff options
author | Arınç ÜNAL <arinc.unal@arinc9.com> | 2024-04-09 17:01:14 +0200 |
---|---|---|
committer | Paolo Abeni <pabeni@redhat.com> | 2024-04-11 09:26:41 +0200 |
commit | 17c560113231ddc20088553c7b499b289b664311 (patch) | |
tree | 7efad2bd763590a7d317db97d0979ddc02f51d83 /net/unix/garbage.c | |
parent | Revert "s390/ism: fix receive message buffer allocation" (diff) | |
download | linux-17c560113231ddc20088553c7b499b289b664311.tar.xz linux-17c560113231ddc20088553c7b499b289b664311.zip |
net: dsa: mt7530: trap link-local frames regardless of ST Port State
In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer
(DLL) of the Open Systems Interconnection basic reference model (OSI/RM)
are described; the medium access control (MAC) and logical link control
(LLC) sublayers. The MAC sublayer is the one facing the physical layer.
In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
Bridge component comprises a MAC Relay Entity for interconnecting the Ports
of the Bridge, at least two Ports, and higher layer entities with at least
a Spanning Tree Protocol Entity included.
Each Bridge Port also functions as an end station and shall provide the MAC
Service to an LLC Entity. Each instance of the MAC Service is provided to a
distinct LLC Entity that supports protocol identification, multiplexing,
and demultiplexing, for protocol data unit (PDU) transmission and reception
by one or more higher layer entities.
It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
Entity associated with each Bridge Port is modeled as being directly
connected to the attached Local Area Network (LAN).
On the switch with CPU port architecture, CPU port functions as Management
Port, and the Management Port functionality is provided by software which
functions as an end station. Software is connected to an IEEE 802 LAN that
is wholly contained within the system that incorporates the Bridge.
Software provides access to the LLC Entity associated with each Bridge Port
by the value of the source port field on the special tag on the frame
received by software.
We call frames that carry control information to determine the active
topology and current extent of each Virtual Local Area Network (VLAN),
i.e., spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN
Registration Protocol Data Units (MVRPDUs), and frames from other link
constrained protocols, such as Extensible Authentication Protocol over LAN
(EAPOL) and Link Layer Discovery Protocol (LLDP), link-local frames. They
are not forwarded by a Bridge. Permanently configured entries in the
filtering database (FDB) ensure that such frames are discarded by the
Forwarding Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in
detail:
Each of the reserved MAC addresses specified in Table 8-1
(01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
permanently configured in the FDB in C-VLAN components and ERs.
Each of the reserved MAC addresses specified in Table 8-2
(01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
configured in the FDB in S-VLAN components.
Each of the reserved MAC addresses specified in Table 8-3
(01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB
in TPMR components.
The FDB entries for reserved MAC addresses shall specify filtering for all
Bridge Ports and all VIDs. Management shall not provide the capability to
modify or remove entries for reserved MAC addresses.
The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
propagation of PDUs within a Bridged Network, as follows:
The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that
no conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
PDUs transmitted using this destination address, or any other addresses
that appear in Table 8-1, Table 8-2, and Table 8-3
(01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
therefore travel no further than those stations that can be reached via a
single individual LAN from the originating station.
The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
address that no conformant S-VLAN component, C-VLAN component, or MAC
Bridge can forward; however, this address is relayed by a TPMR component.
PDUs using this destination address, or any of the other addresses that
appear in both Table 8-1 and Table 8-2 but not in Table 8-3
(01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed
by any TPMRs but will propagate no further than the nearest S-VLAN
component, C-VLAN component, or MAC Bridge.
The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an
address that no conformant C-VLAN component, MAC Bridge can forward;
however, it is relayed by TPMR components and S-VLAN components. PDUs
using this destination address, or any of the other addresses that appear
in Table 8-1 but not in either Table 8-2 or Table 8-3
(01-80-C2-00-00-[00,0B,0C,0D,0F]), will be relayed by TPMR components and
S-VLAN components but will propagate no further than the nearest C-VLAN
component or MAC Bridge.
Because the LLC Entity associated with each Bridge Port is provided via CPU
port, we must not filter these frames but forward them to CPU port.
In a Bridge, the transmission Port is majorly decided by ingress and egress
rules, FDB, and spanning tree Port State functions of the Forwarding
Process. For link-local frames, only CPU port should be designated as
destination port in the FDB, and the other functions of the Forwarding
Process must not interfere with the decision of the transmission Port. We
call this process trapping frames to CPU port.
Therefore, on the switch with CPU port architecture, link-local frames must
be trapped to CPU port, and certain link-local frames received by a Port of
a Bridge comprising a TPMR component or an S-VLAN component must be
excluded from it.
A Bridge of the switch with CPU port architecture cannot comprise a
Two-Port MAC Relay (TPMR) component as a TPMR component supports only a
subset of the functionality of a MAC Bridge. A Bridge comprising two Ports
(Management Port doesn't count) of this architecture will either function
as a standard MAC Bridge or a standard VLAN Bridge.
Therefore, a Bridge of this architecture can only comprise S-VLAN
components, C-VLAN components, or MAC Bridge components. Since there's no
TPMR component, we don't need to relay PDUs using the destination addresses
specified on the Nearest non-TPMR section, and the proportion of the
Nearest Customer Bridge section where they must be relayed by TPMR
components.
One option to trap link-local frames to CPU port is to add static FDB
entries with CPU port designated as destination port. However, because that
Independent VLAN Learning (IVL) is being used on every VID, each entry only
applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
Bridge component or a C-VLAN component, there would have to be 16 times
4096 entries. This switch intellectual property can only hold a maximum of
2048 entries. Using this option, there also isn't a mechanism to prevent
link-local frames from being discarded when the spanning tree Port State of
the reception Port is discarding.
The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
registers. Whilst this applies to every VID, it doesn't contain all of the
reserved MAC addresses without affecting the remaining Standard Group MAC
Addresses. The REV_UN frame tag utilised using the RGAC4 register covers
the remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
The latter option provides better but not complete conformance.
This switch intellectual property also does not provide a mechanism to trap
link-local frames with specific destination addresses to CPU port by
Bridge, to conform to the filtering rules for the distinct Bridge
components.
Therefore, regardless of the type of the Bridge component, link-local
frames with these destination addresses will be trapped to CPU port:
01-80-C2-00-00-[00,01,02,03,0E]
In a Bridge comprising a MAC Bridge component or a C-VLAN component:
Link-local frames with these destination addresses won't be trapped to
CPU port which won't conform to IEEE Std 802.1Q-2022:
01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
In a Bridge comprising an S-VLAN component:
Link-local frames with these destination addresses will be trapped to CPU
port which won't conform to IEEE Std 802.1Q-2022:
01-80-C2-00-00-00
Link-local frames with these destination addresses won't be trapped to
CPU port which won't conform to IEEE Std 802.1Q-2022:
01-80-C2-00-00-[04,05,06,07,08,09,0A]
Currently on this switch intellectual property, if the spanning tree Port
State of the reception Port is discarding, link-local frames will be
discarded.
To trap link-local frames regardless of the spanning tree Port State, make
the switch regard them as Bridge Protocol Data Units (BPDUs). This switch
intellectual property only lets the frames regarded as BPDUs bypass the
spanning tree Port State function of the Forwarding Process.
With this change, the only remaining interference is the ingress rules.
When the reception Port has no PVID assigned on software, VLAN-untagged
frames won't be allowed in. There doesn't seem to be a mechanism on the
switch intellectual property to have link-local frames bypass this function
of the Forwarding Process.
Fixes: b8f126a8d543 ("net-next: dsa: add dsa support for Mediatek MT7530 switch")
Reviewed-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Link: https://lore.kernel.org/r/20240409-b4-for-net-mt7530-fix-link-local-when-stp-discarding-v2-1-07b1150164ac@arinc9.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Diffstat (limited to '')
0 files changed, 0 insertions, 0 deletions