summaryrefslogtreecommitdiffstats
path: root/virt
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2017-05-09 12:51:49 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2017-05-09 12:51:49 +0200
commit36c344f3f1ffc0b1b20abd237b7401dc6687ee8f (patch)
tree24b330a2e62bfc8f576cccdc833b53e1f1b69050 /virt
parentnVMX: Advertise PML to L1 hypervisor (diff)
parentKVM: arm/arm64: vgic-its: Cleanup after failed ITT restore (diff)
downloadlinux-36c344f3f1ffc0b1b20abd237b7401dc6687ee8f.tar.xz
linux-36c344f3f1ffc0b1b20abd237b7401dc6687ee8f.zip
Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
Second round of KVM/ARM Changes for v4.12. Changes include: - A fix related to the 32-bit idmap stub - A fix to the bitmask used to deode the operands of an AArch32 CP instruction - We have moved the files shared between arch/arm/kvm and arch/arm64/kvm to virt/kvm/arm - We add support for saving/restoring the virtual ITS state to userspace
Diffstat (limited to 'virt')
-rw-r--r--virt/kvm/arm/arm.c1480
-rw-r--r--virt/kvm/arm/mmio.c217
-rw-r--r--virt/kvm/arm/mmu.c1975
-rw-r--r--virt/kvm/arm/perf.c68
-rw-r--r--virt/kvm/arm/psci.c332
-rw-r--r--virt/kvm/arm/trace.h246
-rw-r--r--virt/kvm/arm/vgic/trace.h37
-rw-r--r--virt/kvm/arm/vgic/vgic-init.c25
-rw-r--r--virt/kvm/arm/vgic/vgic-its.c1234
-rw-r--r--virt/kvm/arm/vgic/vgic-kvm-device.c53
-rw-r--r--virt/kvm/arm/vgic/vgic-mmio-v3.c147
-rw-r--r--virt/kvm/arm/vgic/vgic-mmio.c11
-rw-r--r--virt/kvm/arm/vgic/vgic-mmio.h14
-rw-r--r--virt/kvm/arm/vgic/vgic-v3.c128
-rw-r--r--virt/kvm/arm/vgic/vgic.c2
-rw-r--r--virt/kvm/arm/vgic/vgic.h33
16 files changed, 5725 insertions, 277 deletions
diff --git a/virt/kvm/arm/arm.c b/virt/kvm/arm/arm.c
new file mode 100644
index 000000000000..3417e184c8e1
--- /dev/null
+++ b/virt/kvm/arm/arm.c
@@ -0,0 +1,1480 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/cpu_pm.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/kvm_host.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+#include <linux/mman.h>
+#include <linux/sched.h>
+#include <linux/kvm.h>
+#include <trace/events/kvm.h>
+#include <kvm/arm_pmu.h>
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+#include <linux/uaccess.h>
+#include <asm/ptrace.h>
+#include <asm/mman.h>
+#include <asm/tlbflush.h>
+#include <asm/cacheflush.h>
+#include <asm/virt.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_coproc.h>
+#include <asm/kvm_psci.h>
+#include <asm/sections.h>
+
+#ifdef REQUIRES_VIRT
+__asm__(".arch_extension virt");
+#endif
+
+static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
+static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
+
+/* Per-CPU variable containing the currently running vcpu. */
+static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
+
+/* The VMID used in the VTTBR */
+static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
+static u32 kvm_next_vmid;
+static unsigned int kvm_vmid_bits __read_mostly;
+static DEFINE_SPINLOCK(kvm_vmid_lock);
+
+static bool vgic_present;
+
+static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
+
+static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
+{
+ BUG_ON(preemptible());
+ __this_cpu_write(kvm_arm_running_vcpu, vcpu);
+}
+
+/**
+ * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
+ * Must be called from non-preemptible context
+ */
+struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
+{
+ BUG_ON(preemptible());
+ return __this_cpu_read(kvm_arm_running_vcpu);
+}
+
+/**
+ * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
+ */
+struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
+{
+ return &kvm_arm_running_vcpu;
+}
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+ return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
+}
+
+int kvm_arch_hardware_setup(void)
+{
+ return 0;
+}
+
+void kvm_arch_check_processor_compat(void *rtn)
+{
+ *(int *)rtn = 0;
+}
+
+
+/**
+ * kvm_arch_init_vm - initializes a VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+ int ret, cpu;
+
+ if (type)
+ return -EINVAL;
+
+ kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
+ if (!kvm->arch.last_vcpu_ran)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu)
+ *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
+
+ ret = kvm_alloc_stage2_pgd(kvm);
+ if (ret)
+ goto out_fail_alloc;
+
+ ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
+ if (ret)
+ goto out_free_stage2_pgd;
+
+ kvm_vgic_early_init(kvm);
+
+ /* Mark the initial VMID generation invalid */
+ kvm->arch.vmid_gen = 0;
+
+ /* The maximum number of VCPUs is limited by the host's GIC model */
+ kvm->arch.max_vcpus = vgic_present ?
+ kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
+
+ return ret;
+out_free_stage2_pgd:
+ kvm_free_stage2_pgd(kvm);
+out_fail_alloc:
+ free_percpu(kvm->arch.last_vcpu_ran);
+ kvm->arch.last_vcpu_ran = NULL;
+ return ret;
+}
+
+bool kvm_arch_has_vcpu_debugfs(void)
+{
+ return false;
+}
+
+int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
+{
+ return 0;
+}
+
+int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+ return VM_FAULT_SIGBUS;
+}
+
+
+/**
+ * kvm_arch_destroy_vm - destroy the VM data structure
+ * @kvm: pointer to the KVM struct
+ */
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+ int i;
+
+ free_percpu(kvm->arch.last_vcpu_ran);
+ kvm->arch.last_vcpu_ran = NULL;
+
+ for (i = 0; i < KVM_MAX_VCPUS; ++i) {
+ if (kvm->vcpus[i]) {
+ kvm_arch_vcpu_free(kvm->vcpus[i]);
+ kvm->vcpus[i] = NULL;
+ }
+ }
+
+ kvm_vgic_destroy(kvm);
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+ int r;
+ switch (ext) {
+ case KVM_CAP_IRQCHIP:
+ r = vgic_present;
+ break;
+ case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_DEVICE_CTRL:
+ case KVM_CAP_USER_MEMORY:
+ case KVM_CAP_SYNC_MMU:
+ case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
+ case KVM_CAP_ONE_REG:
+ case KVM_CAP_ARM_PSCI:
+ case KVM_CAP_ARM_PSCI_0_2:
+ case KVM_CAP_READONLY_MEM:
+ case KVM_CAP_MP_STATE:
+ case KVM_CAP_IMMEDIATE_EXIT:
+ r = 1;
+ break;
+ case KVM_CAP_ARM_SET_DEVICE_ADDR:
+ r = 1;
+ break;
+ case KVM_CAP_NR_VCPUS:
+ r = num_online_cpus();
+ break;
+ case KVM_CAP_MAX_VCPUS:
+ r = KVM_MAX_VCPUS;
+ break;
+ case KVM_CAP_NR_MEMSLOTS:
+ r = KVM_USER_MEM_SLOTS;
+ break;
+ case KVM_CAP_MSI_DEVID:
+ if (!kvm)
+ r = -EINVAL;
+ else
+ r = kvm->arch.vgic.msis_require_devid;
+ break;
+ case KVM_CAP_ARM_USER_IRQ:
+ /*
+ * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
+ * (bump this number if adding more devices)
+ */
+ r = 1;
+ break;
+ default:
+ r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
+ break;
+ }
+ return r;
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ return -EINVAL;
+}
+
+
+struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
+{
+ int err;
+ struct kvm_vcpu *vcpu;
+
+ if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
+ err = -EBUSY;
+ goto out;
+ }
+
+ if (id >= kvm->arch.max_vcpus) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+ if (!vcpu) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ err = kvm_vcpu_init(vcpu, kvm, id);
+ if (err)
+ goto free_vcpu;
+
+ err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
+ if (err)
+ goto vcpu_uninit;
+
+ return vcpu;
+vcpu_uninit:
+ kvm_vcpu_uninit(vcpu);
+free_vcpu:
+ kmem_cache_free(kvm_vcpu_cache, vcpu);
+out:
+ return ERR_PTR(err);
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+ kvm_vgic_vcpu_early_init(vcpu);
+}
+
+void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
+{
+ kvm_mmu_free_memory_caches(vcpu);
+ kvm_timer_vcpu_terminate(vcpu);
+ kvm_vgic_vcpu_destroy(vcpu);
+ kvm_pmu_vcpu_destroy(vcpu);
+ kvm_vcpu_uninit(vcpu);
+ kmem_cache_free(kvm_vcpu_cache, vcpu);
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ kvm_arch_vcpu_free(vcpu);
+}
+
+int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
+{
+ return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
+ kvm_timer_should_fire(vcpu_ptimer(vcpu));
+}
+
+void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
+{
+ kvm_timer_schedule(vcpu);
+}
+
+void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
+{
+ kvm_timer_unschedule(vcpu);
+}
+
+int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ /* Force users to call KVM_ARM_VCPU_INIT */
+ vcpu->arch.target = -1;
+ bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
+
+ /* Set up the timer */
+ kvm_timer_vcpu_init(vcpu);
+
+ kvm_arm_reset_debug_ptr(vcpu);
+
+ return kvm_vgic_vcpu_init(vcpu);
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ int *last_ran;
+
+ last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
+
+ /*
+ * We might get preempted before the vCPU actually runs, but
+ * over-invalidation doesn't affect correctness.
+ */
+ if (*last_ran != vcpu->vcpu_id) {
+ kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
+ *last_ran = vcpu->vcpu_id;
+ }
+
+ vcpu->cpu = cpu;
+ vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
+
+ kvm_arm_set_running_vcpu(vcpu);
+
+ kvm_vgic_load(vcpu);
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ kvm_vgic_put(vcpu);
+
+ vcpu->cpu = -1;
+
+ kvm_arm_set_running_vcpu(NULL);
+ kvm_timer_vcpu_put(vcpu);
+}
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ if (vcpu->arch.power_off)
+ mp_state->mp_state = KVM_MP_STATE_STOPPED;
+ else
+ mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ switch (mp_state->mp_state) {
+ case KVM_MP_STATE_RUNNABLE:
+ vcpu->arch.power_off = false;
+ break;
+ case KVM_MP_STATE_STOPPED:
+ vcpu->arch.power_off = true;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
+ * @v: The VCPU pointer
+ *
+ * If the guest CPU is not waiting for interrupts or an interrupt line is
+ * asserted, the CPU is by definition runnable.
+ */
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
+{
+ return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
+ && !v->arch.power_off && !v->arch.pause);
+}
+
+/* Just ensure a guest exit from a particular CPU */
+static void exit_vm_noop(void *info)
+{
+}
+
+void force_vm_exit(const cpumask_t *mask)
+{
+ preempt_disable();
+ smp_call_function_many(mask, exit_vm_noop, NULL, true);
+ preempt_enable();
+}
+
+/**
+ * need_new_vmid_gen - check that the VMID is still valid
+ * @kvm: The VM's VMID to check
+ *
+ * return true if there is a new generation of VMIDs being used
+ *
+ * The hardware supports only 256 values with the value zero reserved for the
+ * host, so we check if an assigned value belongs to a previous generation,
+ * which which requires us to assign a new value. If we're the first to use a
+ * VMID for the new generation, we must flush necessary caches and TLBs on all
+ * CPUs.
+ */
+static bool need_new_vmid_gen(struct kvm *kvm)
+{
+ return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
+}
+
+/**
+ * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
+ * @kvm The guest that we are about to run
+ *
+ * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
+ * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
+ * caches and TLBs.
+ */
+static void update_vttbr(struct kvm *kvm)
+{
+ phys_addr_t pgd_phys;
+ u64 vmid;
+
+ if (!need_new_vmid_gen(kvm))
+ return;
+
+ spin_lock(&kvm_vmid_lock);
+
+ /*
+ * We need to re-check the vmid_gen here to ensure that if another vcpu
+ * already allocated a valid vmid for this vm, then this vcpu should
+ * use the same vmid.
+ */
+ if (!need_new_vmid_gen(kvm)) {
+ spin_unlock(&kvm_vmid_lock);
+ return;
+ }
+
+ /* First user of a new VMID generation? */
+ if (unlikely(kvm_next_vmid == 0)) {
+ atomic64_inc(&kvm_vmid_gen);
+ kvm_next_vmid = 1;
+
+ /*
+ * On SMP we know no other CPUs can use this CPU's or each
+ * other's VMID after force_vm_exit returns since the
+ * kvm_vmid_lock blocks them from reentry to the guest.
+ */
+ force_vm_exit(cpu_all_mask);
+ /*
+ * Now broadcast TLB + ICACHE invalidation over the inner
+ * shareable domain to make sure all data structures are
+ * clean.
+ */
+ kvm_call_hyp(__kvm_flush_vm_context);
+ }
+
+ kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
+ kvm->arch.vmid = kvm_next_vmid;
+ kvm_next_vmid++;
+ kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
+
+ /* update vttbr to be used with the new vmid */
+ pgd_phys = virt_to_phys(kvm->arch.pgd);
+ BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
+ vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
+ kvm->arch.vttbr = pgd_phys | vmid;
+
+ spin_unlock(&kvm_vmid_lock);
+}
+
+static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int ret = 0;
+
+ if (likely(vcpu->arch.has_run_once))
+ return 0;
+
+ vcpu->arch.has_run_once = true;
+
+ /*
+ * Map the VGIC hardware resources before running a vcpu the first
+ * time on this VM.
+ */
+ if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
+ ret = kvm_vgic_map_resources(kvm);
+ if (ret)
+ return ret;
+ }
+
+ ret = kvm_timer_enable(vcpu);
+
+ return ret;
+}
+
+bool kvm_arch_intc_initialized(struct kvm *kvm)
+{
+ return vgic_initialized(kvm);
+}
+
+void kvm_arm_halt_guest(struct kvm *kvm)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ vcpu->arch.pause = true;
+ kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
+}
+
+void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.pause = true;
+ kvm_vcpu_kick(vcpu);
+}
+
+void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
+
+ vcpu->arch.pause = false;
+ swake_up(wq);
+}
+
+void kvm_arm_resume_guest(struct kvm *kvm)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_arm_resume_vcpu(vcpu);
+}
+
+static void vcpu_sleep(struct kvm_vcpu *vcpu)
+{
+ struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
+
+ swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
+ (!vcpu->arch.pause)));
+}
+
+static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.target >= 0;
+}
+
+/**
+ * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run structure pointer used for userspace state exchange
+ *
+ * This function is called through the VCPU_RUN ioctl called from user space. It
+ * will execute VM code in a loop until the time slice for the process is used
+ * or some emulation is needed from user space in which case the function will
+ * return with return value 0 and with the kvm_run structure filled in with the
+ * required data for the requested emulation.
+ */
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ int ret;
+ sigset_t sigsaved;
+
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ return -ENOEXEC;
+
+ ret = kvm_vcpu_first_run_init(vcpu);
+ if (ret)
+ return ret;
+
+ if (run->exit_reason == KVM_EXIT_MMIO) {
+ ret = kvm_handle_mmio_return(vcpu, vcpu->run);
+ if (ret)
+ return ret;
+ }
+
+ if (run->immediate_exit)
+ return -EINTR;
+
+ if (vcpu->sigset_active)
+ sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
+
+ ret = 1;
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ while (ret > 0) {
+ /*
+ * Check conditions before entering the guest
+ */
+ cond_resched();
+
+ update_vttbr(vcpu->kvm);
+
+ if (vcpu->arch.power_off || vcpu->arch.pause)
+ vcpu_sleep(vcpu);
+
+ /*
+ * Preparing the interrupts to be injected also
+ * involves poking the GIC, which must be done in a
+ * non-preemptible context.
+ */
+ preempt_disable();
+
+ kvm_pmu_flush_hwstate(vcpu);
+
+ kvm_timer_flush_hwstate(vcpu);
+ kvm_vgic_flush_hwstate(vcpu);
+
+ local_irq_disable();
+
+ /*
+ * If we have a singal pending, or need to notify a userspace
+ * irqchip about timer or PMU level changes, then we exit (and
+ * update the timer level state in kvm_timer_update_run
+ * below).
+ */
+ if (signal_pending(current) ||
+ kvm_timer_should_notify_user(vcpu) ||
+ kvm_pmu_should_notify_user(vcpu)) {
+ ret = -EINTR;
+ run->exit_reason = KVM_EXIT_INTR;
+ }
+
+ if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
+ vcpu->arch.power_off || vcpu->arch.pause) {
+ local_irq_enable();
+ kvm_pmu_sync_hwstate(vcpu);
+ kvm_timer_sync_hwstate(vcpu);
+ kvm_vgic_sync_hwstate(vcpu);
+ preempt_enable();
+ continue;
+ }
+
+ kvm_arm_setup_debug(vcpu);
+
+ /**************************************************************
+ * Enter the guest
+ */
+ trace_kvm_entry(*vcpu_pc(vcpu));
+ guest_enter_irqoff();
+ vcpu->mode = IN_GUEST_MODE;
+
+ ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
+
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ vcpu->stat.exits++;
+ /*
+ * Back from guest
+ *************************************************************/
+
+ kvm_arm_clear_debug(vcpu);
+
+ /*
+ * We may have taken a host interrupt in HYP mode (ie
+ * while executing the guest). This interrupt is still
+ * pending, as we haven't serviced it yet!
+ *
+ * We're now back in SVC mode, with interrupts
+ * disabled. Enabling the interrupts now will have
+ * the effect of taking the interrupt again, in SVC
+ * mode this time.
+ */
+ local_irq_enable();
+
+ /*
+ * We do local_irq_enable() before calling guest_exit() so
+ * that if a timer interrupt hits while running the guest we
+ * account that tick as being spent in the guest. We enable
+ * preemption after calling guest_exit() so that if we get
+ * preempted we make sure ticks after that is not counted as
+ * guest time.
+ */
+ guest_exit();
+ trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
+
+ /*
+ * We must sync the PMU and timer state before the vgic state so
+ * that the vgic can properly sample the updated state of the
+ * interrupt line.
+ */
+ kvm_pmu_sync_hwstate(vcpu);
+ kvm_timer_sync_hwstate(vcpu);
+
+ kvm_vgic_sync_hwstate(vcpu);
+
+ preempt_enable();
+
+ ret = handle_exit(vcpu, run, ret);
+ }
+
+ /* Tell userspace about in-kernel device output levels */
+ if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
+ kvm_timer_update_run(vcpu);
+ kvm_pmu_update_run(vcpu);
+ }
+
+ if (vcpu->sigset_active)
+ sigprocmask(SIG_SETMASK, &sigsaved, NULL);
+ return ret;
+}
+
+static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
+{
+ int bit_index;
+ bool set;
+ unsigned long *ptr;
+
+ if (number == KVM_ARM_IRQ_CPU_IRQ)
+ bit_index = __ffs(HCR_VI);
+ else /* KVM_ARM_IRQ_CPU_FIQ */
+ bit_index = __ffs(HCR_VF);
+
+ ptr = (unsigned long *)&vcpu->arch.irq_lines;
+ if (level)
+ set = test_and_set_bit(bit_index, ptr);
+ else
+ set = test_and_clear_bit(bit_index, ptr);
+
+ /*
+ * If we didn't change anything, no need to wake up or kick other CPUs
+ */
+ if (set == level)
+ return 0;
+
+ /*
+ * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
+ * trigger a world-switch round on the running physical CPU to set the
+ * virtual IRQ/FIQ fields in the HCR appropriately.
+ */
+ kvm_vcpu_kick(vcpu);
+
+ return 0;
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
+ bool line_status)
+{
+ u32 irq = irq_level->irq;
+ unsigned int irq_type, vcpu_idx, irq_num;
+ int nrcpus = atomic_read(&kvm->online_vcpus);
+ struct kvm_vcpu *vcpu = NULL;
+ bool level = irq_level->level;
+
+ irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
+ vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
+ irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
+
+ trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
+
+ switch (irq_type) {
+ case KVM_ARM_IRQ_TYPE_CPU:
+ if (irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
+ return -EINVAL;
+
+ return vcpu_interrupt_line(vcpu, irq_num, level);
+ case KVM_ARM_IRQ_TYPE_PPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (vcpu_idx >= nrcpus)
+ return -EINVAL;
+
+ vcpu = kvm_get_vcpu(kvm, vcpu_idx);
+ if (!vcpu)
+ return -EINVAL;
+
+ if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
+ case KVM_ARM_IRQ_TYPE_SPI:
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ if (irq_num < VGIC_NR_PRIVATE_IRQS)
+ return -EINVAL;
+
+ return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
+ }
+
+ return -EINVAL;
+}
+
+static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
+ const struct kvm_vcpu_init *init)
+{
+ unsigned int i;
+ int phys_target = kvm_target_cpu();
+
+ if (init->target != phys_target)
+ return -EINVAL;
+
+ /*
+ * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+ * use the same target.
+ */
+ if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
+ return -EINVAL;
+
+ /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
+ for (i = 0; i < sizeof(init->features) * 8; i++) {
+ bool set = (init->features[i / 32] & (1 << (i % 32)));
+
+ if (set && i >= KVM_VCPU_MAX_FEATURES)
+ return -ENOENT;
+
+ /*
+ * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
+ * use the same feature set.
+ */
+ if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
+ test_bit(i, vcpu->arch.features) != set)
+ return -EINVAL;
+
+ if (set)
+ set_bit(i, vcpu->arch.features);
+ }
+
+ vcpu->arch.target = phys_target;
+
+ /* Now we know what it is, we can reset it. */
+ return kvm_reset_vcpu(vcpu);
+}
+
+
+static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu_init *init)
+{
+ int ret;
+
+ ret = kvm_vcpu_set_target(vcpu, init);
+ if (ret)
+ return ret;
+
+ /*
+ * Ensure a rebooted VM will fault in RAM pages and detect if the
+ * guest MMU is turned off and flush the caches as needed.
+ */
+ if (vcpu->arch.has_run_once)
+ stage2_unmap_vm(vcpu->kvm);
+
+ vcpu_reset_hcr(vcpu);
+
+ /*
+ * Handle the "start in power-off" case.
+ */
+ if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
+ vcpu->arch.power_off = true;
+ else
+ vcpu->arch.power_off = false;
+
+ return 0;
+}
+
+static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
+ struct kvm_device_attr *attr)
+{
+ int ret = -ENXIO;
+
+ switch (attr->group) {
+ default:
+ ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
+ break;
+ }
+
+ return ret;
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ struct kvm_device_attr attr;
+
+ switch (ioctl) {
+ case KVM_ARM_VCPU_INIT: {
+ struct kvm_vcpu_init init;
+
+ if (copy_from_user(&init, argp, sizeof(init)))
+ return -EFAULT;
+
+ return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
+ }
+ case KVM_SET_ONE_REG:
+ case KVM_GET_ONE_REG: {
+ struct kvm_one_reg reg;
+
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ return -ENOEXEC;
+
+ if (copy_from_user(&reg, argp, sizeof(reg)))
+ return -EFAULT;
+ if (ioctl == KVM_SET_ONE_REG)
+ return kvm_arm_set_reg(vcpu, &reg);
+ else
+ return kvm_arm_get_reg(vcpu, &reg);
+ }
+ case KVM_GET_REG_LIST: {
+ struct kvm_reg_list __user *user_list = argp;
+ struct kvm_reg_list reg_list;
+ unsigned n;
+
+ if (unlikely(!kvm_vcpu_initialized(vcpu)))
+ return -ENOEXEC;
+
+ if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
+ return -EFAULT;
+ n = reg_list.n;
+ reg_list.n = kvm_arm_num_regs(vcpu);
+ if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
+ return -EFAULT;
+ if (n < reg_list.n)
+ return -E2BIG;
+ return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
+ }
+ case KVM_SET_DEVICE_ATTR: {
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ return -EFAULT;
+ return kvm_arm_vcpu_set_attr(vcpu, &attr);
+ }
+ case KVM_GET_DEVICE_ATTR: {
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ return -EFAULT;
+ return kvm_arm_vcpu_get_attr(vcpu, &attr);
+ }
+ case KVM_HAS_DEVICE_ATTR: {
+ if (copy_from_user(&attr, argp, sizeof(attr)))
+ return -EFAULT;
+ return kvm_arm_vcpu_has_attr(vcpu, &attr);
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+/**
+ * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
+ * @kvm: kvm instance
+ * @log: slot id and address to which we copy the log
+ *
+ * Steps 1-4 below provide general overview of dirty page logging. See
+ * kvm_get_dirty_log_protect() function description for additional details.
+ *
+ * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
+ * always flush the TLB (step 4) even if previous step failed and the dirty
+ * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
+ * does not preclude user space subsequent dirty log read. Flushing TLB ensures
+ * writes will be marked dirty for next log read.
+ *
+ * 1. Take a snapshot of the bit and clear it if needed.
+ * 2. Write protect the corresponding page.
+ * 3. Copy the snapshot to the userspace.
+ * 4. Flush TLB's if needed.
+ */
+int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
+{
+ bool is_dirty = false;
+ int r;
+
+ mutex_lock(&kvm->slots_lock);
+
+ r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
+
+ if (is_dirty)
+ kvm_flush_remote_tlbs(kvm);
+
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
+ struct kvm_arm_device_addr *dev_addr)
+{
+ unsigned long dev_id, type;
+
+ dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
+ KVM_ARM_DEVICE_ID_SHIFT;
+ type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
+ KVM_ARM_DEVICE_TYPE_SHIFT;
+
+ switch (dev_id) {
+ case KVM_ARM_DEVICE_VGIC_V2:
+ if (!vgic_present)
+ return -ENXIO;
+ return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
+ default:
+ return -ENODEV;
+ }
+}
+
+long kvm_arch_vm_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm = filp->private_data;
+ void __user *argp = (void __user *)arg;
+
+ switch (ioctl) {
+ case KVM_CREATE_IRQCHIP: {
+ int ret;
+ if (!vgic_present)
+ return -ENXIO;
+ mutex_lock(&kvm->lock);
+ ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
+ mutex_unlock(&kvm->lock);
+ return ret;
+ }
+ case KVM_ARM_SET_DEVICE_ADDR: {
+ struct kvm_arm_device_addr dev_addr;
+
+ if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
+ return -EFAULT;
+ return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
+ }
+ case KVM_ARM_PREFERRED_TARGET: {
+ int err;
+ struct kvm_vcpu_init init;
+
+ err = kvm_vcpu_preferred_target(&init);
+ if (err)
+ return err;
+
+ if (copy_to_user(argp, &init, sizeof(init)))
+ return -EFAULT;
+
+ return 0;
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static void cpu_init_hyp_mode(void *dummy)
+{
+ phys_addr_t pgd_ptr;
+ unsigned long hyp_stack_ptr;
+ unsigned long stack_page;
+ unsigned long vector_ptr;
+
+ /* Switch from the HYP stub to our own HYP init vector */
+ __hyp_set_vectors(kvm_get_idmap_vector());
+
+ pgd_ptr = kvm_mmu_get_httbr();
+ stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
+ hyp_stack_ptr = stack_page + PAGE_SIZE;
+ vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
+
+ __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
+ __cpu_init_stage2();
+
+ if (is_kernel_in_hyp_mode())
+ kvm_timer_init_vhe();
+
+ kvm_arm_init_debug();
+}
+
+static void cpu_hyp_reset(void)
+{
+ if (!is_kernel_in_hyp_mode())
+ __hyp_reset_vectors();
+}
+
+static void cpu_hyp_reinit(void)
+{
+ cpu_hyp_reset();
+
+ if (is_kernel_in_hyp_mode()) {
+ /*
+ * __cpu_init_stage2() is safe to call even if the PM
+ * event was cancelled before the CPU was reset.
+ */
+ __cpu_init_stage2();
+ } else {
+ cpu_init_hyp_mode(NULL);
+ }
+
+ if (vgic_present)
+ kvm_vgic_init_cpu_hardware();
+}
+
+static void _kvm_arch_hardware_enable(void *discard)
+{
+ if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
+ cpu_hyp_reinit();
+ __this_cpu_write(kvm_arm_hardware_enabled, 1);
+ }
+}
+
+int kvm_arch_hardware_enable(void)
+{
+ _kvm_arch_hardware_enable(NULL);
+ return 0;
+}
+
+static void _kvm_arch_hardware_disable(void *discard)
+{
+ if (__this_cpu_read(kvm_arm_hardware_enabled)) {
+ cpu_hyp_reset();
+ __this_cpu_write(kvm_arm_hardware_enabled, 0);
+ }
+}
+
+void kvm_arch_hardware_disable(void)
+{
+ _kvm_arch_hardware_disable(NULL);
+}
+
+#ifdef CONFIG_CPU_PM
+static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
+ unsigned long cmd,
+ void *v)
+{
+ /*
+ * kvm_arm_hardware_enabled is left with its old value over
+ * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
+ * re-enable hyp.
+ */
+ switch (cmd) {
+ case CPU_PM_ENTER:
+ if (__this_cpu_read(kvm_arm_hardware_enabled))
+ /*
+ * don't update kvm_arm_hardware_enabled here
+ * so that the hardware will be re-enabled
+ * when we resume. See below.
+ */
+ cpu_hyp_reset();
+
+ return NOTIFY_OK;
+ case CPU_PM_EXIT:
+ if (__this_cpu_read(kvm_arm_hardware_enabled))
+ /* The hardware was enabled before suspend. */
+ cpu_hyp_reinit();
+
+ return NOTIFY_OK;
+
+ default:
+ return NOTIFY_DONE;
+ }
+}
+
+static struct notifier_block hyp_init_cpu_pm_nb = {
+ .notifier_call = hyp_init_cpu_pm_notifier,
+};
+
+static void __init hyp_cpu_pm_init(void)
+{
+ cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
+}
+static void __init hyp_cpu_pm_exit(void)
+{
+ cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
+}
+#else
+static inline void hyp_cpu_pm_init(void)
+{
+}
+static inline void hyp_cpu_pm_exit(void)
+{
+}
+#endif
+
+static void teardown_common_resources(void)
+{
+ free_percpu(kvm_host_cpu_state);
+}
+
+static int init_common_resources(void)
+{
+ kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
+ if (!kvm_host_cpu_state) {
+ kvm_err("Cannot allocate host CPU state\n");
+ return -ENOMEM;
+ }
+
+ /* set size of VMID supported by CPU */
+ kvm_vmid_bits = kvm_get_vmid_bits();
+ kvm_info("%d-bit VMID\n", kvm_vmid_bits);
+
+ return 0;
+}
+
+static int init_subsystems(void)
+{
+ int err = 0;
+
+ /*
+ * Enable hardware so that subsystem initialisation can access EL2.
+ */
+ on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
+
+ /*
+ * Register CPU lower-power notifier
+ */
+ hyp_cpu_pm_init();
+
+ /*
+ * Init HYP view of VGIC
+ */
+ err = kvm_vgic_hyp_init();
+ switch (err) {
+ case 0:
+ vgic_present = true;
+ break;
+ case -ENODEV:
+ case -ENXIO:
+ vgic_present = false;
+ err = 0;
+ break;
+ default:
+ goto out;
+ }
+
+ /*
+ * Init HYP architected timer support
+ */
+ err = kvm_timer_hyp_init();
+ if (err)
+ goto out;
+
+ kvm_perf_init();
+ kvm_coproc_table_init();
+
+out:
+ on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
+
+ return err;
+}
+
+static void teardown_hyp_mode(void)
+{
+ int cpu;
+
+ if (is_kernel_in_hyp_mode())
+ return;
+
+ free_hyp_pgds();
+ for_each_possible_cpu(cpu)
+ free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
+ hyp_cpu_pm_exit();
+}
+
+static int init_vhe_mode(void)
+{
+ kvm_info("VHE mode initialized successfully\n");
+ return 0;
+}
+
+/**
+ * Inits Hyp-mode on all online CPUs
+ */
+static int init_hyp_mode(void)
+{
+ int cpu;
+ int err = 0;
+
+ /*
+ * Allocate Hyp PGD and setup Hyp identity mapping
+ */
+ err = kvm_mmu_init();
+ if (err)
+ goto out_err;
+
+ /*
+ * Allocate stack pages for Hypervisor-mode
+ */
+ for_each_possible_cpu(cpu) {
+ unsigned long stack_page;
+
+ stack_page = __get_free_page(GFP_KERNEL);
+ if (!stack_page) {
+ err = -ENOMEM;
+ goto out_err;
+ }
+
+ per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
+ }
+
+ /*
+ * Map the Hyp-code called directly from the host
+ */
+ err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
+ kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
+ if (err) {
+ kvm_err("Cannot map world-switch code\n");
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
+ kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map rodata section\n");
+ goto out_err;
+ }
+
+ err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
+ kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
+ if (err) {
+ kvm_err("Cannot map bss section\n");
+ goto out_err;
+ }
+
+ /*
+ * Map the Hyp stack pages
+ */
+ for_each_possible_cpu(cpu) {
+ char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
+ err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
+ PAGE_HYP);
+
+ if (err) {
+ kvm_err("Cannot map hyp stack\n");
+ goto out_err;
+ }
+ }
+
+ for_each_possible_cpu(cpu) {
+ kvm_cpu_context_t *cpu_ctxt;
+
+ cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
+ err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
+
+ if (err) {
+ kvm_err("Cannot map host CPU state: %d\n", err);
+ goto out_err;
+ }
+ }
+
+ kvm_info("Hyp mode initialized successfully\n");
+
+ return 0;
+
+out_err:
+ teardown_hyp_mode();
+ kvm_err("error initializing Hyp mode: %d\n", err);
+ return err;
+}
+
+static void check_kvm_target_cpu(void *ret)
+{
+ *(int *)ret = kvm_target_cpu();
+}
+
+struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ mpidr &= MPIDR_HWID_BITMASK;
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
+ return vcpu;
+ }
+ return NULL;
+}
+
+/**
+ * Initialize Hyp-mode and memory mappings on all CPUs.
+ */
+int kvm_arch_init(void *opaque)
+{
+ int err;
+ int ret, cpu;
+
+ if (!is_hyp_mode_available()) {
+ kvm_err("HYP mode not available\n");
+ return -ENODEV;
+ }
+
+ for_each_online_cpu(cpu) {
+ smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
+ if (ret < 0) {
+ kvm_err("Error, CPU %d not supported!\n", cpu);
+ return -ENODEV;
+ }
+ }
+
+ err = init_common_resources();
+ if (err)
+ return err;
+
+ if (is_kernel_in_hyp_mode())
+ err = init_vhe_mode();
+ else
+ err = init_hyp_mode();
+ if (err)
+ goto out_err;
+
+ err = init_subsystems();
+ if (err)
+ goto out_hyp;
+
+ return 0;
+
+out_hyp:
+ teardown_hyp_mode();
+out_err:
+ teardown_common_resources();
+ return err;
+}
+
+/* NOP: Compiling as a module not supported */
+void kvm_arch_exit(void)
+{
+ kvm_perf_teardown();
+}
+
+static int arm_init(void)
+{
+ int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
+ return rc;
+}
+
+module_init(arm_init);
diff --git a/virt/kvm/arm/mmio.c b/virt/kvm/arm/mmio.c
new file mode 100644
index 000000000000..b6e715fd3c90
--- /dev/null
+++ b/virt/kvm/arm/mmio.c
@@ -0,0 +1,217 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/kvm_mmio.h>
+#include <asm/kvm_emulate.h>
+#include <trace/events/kvm.h>
+
+#include "trace.h"
+
+void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data)
+{
+ void *datap = NULL;
+ union {
+ u8 byte;
+ u16 hword;
+ u32 word;
+ u64 dword;
+ } tmp;
+
+ switch (len) {
+ case 1:
+ tmp.byte = data;
+ datap = &tmp.byte;
+ break;
+ case 2:
+ tmp.hword = data;
+ datap = &tmp.hword;
+ break;
+ case 4:
+ tmp.word = data;
+ datap = &tmp.word;
+ break;
+ case 8:
+ tmp.dword = data;
+ datap = &tmp.dword;
+ break;
+ }
+
+ memcpy(buf, datap, len);
+}
+
+unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len)
+{
+ unsigned long data = 0;
+ union {
+ u16 hword;
+ u32 word;
+ u64 dword;
+ } tmp;
+
+ switch (len) {
+ case 1:
+ data = *(u8 *)buf;
+ break;
+ case 2:
+ memcpy(&tmp.hword, buf, len);
+ data = tmp.hword;
+ break;
+ case 4:
+ memcpy(&tmp.word, buf, len);
+ data = tmp.word;
+ break;
+ case 8:
+ memcpy(&tmp.dword, buf, len);
+ data = tmp.dword;
+ break;
+ }
+
+ return data;
+}
+
+/**
+ * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation
+ * or in-kernel IO emulation
+ *
+ * @vcpu: The VCPU pointer
+ * @run: The VCPU run struct containing the mmio data
+ */
+int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ unsigned long data;
+ unsigned int len;
+ int mask;
+
+ if (!run->mmio.is_write) {
+ len = run->mmio.len;
+ if (len > sizeof(unsigned long))
+ return -EINVAL;
+
+ data = kvm_mmio_read_buf(run->mmio.data, len);
+
+ if (vcpu->arch.mmio_decode.sign_extend &&
+ len < sizeof(unsigned long)) {
+ mask = 1U << ((len * 8) - 1);
+ data = (data ^ mask) - mask;
+ }
+
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr,
+ data);
+ data = vcpu_data_host_to_guest(vcpu, data, len);
+ vcpu_set_reg(vcpu, vcpu->arch.mmio_decode.rt, data);
+ }
+
+ return 0;
+}
+
+static int decode_hsr(struct kvm_vcpu *vcpu, bool *is_write, int *len)
+{
+ unsigned long rt;
+ int access_size;
+ bool sign_extend;
+
+ if (kvm_vcpu_dabt_iss1tw(vcpu)) {
+ /* page table accesses IO mem: tell guest to fix its TTBR */
+ kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ return 1;
+ }
+
+ access_size = kvm_vcpu_dabt_get_as(vcpu);
+ if (unlikely(access_size < 0))
+ return access_size;
+
+ *is_write = kvm_vcpu_dabt_iswrite(vcpu);
+ sign_extend = kvm_vcpu_dabt_issext(vcpu);
+ rt = kvm_vcpu_dabt_get_rd(vcpu);
+
+ *len = access_size;
+ vcpu->arch.mmio_decode.sign_extend = sign_extend;
+ vcpu->arch.mmio_decode.rt = rt;
+
+ /*
+ * The MMIO instruction is emulated and should not be re-executed
+ * in the guest.
+ */
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+ return 0;
+}
+
+int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run,
+ phys_addr_t fault_ipa)
+{
+ unsigned long data;
+ unsigned long rt;
+ int ret;
+ bool is_write;
+ int len;
+ u8 data_buf[8];
+
+ /*
+ * Prepare MMIO operation. First decode the syndrome data we get
+ * from the CPU. Then try if some in-kernel emulation feels
+ * responsible, otherwise let user space do its magic.
+ */
+ if (kvm_vcpu_dabt_isvalid(vcpu)) {
+ ret = decode_hsr(vcpu, &is_write, &len);
+ if (ret)
+ return ret;
+ } else {
+ kvm_err("load/store instruction decoding not implemented\n");
+ return -ENOSYS;
+ }
+
+ rt = vcpu->arch.mmio_decode.rt;
+
+ if (is_write) {
+ data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt),
+ len);
+
+ trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, data);
+ kvm_mmio_write_buf(data_buf, len, data);
+
+ ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+ data_buf);
+ } else {
+ trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len,
+ fault_ipa, 0);
+
+ ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len,
+ data_buf);
+ }
+
+ /* Now prepare kvm_run for the potential return to userland. */
+ run->mmio.is_write = is_write;
+ run->mmio.phys_addr = fault_ipa;
+ run->mmio.len = len;
+
+ if (!ret) {
+ /* We handled the access successfully in the kernel. */
+ if (!is_write)
+ memcpy(run->mmio.data, data_buf, len);
+ vcpu->stat.mmio_exit_kernel++;
+ kvm_handle_mmio_return(vcpu, run);
+ return 1;
+ }
+
+ if (is_write)
+ memcpy(run->mmio.data, data_buf, len);
+ vcpu->stat.mmio_exit_user++;
+ run->exit_reason = KVM_EXIT_MMIO;
+ return 0;
+}
diff --git a/virt/kvm/arm/mmu.c b/virt/kvm/arm/mmu.c
new file mode 100644
index 000000000000..313ee646480f
--- /dev/null
+++ b/virt/kvm/arm/mmu.c
@@ -0,0 +1,1975 @@
+/*
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Author: Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include <linux/mman.h>
+#include <linux/kvm_host.h>
+#include <linux/io.h>
+#include <linux/hugetlb.h>
+#include <trace/events/kvm.h>
+#include <asm/pgalloc.h>
+#include <asm/cacheflush.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_mmu.h>
+#include <asm/kvm_mmio.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_emulate.h>
+#include <asm/virt.h>
+
+#include "trace.h"
+
+static pgd_t *boot_hyp_pgd;
+static pgd_t *hyp_pgd;
+static pgd_t *merged_hyp_pgd;
+static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
+
+static unsigned long hyp_idmap_start;
+static unsigned long hyp_idmap_end;
+static phys_addr_t hyp_idmap_vector;
+
+#define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
+#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
+
+#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
+#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
+
+static bool memslot_is_logging(struct kvm_memory_slot *memslot)
+{
+ return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
+}
+
+/**
+ * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
+ * @kvm: pointer to kvm structure.
+ *
+ * Interface to HYP function to flush all VM TLB entries
+ */
+void kvm_flush_remote_tlbs(struct kvm *kvm)
+{
+ kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
+}
+
+static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
+{
+ kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
+}
+
+/*
+ * D-Cache management functions. They take the page table entries by
+ * value, as they are flushing the cache using the kernel mapping (or
+ * kmap on 32bit).
+ */
+static void kvm_flush_dcache_pte(pte_t pte)
+{
+ __kvm_flush_dcache_pte(pte);
+}
+
+static void kvm_flush_dcache_pmd(pmd_t pmd)
+{
+ __kvm_flush_dcache_pmd(pmd);
+}
+
+static void kvm_flush_dcache_pud(pud_t pud)
+{
+ __kvm_flush_dcache_pud(pud);
+}
+
+static bool kvm_is_device_pfn(unsigned long pfn)
+{
+ return !pfn_valid(pfn);
+}
+
+/**
+ * stage2_dissolve_pmd() - clear and flush huge PMD entry
+ * @kvm: pointer to kvm structure.
+ * @addr: IPA
+ * @pmd: pmd pointer for IPA
+ *
+ * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
+ * pages in the range dirty.
+ */
+static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
+{
+ if (!pmd_thp_or_huge(*pmd))
+ return;
+
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ put_page(virt_to_page(pmd));
+}
+
+static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
+ int min, int max)
+{
+ void *page;
+
+ BUG_ON(max > KVM_NR_MEM_OBJS);
+ if (cache->nobjs >= min)
+ return 0;
+ while (cache->nobjs < max) {
+ page = (void *)__get_free_page(PGALLOC_GFP);
+ if (!page)
+ return -ENOMEM;
+ cache->objects[cache->nobjs++] = page;
+ }
+ return 0;
+}
+
+static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
+{
+ while (mc->nobjs)
+ free_page((unsigned long)mc->objects[--mc->nobjs]);
+}
+
+static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
+{
+ void *p;
+
+ BUG_ON(!mc || !mc->nobjs);
+ p = mc->objects[--mc->nobjs];
+ return p;
+}
+
+static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
+{
+ pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
+ stage2_pgd_clear(pgd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ stage2_pud_free(pud_table);
+ put_page(virt_to_page(pgd));
+}
+
+static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
+{
+ pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
+ VM_BUG_ON(stage2_pud_huge(*pud));
+ stage2_pud_clear(pud);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ stage2_pmd_free(pmd_table);
+ put_page(virt_to_page(pud));
+}
+
+static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
+{
+ pte_t *pte_table = pte_offset_kernel(pmd, 0);
+ VM_BUG_ON(pmd_thp_or_huge(*pmd));
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ pte_free_kernel(NULL, pte_table);
+ put_page(virt_to_page(pmd));
+}
+
+/*
+ * Unmapping vs dcache management:
+ *
+ * If a guest maps certain memory pages as uncached, all writes will
+ * bypass the data cache and go directly to RAM. However, the CPUs
+ * can still speculate reads (not writes) and fill cache lines with
+ * data.
+ *
+ * Those cache lines will be *clean* cache lines though, so a
+ * clean+invalidate operation is equivalent to an invalidate
+ * operation, because no cache lines are marked dirty.
+ *
+ * Those clean cache lines could be filled prior to an uncached write
+ * by the guest, and the cache coherent IO subsystem would therefore
+ * end up writing old data to disk.
+ *
+ * This is why right after unmapping a page/section and invalidating
+ * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
+ * the IO subsystem will never hit in the cache.
+ */
+static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t start_addr = addr;
+ pte_t *pte, *start_pte;
+
+ start_pte = pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ pte_t old_pte = *pte;
+
+ kvm_set_pte(pte, __pte(0));
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+
+ /* No need to invalidate the cache for device mappings */
+ if (!kvm_is_device_pfn(pte_pfn(old_pte)))
+ kvm_flush_dcache_pte(old_pte);
+
+ put_page(virt_to_page(pte));
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+
+ if (stage2_pte_table_empty(start_pte))
+ clear_stage2_pmd_entry(kvm, pmd, start_addr);
+}
+
+static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next, start_addr = addr;
+ pmd_t *pmd, *start_pmd;
+
+ start_pmd = pmd = stage2_pmd_offset(pud, addr);
+ do {
+ next = stage2_pmd_addr_end(addr, end);
+ if (!pmd_none(*pmd)) {
+ if (pmd_thp_or_huge(*pmd)) {
+ pmd_t old_pmd = *pmd;
+
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+
+ kvm_flush_dcache_pmd(old_pmd);
+
+ put_page(virt_to_page(pmd));
+ } else {
+ unmap_stage2_ptes(kvm, pmd, addr, next);
+ }
+ }
+ } while (pmd++, addr = next, addr != end);
+
+ if (stage2_pmd_table_empty(start_pmd))
+ clear_stage2_pud_entry(kvm, pud, start_addr);
+}
+
+static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next, start_addr = addr;
+ pud_t *pud, *start_pud;
+
+ start_pud = pud = stage2_pud_offset(pgd, addr);
+ do {
+ next = stage2_pud_addr_end(addr, end);
+ if (!stage2_pud_none(*pud)) {
+ if (stage2_pud_huge(*pud)) {
+ pud_t old_pud = *pud;
+
+ stage2_pud_clear(pud);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ kvm_flush_dcache_pud(old_pud);
+ put_page(virt_to_page(pud));
+ } else {
+ unmap_stage2_pmds(kvm, pud, addr, next);
+ }
+ }
+ } while (pud++, addr = next, addr != end);
+
+ if (stage2_pud_table_empty(start_pud))
+ clear_stage2_pgd_entry(kvm, pgd, start_addr);
+}
+
+/**
+ * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
+ * @kvm: The VM pointer
+ * @start: The intermediate physical base address of the range to unmap
+ * @size: The size of the area to unmap
+ *
+ * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
+ * be called while holding mmu_lock (unless for freeing the stage2 pgd before
+ * destroying the VM), otherwise another faulting VCPU may come in and mess
+ * with things behind our backs.
+ */
+static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
+{
+ pgd_t *pgd;
+ phys_addr_t addr = start, end = start + size;
+ phys_addr_t next;
+
+ assert_spin_locked(&kvm->mmu_lock);
+ pgd = kvm->arch.pgd + stage2_pgd_index(addr);
+ do {
+ next = stage2_pgd_addr_end(addr, end);
+ if (!stage2_pgd_none(*pgd))
+ unmap_stage2_puds(kvm, pgd, addr, next);
+ /*
+ * If the range is too large, release the kvm->mmu_lock
+ * to prevent starvation and lockup detector warnings.
+ */
+ if (next != end)
+ cond_resched_lock(&kvm->mmu_lock);
+ } while (pgd++, addr = next, addr != end);
+}
+
+static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
+ kvm_flush_dcache_pte(*pte);
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pmd_t *pmd;
+ phys_addr_t next;
+
+ pmd = stage2_pmd_offset(pud, addr);
+ do {
+ next = stage2_pmd_addr_end(addr, end);
+ if (!pmd_none(*pmd)) {
+ if (pmd_thp_or_huge(*pmd))
+ kvm_flush_dcache_pmd(*pmd);
+ else
+ stage2_flush_ptes(kvm, pmd, addr, next);
+ }
+ } while (pmd++, addr = next, addr != end);
+}
+
+static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
+ phys_addr_t addr, phys_addr_t end)
+{
+ pud_t *pud;
+ phys_addr_t next;
+
+ pud = stage2_pud_offset(pgd, addr);
+ do {
+ next = stage2_pud_addr_end(addr, end);
+ if (!stage2_pud_none(*pud)) {
+ if (stage2_pud_huge(*pud))
+ kvm_flush_dcache_pud(*pud);
+ else
+ stage2_flush_pmds(kvm, pud, addr, next);
+ }
+ } while (pud++, addr = next, addr != end);
+}
+
+static void stage2_flush_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
+ phys_addr_t next;
+ pgd_t *pgd;
+
+ pgd = kvm->arch.pgd + stage2_pgd_index(addr);
+ do {
+ next = stage2_pgd_addr_end(addr, end);
+ stage2_flush_puds(kvm, pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+/**
+ * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the stage 2 page tables and invalidate any cache lines
+ * backing memory already mapped to the VM.
+ */
+static void stage2_flush_vm(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int idx;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ spin_lock(&kvm->mmu_lock);
+
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, slots)
+ stage2_flush_memslot(kvm, memslot);
+
+ spin_unlock(&kvm->mmu_lock);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+static void clear_hyp_pgd_entry(pgd_t *pgd)
+{
+ pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
+ pgd_clear(pgd);
+ pud_free(NULL, pud_table);
+ put_page(virt_to_page(pgd));
+}
+
+static void clear_hyp_pud_entry(pud_t *pud)
+{
+ pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
+ VM_BUG_ON(pud_huge(*pud));
+ pud_clear(pud);
+ pmd_free(NULL, pmd_table);
+ put_page(virt_to_page(pud));
+}
+
+static void clear_hyp_pmd_entry(pmd_t *pmd)
+{
+ pte_t *pte_table = pte_offset_kernel(pmd, 0);
+ VM_BUG_ON(pmd_thp_or_huge(*pmd));
+ pmd_clear(pmd);
+ pte_free_kernel(NULL, pte_table);
+ put_page(virt_to_page(pmd));
+}
+
+static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte, *start_pte;
+
+ start_pte = pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ kvm_set_pte(pte, __pte(0));
+ put_page(virt_to_page(pte));
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+
+ if (hyp_pte_table_empty(start_pte))
+ clear_hyp_pmd_entry(pmd);
+}
+
+static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next;
+ pmd_t *pmd, *start_pmd;
+
+ start_pmd = pmd = pmd_offset(pud, addr);
+ do {
+ next = pmd_addr_end(addr, end);
+ /* Hyp doesn't use huge pmds */
+ if (!pmd_none(*pmd))
+ unmap_hyp_ptes(pmd, addr, next);
+ } while (pmd++, addr = next, addr != end);
+
+ if (hyp_pmd_table_empty(start_pmd))
+ clear_hyp_pud_entry(pud);
+}
+
+static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
+{
+ phys_addr_t next;
+ pud_t *pud, *start_pud;
+
+ start_pud = pud = pud_offset(pgd, addr);
+ do {
+ next = pud_addr_end(addr, end);
+ /* Hyp doesn't use huge puds */
+ if (!pud_none(*pud))
+ unmap_hyp_pmds(pud, addr, next);
+ } while (pud++, addr = next, addr != end);
+
+ if (hyp_pud_table_empty(start_pud))
+ clear_hyp_pgd_entry(pgd);
+}
+
+static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
+{
+ pgd_t *pgd;
+ phys_addr_t addr = start, end = start + size;
+ phys_addr_t next;
+
+ /*
+ * We don't unmap anything from HYP, except at the hyp tear down.
+ * Hence, we don't have to invalidate the TLBs here.
+ */
+ pgd = pgdp + pgd_index(addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ if (!pgd_none(*pgd))
+ unmap_hyp_puds(pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+/**
+ * free_hyp_pgds - free Hyp-mode page tables
+ *
+ * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
+ * therefore contains either mappings in the kernel memory area (above
+ * PAGE_OFFSET), or device mappings in the vmalloc range (from
+ * VMALLOC_START to VMALLOC_END).
+ *
+ * boot_hyp_pgd should only map two pages for the init code.
+ */
+void free_hyp_pgds(void)
+{
+ unsigned long addr;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+
+ if (boot_hyp_pgd) {
+ unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
+ free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
+ boot_hyp_pgd = NULL;
+ }
+
+ if (hyp_pgd) {
+ unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
+ for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
+ unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
+ for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
+ unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
+
+ free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
+ hyp_pgd = NULL;
+ }
+ if (merged_hyp_pgd) {
+ clear_page(merged_hyp_pgd);
+ free_page((unsigned long)merged_hyp_pgd);
+ merged_hyp_pgd = NULL;
+ }
+
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+}
+
+static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pte_t *pte;
+ unsigned long addr;
+
+ addr = start;
+ do {
+ pte = pte_offset_kernel(pmd, addr);
+ kvm_set_pte(pte, pfn_pte(pfn, prot));
+ get_page(virt_to_page(pte));
+ kvm_flush_dcache_to_poc(pte, sizeof(*pte));
+ pfn++;
+ } while (addr += PAGE_SIZE, addr != end);
+}
+
+static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned long addr, next;
+
+ addr = start;
+ do {
+ pmd = pmd_offset(pud, addr);
+
+ BUG_ON(pmd_sect(*pmd));
+
+ if (pmd_none(*pmd)) {
+ pte = pte_alloc_one_kernel(NULL, addr);
+ if (!pte) {
+ kvm_err("Cannot allocate Hyp pte\n");
+ return -ENOMEM;
+ }
+ pmd_populate_kernel(NULL, pmd, pte);
+ get_page(virt_to_page(pmd));
+ kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
+ }
+
+ next = pmd_addr_end(addr, end);
+
+ create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+
+ return 0;
+}
+
+static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
+ unsigned long end, unsigned long pfn,
+ pgprot_t prot)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+ unsigned long addr, next;
+ int ret;
+
+ addr = start;
+ do {
+ pud = pud_offset(pgd, addr);
+
+ if (pud_none_or_clear_bad(pud)) {
+ pmd = pmd_alloc_one(NULL, addr);
+ if (!pmd) {
+ kvm_err("Cannot allocate Hyp pmd\n");
+ return -ENOMEM;
+ }
+ pud_populate(NULL, pud, pmd);
+ get_page(virt_to_page(pud));
+ kvm_flush_dcache_to_poc(pud, sizeof(*pud));
+ }
+
+ next = pud_addr_end(addr, end);
+ ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
+ if (ret)
+ return ret;
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+
+ return 0;
+}
+
+static int __create_hyp_mappings(pgd_t *pgdp,
+ unsigned long start, unsigned long end,
+ unsigned long pfn, pgprot_t prot)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ unsigned long addr, next;
+ int err = 0;
+
+ mutex_lock(&kvm_hyp_pgd_mutex);
+ addr = start & PAGE_MASK;
+ end = PAGE_ALIGN(end);
+ do {
+ pgd = pgdp + pgd_index(addr);
+
+ if (pgd_none(*pgd)) {
+ pud = pud_alloc_one(NULL, addr);
+ if (!pud) {
+ kvm_err("Cannot allocate Hyp pud\n");
+ err = -ENOMEM;
+ goto out;
+ }
+ pgd_populate(NULL, pgd, pud);
+ get_page(virt_to_page(pgd));
+ kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
+ }
+
+ next = pgd_addr_end(addr, end);
+ err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
+ if (err)
+ goto out;
+ pfn += (next - addr) >> PAGE_SHIFT;
+ } while (addr = next, addr != end);
+out:
+ mutex_unlock(&kvm_hyp_pgd_mutex);
+ return err;
+}
+
+static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
+{
+ if (!is_vmalloc_addr(kaddr)) {
+ BUG_ON(!virt_addr_valid(kaddr));
+ return __pa(kaddr);
+ } else {
+ return page_to_phys(vmalloc_to_page(kaddr)) +
+ offset_in_page(kaddr);
+ }
+}
+
+/**
+ * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
+ * @from: The virtual kernel start address of the range
+ * @to: The virtual kernel end address of the range (exclusive)
+ * @prot: The protection to be applied to this range
+ *
+ * The same virtual address as the kernel virtual address is also used
+ * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
+ * physical pages.
+ */
+int create_hyp_mappings(void *from, void *to, pgprot_t prot)
+{
+ phys_addr_t phys_addr;
+ unsigned long virt_addr;
+ unsigned long start = kern_hyp_va((unsigned long)from);
+ unsigned long end = kern_hyp_va((unsigned long)to);
+
+ if (is_kernel_in_hyp_mode())
+ return 0;
+
+ start = start & PAGE_MASK;
+ end = PAGE_ALIGN(end);
+
+ for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
+ int err;
+
+ phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
+ err = __create_hyp_mappings(hyp_pgd, virt_addr,
+ virt_addr + PAGE_SIZE,
+ __phys_to_pfn(phys_addr),
+ prot);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+/**
+ * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
+ * @from: The kernel start VA of the range
+ * @to: The kernel end VA of the range (exclusive)
+ * @phys_addr: The physical start address which gets mapped
+ *
+ * The resulting HYP VA is the same as the kernel VA, modulo
+ * HYP_PAGE_OFFSET.
+ */
+int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
+{
+ unsigned long start = kern_hyp_va((unsigned long)from);
+ unsigned long end = kern_hyp_va((unsigned long)to);
+
+ if (is_kernel_in_hyp_mode())
+ return 0;
+
+ /* Check for a valid kernel IO mapping */
+ if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
+ return -EINVAL;
+
+ return __create_hyp_mappings(hyp_pgd, start, end,
+ __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
+}
+
+/**
+ * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
+ * @kvm: The KVM struct pointer for the VM.
+ *
+ * Allocates only the stage-2 HW PGD level table(s) (can support either full
+ * 40-bit input addresses or limited to 32-bit input addresses). Clears the
+ * allocated pages.
+ *
+ * Note we don't need locking here as this is only called when the VM is
+ * created, which can only be done once.
+ */
+int kvm_alloc_stage2_pgd(struct kvm *kvm)
+{
+ pgd_t *pgd;
+
+ if (kvm->arch.pgd != NULL) {
+ kvm_err("kvm_arch already initialized?\n");
+ return -EINVAL;
+ }
+
+ /* Allocate the HW PGD, making sure that each page gets its own refcount */
+ pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
+ if (!pgd)
+ return -ENOMEM;
+
+ kvm->arch.pgd = pgd;
+ return 0;
+}
+
+static void stage2_unmap_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ hva_t hva = memslot->userspace_addr;
+ phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t size = PAGE_SIZE * memslot->npages;
+ hva_t reg_end = hva + size;
+
+ /*
+ * A memory region could potentially cover multiple VMAs, and any holes
+ * between them, so iterate over all of them to find out if we should
+ * unmap any of them.
+ *
+ * +--------------------------------------------+
+ * +---------------+----------------+ +----------------+
+ * | : VMA 1 | VMA 2 | | VMA 3 : |
+ * +---------------+----------------+ +----------------+
+ * | memory region |
+ * +--------------------------------------------+
+ */
+ do {
+ struct vm_area_struct *vma = find_vma(current->mm, hva);
+ hva_t vm_start, vm_end;
+
+ if (!vma || vma->vm_start >= reg_end)
+ break;
+
+ /*
+ * Take the intersection of this VMA with the memory region
+ */
+ vm_start = max(hva, vma->vm_start);
+ vm_end = min(reg_end, vma->vm_end);
+
+ if (!(vma->vm_flags & VM_PFNMAP)) {
+ gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
+ unmap_stage2_range(kvm, gpa, vm_end - vm_start);
+ }
+ hva = vm_end;
+ } while (hva < reg_end);
+}
+
+/**
+ * stage2_unmap_vm - Unmap Stage-2 RAM mappings
+ * @kvm: The struct kvm pointer
+ *
+ * Go through the memregions and unmap any reguler RAM
+ * backing memory already mapped to the VM.
+ */
+void stage2_unmap_vm(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int idx;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ down_read(&current->mm->mmap_sem);
+ spin_lock(&kvm->mmu_lock);
+
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, slots)
+ stage2_unmap_memslot(kvm, memslot);
+
+ spin_unlock(&kvm->mmu_lock);
+ up_read(&current->mm->mmap_sem);
+ srcu_read_unlock(&kvm->srcu, idx);
+}
+
+/**
+ * kvm_free_stage2_pgd - free all stage-2 tables
+ * @kvm: The KVM struct pointer for the VM.
+ *
+ * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
+ * underlying level-2 and level-3 tables before freeing the actual level-1 table
+ * and setting the struct pointer to NULL.
+ *
+ * Note we don't need locking here as this is only called when the VM is
+ * destroyed, which can only be done once.
+ */
+void kvm_free_stage2_pgd(struct kvm *kvm)
+{
+ if (kvm->arch.pgd == NULL)
+ return;
+
+ spin_lock(&kvm->mmu_lock);
+ unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
+ spin_unlock(&kvm->mmu_lock);
+
+ /* Free the HW pgd, one page at a time */
+ free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
+ kvm->arch.pgd = NULL;
+}
+
+static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+
+ pgd = kvm->arch.pgd + stage2_pgd_index(addr);
+ if (WARN_ON(stage2_pgd_none(*pgd))) {
+ if (!cache)
+ return NULL;
+ pud = mmu_memory_cache_alloc(cache);
+ stage2_pgd_populate(pgd, pud);
+ get_page(virt_to_page(pgd));
+ }
+
+ return stage2_pud_offset(pgd, addr);
+}
+
+static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr)
+{
+ pud_t *pud;
+ pmd_t *pmd;
+
+ pud = stage2_get_pud(kvm, cache, addr);
+ if (stage2_pud_none(*pud)) {
+ if (!cache)
+ return NULL;
+ pmd = mmu_memory_cache_alloc(cache);
+ stage2_pud_populate(pud, pmd);
+ get_page(virt_to_page(pud));
+ }
+
+ return stage2_pmd_offset(pud, addr);
+}
+
+static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
+ *cache, phys_addr_t addr, const pmd_t *new_pmd)
+{
+ pmd_t *pmd, old_pmd;
+
+ pmd = stage2_get_pmd(kvm, cache, addr);
+ VM_BUG_ON(!pmd);
+
+ /*
+ * Mapping in huge pages should only happen through a fault. If a
+ * page is merged into a transparent huge page, the individual
+ * subpages of that huge page should be unmapped through MMU
+ * notifiers before we get here.
+ *
+ * Merging of CompoundPages is not supported; they should become
+ * splitting first, unmapped, merged, and mapped back in on-demand.
+ */
+ VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
+
+ old_pmd = *pmd;
+ if (pmd_present(old_pmd)) {
+ pmd_clear(pmd);
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ } else {
+ get_page(virt_to_page(pmd));
+ }
+
+ kvm_set_pmd(pmd, *new_pmd);
+ return 0;
+}
+
+static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ phys_addr_t addr, const pte_t *new_pte,
+ unsigned long flags)
+{
+ pmd_t *pmd;
+ pte_t *pte, old_pte;
+ bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
+ bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
+
+ VM_BUG_ON(logging_active && !cache);
+
+ /* Create stage-2 page table mapping - Levels 0 and 1 */
+ pmd = stage2_get_pmd(kvm, cache, addr);
+ if (!pmd) {
+ /*
+ * Ignore calls from kvm_set_spte_hva for unallocated
+ * address ranges.
+ */
+ return 0;
+ }
+
+ /*
+ * While dirty page logging - dissolve huge PMD, then continue on to
+ * allocate page.
+ */
+ if (logging_active)
+ stage2_dissolve_pmd(kvm, addr, pmd);
+
+ /* Create stage-2 page mappings - Level 2 */
+ if (pmd_none(*pmd)) {
+ if (!cache)
+ return 0; /* ignore calls from kvm_set_spte_hva */
+ pte = mmu_memory_cache_alloc(cache);
+ pmd_populate_kernel(NULL, pmd, pte);
+ get_page(virt_to_page(pmd));
+ }
+
+ pte = pte_offset_kernel(pmd, addr);
+
+ if (iomap && pte_present(*pte))
+ return -EFAULT;
+
+ /* Create 2nd stage page table mapping - Level 3 */
+ old_pte = *pte;
+ if (pte_present(old_pte)) {
+ kvm_set_pte(pte, __pte(0));
+ kvm_tlb_flush_vmid_ipa(kvm, addr);
+ } else {
+ get_page(virt_to_page(pte));
+ }
+
+ kvm_set_pte(pte, *new_pte);
+ return 0;
+}
+
+#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
+static int stage2_ptep_test_and_clear_young(pte_t *pte)
+{
+ if (pte_young(*pte)) {
+ *pte = pte_mkold(*pte);
+ return 1;
+ }
+ return 0;
+}
+#else
+static int stage2_ptep_test_and_clear_young(pte_t *pte)
+{
+ return __ptep_test_and_clear_young(pte);
+}
+#endif
+
+static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
+{
+ return stage2_ptep_test_and_clear_young((pte_t *)pmd);
+}
+
+/**
+ * kvm_phys_addr_ioremap - map a device range to guest IPA
+ *
+ * @kvm: The KVM pointer
+ * @guest_ipa: The IPA at which to insert the mapping
+ * @pa: The physical address of the device
+ * @size: The size of the mapping
+ */
+int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
+ phys_addr_t pa, unsigned long size, bool writable)
+{
+ phys_addr_t addr, end;
+ int ret = 0;
+ unsigned long pfn;
+ struct kvm_mmu_memory_cache cache = { 0, };
+
+ end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
+ pfn = __phys_to_pfn(pa);
+
+ for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
+ pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
+
+ if (writable)
+ pte = kvm_s2pte_mkwrite(pte);
+
+ ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
+ KVM_NR_MEM_OBJS);
+ if (ret)
+ goto out;
+ spin_lock(&kvm->mmu_lock);
+ ret = stage2_set_pte(kvm, &cache, addr, &pte,
+ KVM_S2PTE_FLAG_IS_IOMAP);
+ spin_unlock(&kvm->mmu_lock);
+ if (ret)
+ goto out;
+
+ pfn++;
+ }
+
+out:
+ mmu_free_memory_cache(&cache);
+ return ret;
+}
+
+static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
+{
+ kvm_pfn_t pfn = *pfnp;
+ gfn_t gfn = *ipap >> PAGE_SHIFT;
+
+ if (PageTransCompoundMap(pfn_to_page(pfn))) {
+ unsigned long mask;
+ /*
+ * The address we faulted on is backed by a transparent huge
+ * page. However, because we map the compound huge page and
+ * not the individual tail page, we need to transfer the
+ * refcount to the head page. We have to be careful that the
+ * THP doesn't start to split while we are adjusting the
+ * refcounts.
+ *
+ * We are sure this doesn't happen, because mmu_notifier_retry
+ * was successful and we are holding the mmu_lock, so if this
+ * THP is trying to split, it will be blocked in the mmu
+ * notifier before touching any of the pages, specifically
+ * before being able to call __split_huge_page_refcount().
+ *
+ * We can therefore safely transfer the refcount from PG_tail
+ * to PG_head and switch the pfn from a tail page to the head
+ * page accordingly.
+ */
+ mask = PTRS_PER_PMD - 1;
+ VM_BUG_ON((gfn & mask) != (pfn & mask));
+ if (pfn & mask) {
+ *ipap &= PMD_MASK;
+ kvm_release_pfn_clean(pfn);
+ pfn &= ~mask;
+ kvm_get_pfn(pfn);
+ *pfnp = pfn;
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
+{
+ if (kvm_vcpu_trap_is_iabt(vcpu))
+ return false;
+
+ return kvm_vcpu_dabt_iswrite(vcpu);
+}
+
+/**
+ * stage2_wp_ptes - write protect PMD range
+ * @pmd: pointer to pmd entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ if (!pte_none(*pte)) {
+ if (!kvm_s2pte_readonly(pte))
+ kvm_set_s2pte_readonly(pte);
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+}
+
+/**
+ * stage2_wp_pmds - write protect PUD range
+ * @pud: pointer to pud entry
+ * @addr: range start address
+ * @end: range end address
+ */
+static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
+{
+ pmd_t *pmd;
+ phys_addr_t next;
+
+ pmd = stage2_pmd_offset(pud, addr);
+
+ do {
+ next = stage2_pmd_addr_end(addr, end);
+ if (!pmd_none(*pmd)) {
+ if (pmd_thp_or_huge(*pmd)) {
+ if (!kvm_s2pmd_readonly(pmd))
+ kvm_set_s2pmd_readonly(pmd);
+ } else {
+ stage2_wp_ptes(pmd, addr, next);
+ }
+ }
+ } while (pmd++, addr = next, addr != end);
+}
+
+/**
+ * stage2_wp_puds - write protect PGD range
+ * @pgd: pointer to pgd entry
+ * @addr: range start address
+ * @end: range end address
+ *
+ * Process PUD entries, for a huge PUD we cause a panic.
+ */
+static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
+{
+ pud_t *pud;
+ phys_addr_t next;
+
+ pud = stage2_pud_offset(pgd, addr);
+ do {
+ next = stage2_pud_addr_end(addr, end);
+ if (!stage2_pud_none(*pud)) {
+ /* TODO:PUD not supported, revisit later if supported */
+ BUG_ON(stage2_pud_huge(*pud));
+ stage2_wp_pmds(pud, addr, next);
+ }
+ } while (pud++, addr = next, addr != end);
+}
+
+/**
+ * stage2_wp_range() - write protect stage2 memory region range
+ * @kvm: The KVM pointer
+ * @addr: Start address of range
+ * @end: End address of range
+ */
+static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
+{
+ pgd_t *pgd;
+ phys_addr_t next;
+
+ pgd = kvm->arch.pgd + stage2_pgd_index(addr);
+ do {
+ /*
+ * Release kvm_mmu_lock periodically if the memory region is
+ * large. Otherwise, we may see kernel panics with
+ * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
+ * CONFIG_LOCKDEP. Additionally, holding the lock too long
+ * will also starve other vCPUs.
+ */
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
+ cond_resched_lock(&kvm->mmu_lock);
+
+ next = stage2_pgd_addr_end(addr, end);
+ if (stage2_pgd_present(*pgd))
+ stage2_wp_puds(pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+}
+
+/**
+ * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
+ * @kvm: The KVM pointer
+ * @slot: The memory slot to write protect
+ *
+ * Called to start logging dirty pages after memory region
+ * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
+ * all present PMD and PTEs are write protected in the memory region.
+ * Afterwards read of dirty page log can be called.
+ *
+ * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
+ * serializing operations for VM memory regions.
+ */
+void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
+{
+ struct kvm_memslots *slots = kvm_memslots(kvm);
+ struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
+ phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
+ phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
+
+ spin_lock(&kvm->mmu_lock);
+ stage2_wp_range(kvm, start, end);
+ spin_unlock(&kvm->mmu_lock);
+ kvm_flush_remote_tlbs(kvm);
+}
+
+/**
+ * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
+ * @kvm: The KVM pointer
+ * @slot: The memory slot associated with mask
+ * @gfn_offset: The gfn offset in memory slot
+ * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
+ * slot to be write protected
+ *
+ * Walks bits set in mask write protects the associated pte's. Caller must
+ * acquire kvm_mmu_lock.
+ */
+static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
+ phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
+ phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
+
+ stage2_wp_range(kvm, start, end);
+}
+
+/*
+ * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
+ * dirty pages.
+ *
+ * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
+ * enable dirty logging for them.
+ */
+void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *slot,
+ gfn_t gfn_offset, unsigned long mask)
+{
+ kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
+}
+
+static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
+ unsigned long size)
+{
+ __coherent_cache_guest_page(vcpu, pfn, size);
+}
+
+static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
+ struct kvm_memory_slot *memslot, unsigned long hva,
+ unsigned long fault_status)
+{
+ int ret;
+ bool write_fault, writable, hugetlb = false, force_pte = false;
+ unsigned long mmu_seq;
+ gfn_t gfn = fault_ipa >> PAGE_SHIFT;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
+ struct vm_area_struct *vma;
+ kvm_pfn_t pfn;
+ pgprot_t mem_type = PAGE_S2;
+ bool logging_active = memslot_is_logging(memslot);
+ unsigned long flags = 0;
+
+ write_fault = kvm_is_write_fault(vcpu);
+ if (fault_status == FSC_PERM && !write_fault) {
+ kvm_err("Unexpected L2 read permission error\n");
+ return -EFAULT;
+ }
+
+ /* Let's check if we will get back a huge page backed by hugetlbfs */
+ down_read(&current->mm->mmap_sem);
+ vma = find_vma_intersection(current->mm, hva, hva + 1);
+ if (unlikely(!vma)) {
+ kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
+ up_read(&current->mm->mmap_sem);
+ return -EFAULT;
+ }
+
+ if (is_vm_hugetlb_page(vma) && !logging_active) {
+ hugetlb = true;
+ gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
+ } else {
+ /*
+ * Pages belonging to memslots that don't have the same
+ * alignment for userspace and IPA cannot be mapped using
+ * block descriptors even if the pages belong to a THP for
+ * the process, because the stage-2 block descriptor will
+ * cover more than a single THP and we loose atomicity for
+ * unmapping, updates, and splits of the THP or other pages
+ * in the stage-2 block range.
+ */
+ if ((memslot->userspace_addr & ~PMD_MASK) !=
+ ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
+ force_pte = true;
+ }
+ up_read(&current->mm->mmap_sem);
+
+ /* We need minimum second+third level pages */
+ ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
+ KVM_NR_MEM_OBJS);
+ if (ret)
+ return ret;
+
+ mmu_seq = vcpu->kvm->mmu_notifier_seq;
+ /*
+ * Ensure the read of mmu_notifier_seq happens before we call
+ * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
+ * the page we just got a reference to gets unmapped before we have a
+ * chance to grab the mmu_lock, which ensure that if the page gets
+ * unmapped afterwards, the call to kvm_unmap_hva will take it away
+ * from us again properly. This smp_rmb() interacts with the smp_wmb()
+ * in kvm_mmu_notifier_invalidate_<page|range_end>.
+ */
+ smp_rmb();
+
+ pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
+ if (is_error_noslot_pfn(pfn))
+ return -EFAULT;
+
+ if (kvm_is_device_pfn(pfn)) {
+ mem_type = PAGE_S2_DEVICE;
+ flags |= KVM_S2PTE_FLAG_IS_IOMAP;
+ } else if (logging_active) {
+ /*
+ * Faults on pages in a memslot with logging enabled
+ * should not be mapped with huge pages (it introduces churn
+ * and performance degradation), so force a pte mapping.
+ */
+ force_pte = true;
+ flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
+
+ /*
+ * Only actually map the page as writable if this was a write
+ * fault.
+ */
+ if (!write_fault)
+ writable = false;
+ }
+
+ spin_lock(&kvm->mmu_lock);
+ if (mmu_notifier_retry(kvm, mmu_seq))
+ goto out_unlock;
+
+ if (!hugetlb && !force_pte)
+ hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
+
+ if (hugetlb) {
+ pmd_t new_pmd = pfn_pmd(pfn, mem_type);
+ new_pmd = pmd_mkhuge(new_pmd);
+ if (writable) {
+ new_pmd = kvm_s2pmd_mkwrite(new_pmd);
+ kvm_set_pfn_dirty(pfn);
+ }
+ coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
+ ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
+ } else {
+ pte_t new_pte = pfn_pte(pfn, mem_type);
+
+ if (writable) {
+ new_pte = kvm_s2pte_mkwrite(new_pte);
+ kvm_set_pfn_dirty(pfn);
+ mark_page_dirty(kvm, gfn);
+ }
+ coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
+ ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
+ }
+
+out_unlock:
+ spin_unlock(&kvm->mmu_lock);
+ kvm_set_pfn_accessed(pfn);
+ kvm_release_pfn_clean(pfn);
+ return ret;
+}
+
+/*
+ * Resolve the access fault by making the page young again.
+ * Note that because the faulting entry is guaranteed not to be
+ * cached in the TLB, we don't need to invalidate anything.
+ * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
+ * so there is no need for atomic (pte|pmd)_mkyoung operations.
+ */
+static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+ kvm_pfn_t pfn;
+ bool pfn_valid = false;
+
+ trace_kvm_access_fault(fault_ipa);
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+
+ pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
+ if (!pmd || pmd_none(*pmd)) /* Nothing there */
+ goto out;
+
+ if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
+ *pmd = pmd_mkyoung(*pmd);
+ pfn = pmd_pfn(*pmd);
+ pfn_valid = true;
+ goto out;
+ }
+
+ pte = pte_offset_kernel(pmd, fault_ipa);
+ if (pte_none(*pte)) /* Nothing there either */
+ goto out;
+
+ *pte = pte_mkyoung(*pte); /* Just a page... */
+ pfn = pte_pfn(*pte);
+ pfn_valid = true;
+out:
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ if (pfn_valid)
+ kvm_set_pfn_accessed(pfn);
+}
+
+/**
+ * kvm_handle_guest_abort - handles all 2nd stage aborts
+ * @vcpu: the VCPU pointer
+ * @run: the kvm_run structure
+ *
+ * Any abort that gets to the host is almost guaranteed to be caused by a
+ * missing second stage translation table entry, which can mean that either the
+ * guest simply needs more memory and we must allocate an appropriate page or it
+ * can mean that the guest tried to access I/O memory, which is emulated by user
+ * space. The distinction is based on the IPA causing the fault and whether this
+ * memory region has been registered as standard RAM by user space.
+ */
+int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ unsigned long fault_status;
+ phys_addr_t fault_ipa;
+ struct kvm_memory_slot *memslot;
+ unsigned long hva;
+ bool is_iabt, write_fault, writable;
+ gfn_t gfn;
+ int ret, idx;
+
+ is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
+ if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
+ kvm_inject_vabt(vcpu);
+ return 1;
+ }
+
+ fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
+
+ trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
+ kvm_vcpu_get_hfar(vcpu), fault_ipa);
+
+ /* Check the stage-2 fault is trans. fault or write fault */
+ fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
+ if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
+ fault_status != FSC_ACCESS) {
+ kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
+ kvm_vcpu_trap_get_class(vcpu),
+ (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
+ (unsigned long)kvm_vcpu_get_hsr(vcpu));
+ return -EFAULT;
+ }
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ gfn = fault_ipa >> PAGE_SHIFT;
+ memslot = gfn_to_memslot(vcpu->kvm, gfn);
+ hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
+ write_fault = kvm_is_write_fault(vcpu);
+ if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
+ if (is_iabt) {
+ /* Prefetch Abort on I/O address */
+ kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
+ ret = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * Check for a cache maintenance operation. Since we
+ * ended-up here, we know it is outside of any memory
+ * slot. But we can't find out if that is for a device,
+ * or if the guest is just being stupid. The only thing
+ * we know for sure is that this range cannot be cached.
+ *
+ * So let's assume that the guest is just being
+ * cautious, and skip the instruction.
+ */
+ if (kvm_vcpu_dabt_is_cm(vcpu)) {
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+ ret = 1;
+ goto out_unlock;
+ }
+
+ /*
+ * The IPA is reported as [MAX:12], so we need to
+ * complement it with the bottom 12 bits from the
+ * faulting VA. This is always 12 bits, irrespective
+ * of the page size.
+ */
+ fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
+ ret = io_mem_abort(vcpu, run, fault_ipa);
+ goto out_unlock;
+ }
+
+ /* Userspace should not be able to register out-of-bounds IPAs */
+ VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
+
+ if (fault_status == FSC_ACCESS) {
+ handle_access_fault(vcpu, fault_ipa);
+ ret = 1;
+ goto out_unlock;
+ }
+
+ ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
+ if (ret == 0)
+ ret = 1;
+out_unlock:
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ return ret;
+}
+
+static int handle_hva_to_gpa(struct kvm *kvm,
+ unsigned long start,
+ unsigned long end,
+ int (*handler)(struct kvm *kvm,
+ gpa_t gpa, u64 size,
+ void *data),
+ void *data)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int ret = 0;
+
+ slots = kvm_memslots(kvm);
+
+ /* we only care about the pages that the guest sees */
+ kvm_for_each_memslot(memslot, slots) {
+ unsigned long hva_start, hva_end;
+ gfn_t gpa;
+
+ hva_start = max(start, memslot->userspace_addr);
+ hva_end = min(end, memslot->userspace_addr +
+ (memslot->npages << PAGE_SHIFT));
+ if (hva_start >= hva_end)
+ continue;
+
+ gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
+ ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
+ }
+
+ return ret;
+}
+
+static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+{
+ unmap_stage2_range(kvm, gpa, size);
+ return 0;
+}
+
+int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
+{
+ unsigned long end = hva + PAGE_SIZE;
+
+ if (!kvm->arch.pgd)
+ return 0;
+
+ trace_kvm_unmap_hva(hva);
+ handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
+ return 0;
+}
+
+int kvm_unmap_hva_range(struct kvm *kvm,
+ unsigned long start, unsigned long end)
+{
+ if (!kvm->arch.pgd)
+ return 0;
+
+ trace_kvm_unmap_hva_range(start, end);
+ handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
+ return 0;
+}
+
+static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+{
+ pte_t *pte = (pte_t *)data;
+
+ WARN_ON(size != PAGE_SIZE);
+ /*
+ * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
+ * flag clear because MMU notifiers will have unmapped a huge PMD before
+ * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
+ * therefore stage2_set_pte() never needs to clear out a huge PMD
+ * through this calling path.
+ */
+ stage2_set_pte(kvm, NULL, gpa, pte, 0);
+ return 0;
+}
+
+
+void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+{
+ unsigned long end = hva + PAGE_SIZE;
+ pte_t stage2_pte;
+
+ if (!kvm->arch.pgd)
+ return;
+
+ trace_kvm_set_spte_hva(hva);
+ stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
+ handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
+}
+
+static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+
+ WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
+ pmd = stage2_get_pmd(kvm, NULL, gpa);
+ if (!pmd || pmd_none(*pmd)) /* Nothing there */
+ return 0;
+
+ if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
+ return stage2_pmdp_test_and_clear_young(pmd);
+
+ pte = pte_offset_kernel(pmd, gpa);
+ if (pte_none(*pte))
+ return 0;
+
+ return stage2_ptep_test_and_clear_young(pte);
+}
+
+static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
+{
+ pmd_t *pmd;
+ pte_t *pte;
+
+ WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
+ pmd = stage2_get_pmd(kvm, NULL, gpa);
+ if (!pmd || pmd_none(*pmd)) /* Nothing there */
+ return 0;
+
+ if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
+ return pmd_young(*pmd);
+
+ pte = pte_offset_kernel(pmd, gpa);
+ if (!pte_none(*pte)) /* Just a page... */
+ return pte_young(*pte);
+
+ return 0;
+}
+
+int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
+{
+ trace_kvm_age_hva(start, end);
+ return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
+}
+
+int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+{
+ trace_kvm_test_age_hva(hva);
+ return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
+}
+
+void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
+{
+ mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
+}
+
+phys_addr_t kvm_mmu_get_httbr(void)
+{
+ if (__kvm_cpu_uses_extended_idmap())
+ return virt_to_phys(merged_hyp_pgd);
+ else
+ return virt_to_phys(hyp_pgd);
+}
+
+phys_addr_t kvm_get_idmap_vector(void)
+{
+ return hyp_idmap_vector;
+}
+
+static int kvm_map_idmap_text(pgd_t *pgd)
+{
+ int err;
+
+ /* Create the idmap in the boot page tables */
+ err = __create_hyp_mappings(pgd,
+ hyp_idmap_start, hyp_idmap_end,
+ __phys_to_pfn(hyp_idmap_start),
+ PAGE_HYP_EXEC);
+ if (err)
+ kvm_err("Failed to idmap %lx-%lx\n",
+ hyp_idmap_start, hyp_idmap_end);
+
+ return err;
+}
+
+int kvm_mmu_init(void)
+{
+ int err;
+
+ hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
+ hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
+ hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
+
+ /*
+ * We rely on the linker script to ensure at build time that the HYP
+ * init code does not cross a page boundary.
+ */
+ BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
+
+ kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
+ kvm_info("HYP VA range: %lx:%lx\n",
+ kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
+
+ if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
+ hyp_idmap_start < kern_hyp_va(~0UL) &&
+ hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
+ /*
+ * The idmap page is intersecting with the VA space,
+ * it is not safe to continue further.
+ */
+ kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
+ err = -EINVAL;
+ goto out;
+ }
+
+ hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
+ if (!hyp_pgd) {
+ kvm_err("Hyp mode PGD not allocated\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ if (__kvm_cpu_uses_extended_idmap()) {
+ boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
+ hyp_pgd_order);
+ if (!boot_hyp_pgd) {
+ kvm_err("Hyp boot PGD not allocated\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ err = kvm_map_idmap_text(boot_hyp_pgd);
+ if (err)
+ goto out;
+
+ merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
+ if (!merged_hyp_pgd) {
+ kvm_err("Failed to allocate extra HYP pgd\n");
+ goto out;
+ }
+ __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
+ hyp_idmap_start);
+ } else {
+ err = kvm_map_idmap_text(hyp_pgd);
+ if (err)
+ goto out;
+ }
+
+ return 0;
+out:
+ free_hyp_pgds();
+ return err;
+}
+
+void kvm_arch_commit_memory_region(struct kvm *kvm,
+ const struct kvm_userspace_memory_region *mem,
+ const struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ /*
+ * At this point memslot has been committed and there is an
+ * allocated dirty_bitmap[], dirty pages will be be tracked while the
+ * memory slot is write protected.
+ */
+ if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
+ kvm_mmu_wp_memory_region(kvm, mem->slot);
+}
+
+int kvm_arch_prepare_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *memslot,
+ const struct kvm_userspace_memory_region *mem,
+ enum kvm_mr_change change)
+{
+ hva_t hva = mem->userspace_addr;
+ hva_t reg_end = hva + mem->memory_size;
+ bool writable = !(mem->flags & KVM_MEM_READONLY);
+ int ret = 0;
+
+ if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
+ change != KVM_MR_FLAGS_ONLY)
+ return 0;
+
+ /*
+ * Prevent userspace from creating a memory region outside of the IPA
+ * space addressable by the KVM guest IPA space.
+ */
+ if (memslot->base_gfn + memslot->npages >=
+ (KVM_PHYS_SIZE >> PAGE_SHIFT))
+ return -EFAULT;
+
+ down_read(&current->mm->mmap_sem);
+ /*
+ * A memory region could potentially cover multiple VMAs, and any holes
+ * between them, so iterate over all of them to find out if we can map
+ * any of them right now.
+ *
+ * +--------------------------------------------+
+ * +---------------+----------------+ +----------------+
+ * | : VMA 1 | VMA 2 | | VMA 3 : |
+ * +---------------+----------------+ +----------------+
+ * | memory region |
+ * +--------------------------------------------+
+ */
+ do {
+ struct vm_area_struct *vma = find_vma(current->mm, hva);
+ hva_t vm_start, vm_end;
+
+ if (!vma || vma->vm_start >= reg_end)
+ break;
+
+ /*
+ * Mapping a read-only VMA is only allowed if the
+ * memory region is configured as read-only.
+ */
+ if (writable && !(vma->vm_flags & VM_WRITE)) {
+ ret = -EPERM;
+ break;
+ }
+
+ /*
+ * Take the intersection of this VMA with the memory region
+ */
+ vm_start = max(hva, vma->vm_start);
+ vm_end = min(reg_end, vma->vm_end);
+
+ if (vma->vm_flags & VM_PFNMAP) {
+ gpa_t gpa = mem->guest_phys_addr +
+ (vm_start - mem->userspace_addr);
+ phys_addr_t pa;
+
+ pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
+ pa += vm_start - vma->vm_start;
+
+ /* IO region dirty page logging not allowed */
+ if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
+ vm_end - vm_start,
+ writable);
+ if (ret)
+ break;
+ }
+ hva = vm_end;
+ } while (hva < reg_end);
+
+ if (change == KVM_MR_FLAGS_ONLY)
+ goto out;
+
+ spin_lock(&kvm->mmu_lock);
+ if (ret)
+ unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
+ else
+ stage2_flush_memslot(kvm, memslot);
+ spin_unlock(&kvm->mmu_lock);
+out:
+ up_read(&current->mm->mmap_sem);
+ return ret;
+}
+
+void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
+ struct kvm_memory_slot *dont)
+{
+}
+
+int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
+ unsigned long npages)
+{
+ return 0;
+}
+
+void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
+{
+}
+
+void kvm_arch_flush_shadow_all(struct kvm *kvm)
+{
+ kvm_free_stage2_pgd(kvm);
+}
+
+void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
+ phys_addr_t size = slot->npages << PAGE_SHIFT;
+
+ spin_lock(&kvm->mmu_lock);
+ unmap_stage2_range(kvm, gpa, size);
+ spin_unlock(&kvm->mmu_lock);
+}
+
+/*
+ * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+ *
+ * Main problems:
+ * - S/W ops are local to a CPU (not broadcast)
+ * - We have line migration behind our back (speculation)
+ * - System caches don't support S/W at all (damn!)
+ *
+ * In the face of the above, the best we can do is to try and convert
+ * S/W ops to VA ops. Because the guest is not allowed to infer the
+ * S/W to PA mapping, it can only use S/W to nuke the whole cache,
+ * which is a rather good thing for us.
+ *
+ * Also, it is only used when turning caches on/off ("The expected
+ * usage of the cache maintenance instructions that operate by set/way
+ * is associated with the cache maintenance instructions associated
+ * with the powerdown and powerup of caches, if this is required by
+ * the implementation.").
+ *
+ * We use the following policy:
+ *
+ * - If we trap a S/W operation, we enable VM trapping to detect
+ * caches being turned on/off, and do a full clean.
+ *
+ * - We flush the caches on both caches being turned on and off.
+ *
+ * - Once the caches are enabled, we stop trapping VM ops.
+ */
+void kvm_set_way_flush(struct kvm_vcpu *vcpu)
+{
+ unsigned long hcr = vcpu_get_hcr(vcpu);
+
+ /*
+ * If this is the first time we do a S/W operation
+ * (i.e. HCR_TVM not set) flush the whole memory, and set the
+ * VM trapping.
+ *
+ * Otherwise, rely on the VM trapping to wait for the MMU +
+ * Caches to be turned off. At that point, we'll be able to
+ * clean the caches again.
+ */
+ if (!(hcr & HCR_TVM)) {
+ trace_kvm_set_way_flush(*vcpu_pc(vcpu),
+ vcpu_has_cache_enabled(vcpu));
+ stage2_flush_vm(vcpu->kvm);
+ vcpu_set_hcr(vcpu, hcr | HCR_TVM);
+ }
+}
+
+void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
+{
+ bool now_enabled = vcpu_has_cache_enabled(vcpu);
+
+ /*
+ * If switching the MMU+caches on, need to invalidate the caches.
+ * If switching it off, need to clean the caches.
+ * Clean + invalidate does the trick always.
+ */
+ if (now_enabled != was_enabled)
+ stage2_flush_vm(vcpu->kvm);
+
+ /* Caches are now on, stop trapping VM ops (until a S/W op) */
+ if (now_enabled)
+ vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
+
+ trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
+}
diff --git a/virt/kvm/arm/perf.c b/virt/kvm/arm/perf.c
new file mode 100644
index 000000000000..1a3849da0b4b
--- /dev/null
+++ b/virt/kvm/arm/perf.c
@@ -0,0 +1,68 @@
+/*
+ * Based on the x86 implementation.
+ *
+ * Copyright (C) 2012 ARM Ltd.
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <linux/perf_event.h>
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_emulate.h>
+
+static int kvm_is_in_guest(void)
+{
+ return kvm_arm_get_running_vcpu() != NULL;
+}
+
+static int kvm_is_user_mode(void)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = kvm_arm_get_running_vcpu();
+
+ if (vcpu)
+ return !vcpu_mode_priv(vcpu);
+
+ return 0;
+}
+
+static unsigned long kvm_get_guest_ip(void)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = kvm_arm_get_running_vcpu();
+
+ if (vcpu)
+ return *vcpu_pc(vcpu);
+
+ return 0;
+}
+
+static struct perf_guest_info_callbacks kvm_guest_cbs = {
+ .is_in_guest = kvm_is_in_guest,
+ .is_user_mode = kvm_is_user_mode,
+ .get_guest_ip = kvm_get_guest_ip,
+};
+
+int kvm_perf_init(void)
+{
+ return perf_register_guest_info_callbacks(&kvm_guest_cbs);
+}
+
+int kvm_perf_teardown(void)
+{
+ return perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
+}
diff --git a/virt/kvm/arm/psci.c b/virt/kvm/arm/psci.c
new file mode 100644
index 000000000000..a08d7a93aebb
--- /dev/null
+++ b/virt/kvm/arm/psci.c
@@ -0,0 +1,332 @@
+/*
+ * Copyright (C) 2012 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <linux/preempt.h>
+#include <linux/kvm_host.h>
+#include <linux/wait.h>
+
+#include <asm/cputype.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_psci.h>
+#include <asm/kvm_host.h>
+
+#include <uapi/linux/psci.h>
+
+/*
+ * This is an implementation of the Power State Coordination Interface
+ * as described in ARM document number ARM DEN 0022A.
+ */
+
+#define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
+
+static unsigned long psci_affinity_mask(unsigned long affinity_level)
+{
+ if (affinity_level <= 3)
+ return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
+
+ return 0;
+}
+
+static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
+{
+ /*
+ * NOTE: For simplicity, we make VCPU suspend emulation to be
+ * same-as WFI (Wait-for-interrupt) emulation.
+ *
+ * This means for KVM the wakeup events are interrupts and
+ * this is consistent with intended use of StateID as described
+ * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
+ *
+ * Further, we also treat power-down request to be same as
+ * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
+ * specification (ARM DEN 0022A). This means all suspend states
+ * for KVM will preserve the register state.
+ */
+ kvm_vcpu_block(vcpu);
+
+ return PSCI_RET_SUCCESS;
+}
+
+static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.power_off = true;
+}
+
+static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
+{
+ struct kvm *kvm = source_vcpu->kvm;
+ struct kvm_vcpu *vcpu = NULL;
+ struct swait_queue_head *wq;
+ unsigned long cpu_id;
+ unsigned long context_id;
+ phys_addr_t target_pc;
+
+ cpu_id = vcpu_get_reg(source_vcpu, 1) & MPIDR_HWID_BITMASK;
+ if (vcpu_mode_is_32bit(source_vcpu))
+ cpu_id &= ~((u32) 0);
+
+ vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
+
+ /*
+ * Make sure the caller requested a valid CPU and that the CPU is
+ * turned off.
+ */
+ if (!vcpu)
+ return PSCI_RET_INVALID_PARAMS;
+ if (!vcpu->arch.power_off) {
+ if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
+ return PSCI_RET_ALREADY_ON;
+ else
+ return PSCI_RET_INVALID_PARAMS;
+ }
+
+ target_pc = vcpu_get_reg(source_vcpu, 2);
+ context_id = vcpu_get_reg(source_vcpu, 3);
+
+ kvm_reset_vcpu(vcpu);
+
+ /* Gracefully handle Thumb2 entry point */
+ if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
+ target_pc &= ~((phys_addr_t) 1);
+ vcpu_set_thumb(vcpu);
+ }
+
+ /* Propagate caller endianness */
+ if (kvm_vcpu_is_be(source_vcpu))
+ kvm_vcpu_set_be(vcpu);
+
+ *vcpu_pc(vcpu) = target_pc;
+ /*
+ * NOTE: We always update r0 (or x0) because for PSCI v0.1
+ * the general puspose registers are undefined upon CPU_ON.
+ */
+ vcpu_set_reg(vcpu, 0, context_id);
+ vcpu->arch.power_off = false;
+ smp_mb(); /* Make sure the above is visible */
+
+ wq = kvm_arch_vcpu_wq(vcpu);
+ swake_up(wq);
+
+ return PSCI_RET_SUCCESS;
+}
+
+static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
+{
+ int i, matching_cpus = 0;
+ unsigned long mpidr;
+ unsigned long target_affinity;
+ unsigned long target_affinity_mask;
+ unsigned long lowest_affinity_level;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *tmp;
+
+ target_affinity = vcpu_get_reg(vcpu, 1);
+ lowest_affinity_level = vcpu_get_reg(vcpu, 2);
+
+ /* Determine target affinity mask */
+ target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
+ if (!target_affinity_mask)
+ return PSCI_RET_INVALID_PARAMS;
+
+ /* Ignore other bits of target affinity */
+ target_affinity &= target_affinity_mask;
+
+ /*
+ * If one or more VCPU matching target affinity are running
+ * then ON else OFF
+ */
+ kvm_for_each_vcpu(i, tmp, kvm) {
+ mpidr = kvm_vcpu_get_mpidr_aff(tmp);
+ if ((mpidr & target_affinity_mask) == target_affinity) {
+ matching_cpus++;
+ if (!tmp->arch.power_off)
+ return PSCI_0_2_AFFINITY_LEVEL_ON;
+ }
+ }
+
+ if (!matching_cpus)
+ return PSCI_RET_INVALID_PARAMS;
+
+ return PSCI_0_2_AFFINITY_LEVEL_OFF;
+}
+
+static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type)
+{
+ int i;
+ struct kvm_vcpu *tmp;
+
+ /*
+ * The KVM ABI specifies that a system event exit may call KVM_RUN
+ * again and may perform shutdown/reboot at a later time that when the
+ * actual request is made. Since we are implementing PSCI and a
+ * caller of PSCI reboot and shutdown expects that the system shuts
+ * down or reboots immediately, let's make sure that VCPUs are not run
+ * after this call is handled and before the VCPUs have been
+ * re-initialized.
+ */
+ kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
+ tmp->arch.power_off = true;
+ kvm_vcpu_kick(tmp);
+ }
+
+ memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
+ vcpu->run->system_event.type = type;
+ vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
+}
+
+static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN);
+}
+
+static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
+{
+ kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET);
+}
+
+int kvm_psci_version(struct kvm_vcpu *vcpu)
+{
+ if (test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features))
+ return KVM_ARM_PSCI_0_2;
+
+ return KVM_ARM_PSCI_0_1;
+}
+
+static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long psci_fn = vcpu_get_reg(vcpu, 0) & ~((u32) 0);
+ unsigned long val;
+ int ret = 1;
+
+ switch (psci_fn) {
+ case PSCI_0_2_FN_PSCI_VERSION:
+ /*
+ * Bits[31:16] = Major Version = 0
+ * Bits[15:0] = Minor Version = 2
+ */
+ val = 2;
+ break;
+ case PSCI_0_2_FN_CPU_SUSPEND:
+ case PSCI_0_2_FN64_CPU_SUSPEND:
+ val = kvm_psci_vcpu_suspend(vcpu);
+ break;
+ case PSCI_0_2_FN_CPU_OFF:
+ kvm_psci_vcpu_off(vcpu);
+ val = PSCI_RET_SUCCESS;
+ break;
+ case PSCI_0_2_FN_CPU_ON:
+ case PSCI_0_2_FN64_CPU_ON:
+ mutex_lock(&kvm->lock);
+ val = kvm_psci_vcpu_on(vcpu);
+ mutex_unlock(&kvm->lock);
+ break;
+ case PSCI_0_2_FN_AFFINITY_INFO:
+ case PSCI_0_2_FN64_AFFINITY_INFO:
+ val = kvm_psci_vcpu_affinity_info(vcpu);
+ break;
+ case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
+ /*
+ * Trusted OS is MP hence does not require migration
+ * or
+ * Trusted OS is not present
+ */
+ val = PSCI_0_2_TOS_MP;
+ break;
+ case PSCI_0_2_FN_SYSTEM_OFF:
+ kvm_psci_system_off(vcpu);
+ /*
+ * We should'nt be going back to guest VCPU after
+ * receiving SYSTEM_OFF request.
+ *
+ * If user space accidently/deliberately resumes
+ * guest VCPU after SYSTEM_OFF request then guest
+ * VCPU should see internal failure from PSCI return
+ * value. To achieve this, we preload r0 (or x0) with
+ * PSCI return value INTERNAL_FAILURE.
+ */
+ val = PSCI_RET_INTERNAL_FAILURE;
+ ret = 0;
+ break;
+ case PSCI_0_2_FN_SYSTEM_RESET:
+ kvm_psci_system_reset(vcpu);
+ /*
+ * Same reason as SYSTEM_OFF for preloading r0 (or x0)
+ * with PSCI return value INTERNAL_FAILURE.
+ */
+ val = PSCI_RET_INTERNAL_FAILURE;
+ ret = 0;
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+ vcpu_set_reg(vcpu, 0, val);
+ return ret;
+}
+
+static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long psci_fn = vcpu_get_reg(vcpu, 0) & ~((u32) 0);
+ unsigned long val;
+
+ switch (psci_fn) {
+ case KVM_PSCI_FN_CPU_OFF:
+ kvm_psci_vcpu_off(vcpu);
+ val = PSCI_RET_SUCCESS;
+ break;
+ case KVM_PSCI_FN_CPU_ON:
+ mutex_lock(&kvm->lock);
+ val = kvm_psci_vcpu_on(vcpu);
+ mutex_unlock(&kvm->lock);
+ break;
+ default:
+ val = PSCI_RET_NOT_SUPPORTED;
+ break;
+ }
+
+ vcpu_set_reg(vcpu, 0, val);
+ return 1;
+}
+
+/**
+ * kvm_psci_call - handle PSCI call if r0 value is in range
+ * @vcpu: Pointer to the VCPU struct
+ *
+ * Handle PSCI calls from guests through traps from HVC instructions.
+ * The calling convention is similar to SMC calls to the secure world
+ * where the function number is placed in r0.
+ *
+ * This function returns: > 0 (success), 0 (success but exit to user
+ * space), and < 0 (errors)
+ *
+ * Errors:
+ * -EINVAL: Unrecognized PSCI function
+ */
+int kvm_psci_call(struct kvm_vcpu *vcpu)
+{
+ switch (kvm_psci_version(vcpu)) {
+ case KVM_ARM_PSCI_0_2:
+ return kvm_psci_0_2_call(vcpu);
+ case KVM_ARM_PSCI_0_1:
+ return kvm_psci_0_1_call(vcpu);
+ default:
+ return -EINVAL;
+ };
+}
diff --git a/virt/kvm/arm/trace.h b/virt/kvm/arm/trace.h
index 37d8b98867d5..f7dc5ddd6847 100644
--- a/virt/kvm/arm/trace.h
+++ b/virt/kvm/arm/trace.h
@@ -7,26 +7,250 @@
#define TRACE_SYSTEM kvm
/*
- * Tracepoints for vgic
+ * Tracepoints for entry/exit to guest
*/
-TRACE_EVENT(vgic_update_irq_pending,
- TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level),
- TP_ARGS(vcpu_id, irq, level),
+TRACE_EVENT(kvm_entry,
+ TP_PROTO(unsigned long vcpu_pc),
+ TP_ARGS(vcpu_pc),
TP_STRUCT__entry(
- __field( unsigned long, vcpu_id )
- __field( __u32, irq )
- __field( bool, level )
+ __field( unsigned long, vcpu_pc )
),
TP_fast_assign(
- __entry->vcpu_id = vcpu_id;
- __entry->irq = irq;
+ __entry->vcpu_pc = vcpu_pc;
+ ),
+
+ TP_printk("PC: 0x%08lx", __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_exit,
+ TP_PROTO(int idx, unsigned int exit_reason, unsigned long vcpu_pc),
+ TP_ARGS(idx, exit_reason, vcpu_pc),
+
+ TP_STRUCT__entry(
+ __field( int, idx )
+ __field( unsigned int, exit_reason )
+ __field( unsigned long, vcpu_pc )
+ ),
+
+ TP_fast_assign(
+ __entry->idx = idx;
+ __entry->exit_reason = exit_reason;
+ __entry->vcpu_pc = vcpu_pc;
+ ),
+
+ TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%08lx",
+ __print_symbolic(__entry->idx, kvm_arm_exception_type),
+ __entry->exit_reason,
+ __print_symbolic(__entry->exit_reason, kvm_arm_exception_class),
+ __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_guest_fault,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long hsr,
+ unsigned long hxfar,
+ unsigned long long ipa),
+ TP_ARGS(vcpu_pc, hsr, hxfar, ipa),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, hsr )
+ __field( unsigned long, hxfar )
+ __field( unsigned long long, ipa )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->hsr = hsr;
+ __entry->hxfar = hxfar;
+ __entry->ipa = ipa;
+ ),
+
+ TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#08lx",
+ __entry->ipa, __entry->hsr,
+ __entry->hxfar, __entry->vcpu_pc)
+);
+
+TRACE_EVENT(kvm_access_fault,
+ TP_PROTO(unsigned long ipa),
+ TP_ARGS(ipa),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, ipa )
+ ),
+
+ TP_fast_assign(
+ __entry->ipa = ipa;
+ ),
+
+ TP_printk("IPA: %lx", __entry->ipa)
+);
+
+TRACE_EVENT(kvm_irq_line,
+ TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level),
+ TP_ARGS(type, vcpu_idx, irq_num, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, type )
+ __field( int, vcpu_idx )
+ __field( int, irq_num )
+ __field( int, level )
+ ),
+
+ TP_fast_assign(
+ __entry->type = type;
+ __entry->vcpu_idx = vcpu_idx;
+ __entry->irq_num = irq_num;
__entry->level = level;
),
- TP_printk("VCPU: %ld, IRQ %d, level: %d",
- __entry->vcpu_id, __entry->irq, __entry->level)
+ TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d",
+ (__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" :
+ (__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" :
+ (__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN",
+ __entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level)
+);
+
+TRACE_EVENT(kvm_mmio_emulate,
+ TP_PROTO(unsigned long vcpu_pc, unsigned long instr,
+ unsigned long cpsr),
+ TP_ARGS(vcpu_pc, instr, cpsr),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( unsigned long, instr )
+ __field( unsigned long, cpsr )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->instr = instr;
+ __entry->cpsr = cpsr;
+ ),
+
+ TP_printk("Emulate MMIO at: 0x%08lx (instr: %08lx, cpsr: %08lx)",
+ __entry->vcpu_pc, __entry->instr, __entry->cpsr)
+);
+
+TRACE_EVENT(kvm_unmap_hva,
+ TP_PROTO(unsigned long hva),
+ TP_ARGS(hva),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, hva )
+ ),
+
+ TP_fast_assign(
+ __entry->hva = hva;
+ ),
+
+ TP_printk("mmu notifier unmap hva: %#08lx", __entry->hva)
+);
+
+TRACE_EVENT(kvm_unmap_hva_range,
+ TP_PROTO(unsigned long start, unsigned long end),
+ TP_ARGS(start, end),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, start )
+ __field( unsigned long, end )
+ ),
+
+ TP_fast_assign(
+ __entry->start = start;
+ __entry->end = end;
+ ),
+
+ TP_printk("mmu notifier unmap range: %#08lx -- %#08lx",
+ __entry->start, __entry->end)
+);
+
+TRACE_EVENT(kvm_set_spte_hva,
+ TP_PROTO(unsigned long hva),
+ TP_ARGS(hva),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, hva )
+ ),
+
+ TP_fast_assign(
+ __entry->hva = hva;
+ ),
+
+ TP_printk("mmu notifier set pte hva: %#08lx", __entry->hva)
+);
+
+TRACE_EVENT(kvm_age_hva,
+ TP_PROTO(unsigned long start, unsigned long end),
+ TP_ARGS(start, end),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, start )
+ __field( unsigned long, end )
+ ),
+
+ TP_fast_assign(
+ __entry->start = start;
+ __entry->end = end;
+ ),
+
+ TP_printk("mmu notifier age hva: %#08lx -- %#08lx",
+ __entry->start, __entry->end)
+);
+
+TRACE_EVENT(kvm_test_age_hva,
+ TP_PROTO(unsigned long hva),
+ TP_ARGS(hva),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, hva )
+ ),
+
+ TP_fast_assign(
+ __entry->hva = hva;
+ ),
+
+ TP_printk("mmu notifier test age hva: %#08lx", __entry->hva)
+);
+
+TRACE_EVENT(kvm_set_way_flush,
+ TP_PROTO(unsigned long vcpu_pc, bool cache),
+ TP_ARGS(vcpu_pc, cache),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, cache )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->cache = cache;
+ ),
+
+ TP_printk("S/W flush at 0x%016lx (cache %s)",
+ __entry->vcpu_pc, __entry->cache ? "on" : "off")
+);
+
+TRACE_EVENT(kvm_toggle_cache,
+ TP_PROTO(unsigned long vcpu_pc, bool was, bool now),
+ TP_ARGS(vcpu_pc, was, now),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_pc )
+ __field( bool, was )
+ __field( bool, now )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_pc = vcpu_pc;
+ __entry->was = was;
+ __entry->now = now;
+ ),
+
+ TP_printk("VM op at 0x%016lx (cache was %s, now %s)",
+ __entry->vcpu_pc, __entry->was ? "on" : "off",
+ __entry->now ? "on" : "off")
);
/*
diff --git a/virt/kvm/arm/vgic/trace.h b/virt/kvm/arm/vgic/trace.h
new file mode 100644
index 000000000000..ed3229282888
--- /dev/null
+++ b/virt/kvm/arm/vgic/trace.h
@@ -0,0 +1,37 @@
+#if !defined(_TRACE_VGIC_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_VGIC_H
+
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+TRACE_EVENT(vgic_update_irq_pending,
+ TP_PROTO(unsigned long vcpu_id, __u32 irq, bool level),
+ TP_ARGS(vcpu_id, irq, level),
+
+ TP_STRUCT__entry(
+ __field( unsigned long, vcpu_id )
+ __field( __u32, irq )
+ __field( bool, level )
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu_id;
+ __entry->irq = irq;
+ __entry->level = level;
+ ),
+
+ TP_printk("VCPU: %ld, IRQ %d, level: %d",
+ __entry->vcpu_id, __entry->irq, __entry->level)
+);
+
+#endif /* _TRACE_VGIC_H */
+
+#undef TRACE_INCLUDE_PATH
+#define TRACE_INCLUDE_PATH ../../../virt/kvm/arm/vgic
+#undef TRACE_INCLUDE_FILE
+#define TRACE_INCLUDE_FILE trace
+
+/* This part must be outside protection */
+#include <trace/define_trace.h>
diff --git a/virt/kvm/arm/vgic/vgic-init.c b/virt/kvm/arm/vgic/vgic-init.c
index 25fd1b942c11..dc68e2e424ab 100644
--- a/virt/kvm/arm/vgic/vgic-init.c
+++ b/virt/kvm/arm/vgic/vgic-init.c
@@ -227,10 +227,27 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
}
/**
- * kvm_vgic_vcpu_init() - Enable the VCPU interface
- * @vcpu: the VCPU which's VGIC should be enabled
+ * kvm_vgic_vcpu_init() - Register VCPU-specific KVM iodevs
+ * @vcpu: pointer to the VCPU being created and initialized
*/
-static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
+int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ int ret = 0;
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
+
+ if (!irqchip_in_kernel(vcpu->kvm))
+ return 0;
+
+ /*
+ * If we are creating a VCPU with a GICv3 we must also register the
+ * KVM io device for the redistributor that belongs to this VCPU.
+ */
+ if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
+ ret = vgic_register_redist_iodev(vcpu);
+ return ret;
+}
+
+static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
{
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_enable(vcpu);
@@ -269,7 +286,7 @@ int vgic_init(struct kvm *kvm)
dist->msis_require_devid = true;
kvm_for_each_vcpu(i, vcpu, kvm)
- kvm_vgic_vcpu_init(vcpu);
+ kvm_vgic_vcpu_enable(vcpu);
ret = kvm_vgic_setup_default_irq_routing(kvm);
if (ret)
diff --git a/virt/kvm/arm/vgic/vgic-its.c b/virt/kvm/arm/vgic/vgic-its.c
index 8d1da1af4b09..2dff288b3a66 100644
--- a/virt/kvm/arm/vgic/vgic-its.c
+++ b/virt/kvm/arm/vgic/vgic-its.c
@@ -23,6 +23,7 @@
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/uaccess.h>
+#include <linux/list_sort.h>
#include <linux/irqchip/arm-gic-v3.h>
@@ -33,6 +34,12 @@
#include "vgic.h"
#include "vgic-mmio.h"
+static int vgic_its_save_tables_v0(struct vgic_its *its);
+static int vgic_its_restore_tables_v0(struct vgic_its *its);
+static int vgic_its_commit_v0(struct vgic_its *its);
+static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
+ struct kvm_vcpu *filter_vcpu);
+
/*
* Creates a new (reference to a) struct vgic_irq for a given LPI.
* If this LPI is already mapped on another ITS, we increase its refcount
@@ -40,10 +47,12 @@
* If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
* This function returns a pointer to the _unlocked_ structure.
*/
-static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
+static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
+ struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
+ int ret;
/* In this case there is no put, since we keep the reference. */
if (irq)
@@ -60,6 +69,7 @@ static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
irq->config = VGIC_CONFIG_EDGE;
kref_init(&irq->refcount);
irq->intid = intid;
+ irq->target_vcpu = vcpu;
spin_lock(&dist->lpi_list_lock);
@@ -91,6 +101,19 @@ static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
out_unlock:
spin_unlock(&dist->lpi_list_lock);
+ /*
+ * We "cache" the configuration table entries in our struct vgic_irq's.
+ * However we only have those structs for mapped IRQs, so we read in
+ * the respective config data from memory here upon mapping the LPI.
+ */
+ ret = update_lpi_config(kvm, irq, NULL);
+ if (ret)
+ return ERR_PTR(ret);
+
+ ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
+ if (ret)
+ return ERR_PTR(ret);
+
return irq;
}
@@ -99,6 +122,8 @@ struct its_device {
/* the head for the list of ITTEs */
struct list_head itt_head;
+ u32 num_eventid_bits;
+ gpa_t itt_addr;
u32 device_id;
};
@@ -114,8 +139,8 @@ struct its_collection {
#define its_is_collection_mapped(coll) ((coll) && \
((coll)->target_addr != COLLECTION_NOT_MAPPED))
-struct its_itte {
- struct list_head itte_list;
+struct its_ite {
+ struct list_head ite_list;
struct vgic_irq *irq;
struct its_collection *collection;
@@ -123,6 +148,50 @@ struct its_itte {
u32 event_id;
};
+/**
+ * struct vgic_its_abi - ITS abi ops and settings
+ * @cte_esz: collection table entry size
+ * @dte_esz: device table entry size
+ * @ite_esz: interrupt translation table entry size
+ * @save tables: save the ITS tables into guest RAM
+ * @restore_tables: restore the ITS internal structs from tables
+ * stored in guest RAM
+ * @commit: initialize the registers which expose the ABI settings,
+ * especially the entry sizes
+ */
+struct vgic_its_abi {
+ int cte_esz;
+ int dte_esz;
+ int ite_esz;
+ int (*save_tables)(struct vgic_its *its);
+ int (*restore_tables)(struct vgic_its *its);
+ int (*commit)(struct vgic_its *its);
+};
+
+static const struct vgic_its_abi its_table_abi_versions[] = {
+ [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
+ .save_tables = vgic_its_save_tables_v0,
+ .restore_tables = vgic_its_restore_tables_v0,
+ .commit = vgic_its_commit_v0,
+ },
+};
+
+#define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
+
+inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
+{
+ return &its_table_abi_versions[its->abi_rev];
+}
+
+int vgic_its_set_abi(struct vgic_its *its, int rev)
+{
+ const struct vgic_its_abi *abi;
+
+ its->abi_rev = rev;
+ abi = vgic_its_get_abi(its);
+ return abi->commit(its);
+}
+
/*
* Find and returns a device in the device table for an ITS.
* Must be called with the its_lock mutex held.
@@ -143,27 +212,27 @@ static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
* Device ID/Event ID pair on an ITS.
* Must be called with the its_lock mutex held.
*/
-static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
+static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
u32 event_id)
{
struct its_device *device;
- struct its_itte *itte;
+ struct its_ite *ite;
device = find_its_device(its, device_id);
if (device == NULL)
return NULL;
- list_for_each_entry(itte, &device->itt_head, itte_list)
- if (itte->event_id == event_id)
- return itte;
+ list_for_each_entry(ite, &device->itt_head, ite_list)
+ if (ite->event_id == event_id)
+ return ite;
return NULL;
}
/* To be used as an iterator this macro misses the enclosing parentheses */
-#define for_each_lpi_its(dev, itte, its) \
+#define for_each_lpi_its(dev, ite, its) \
list_for_each_entry(dev, &(its)->device_list, dev_list) \
- list_for_each_entry(itte, &(dev)->itt_head, itte_list)
+ list_for_each_entry(ite, &(dev)->itt_head, ite_list)
/*
* We only implement 48 bits of PA at the moment, although the ITS
@@ -171,11 +240,14 @@ static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
*/
#define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
#define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
-#define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
-#define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
#define GIC_LPI_OFFSET 8192
+#define VITS_TYPER_IDBITS 16
+#define VITS_TYPER_DEVBITS 16
+#define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
+#define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
+
/*
* Finds and returns a collection in the ITS collection table.
* Must be called with the its_lock mutex held.
@@ -204,7 +276,7 @@ static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
struct kvm_vcpu *filter_vcpu)
{
- u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
+ u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
u8 prop;
int ret;
@@ -229,13 +301,13 @@ static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
}
/*
- * Create a snapshot of the current LPI list, so that we can enumerate all
- * LPIs without holding any lock.
- * Returns the array length and puts the kmalloc'ed array into intid_ptr.
+ * Create a snapshot of the current LPIs targeting @vcpu, so that we can
+ * enumerate those LPIs without holding any lock.
+ * Returns their number and puts the kmalloc'ed array into intid_ptr.
*/
-static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
+static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
{
- struct vgic_dist *dist = &kvm->arch.vgic;
+ struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct vgic_irq *irq;
u32 *intids;
int irq_count = dist->lpi_list_count, i = 0;
@@ -254,14 +326,14 @@ static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
spin_lock(&dist->lpi_list_lock);
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
/* We don't need to "get" the IRQ, as we hold the list lock. */
- intids[i] = irq->intid;
- if (++i == irq_count)
- break;
+ if (irq->target_vcpu != vcpu)
+ continue;
+ intids[i++] = irq->intid;
}
spin_unlock(&dist->lpi_list_lock);
*intid_ptr = intids;
- return irq_count;
+ return i;
}
/*
@@ -270,18 +342,18 @@ static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
* Needs to be called whenever either the collection for a LPIs has
* changed or the collection itself got retargeted.
*/
-static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
+static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
{
struct kvm_vcpu *vcpu;
- if (!its_is_collection_mapped(itte->collection))
+ if (!its_is_collection_mapped(ite->collection))
return;
- vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
+ vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
- spin_lock(&itte->irq->irq_lock);
- itte->irq->target_vcpu = vcpu;
- spin_unlock(&itte->irq->irq_lock);
+ spin_lock(&ite->irq->irq_lock);
+ ite->irq->target_vcpu = vcpu;
+ spin_unlock(&ite->irq->irq_lock);
}
/*
@@ -292,13 +364,13 @@ static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
struct its_collection *coll)
{
struct its_device *device;
- struct its_itte *itte;
+ struct its_ite *ite;
- for_each_lpi_its(device, itte, its) {
- if (!itte->collection || coll != itte->collection)
+ for_each_lpi_its(device, ite, its) {
+ if (!ite->collection || coll != ite->collection)
continue;
- update_affinity_itte(kvm, itte);
+ update_affinity_ite(kvm, ite);
}
}
@@ -310,20 +382,20 @@ static u32 max_lpis_propbaser(u64 propbaser)
}
/*
- * Scan the whole LPI pending table and sync the pending bit in there
+ * Sync the pending table pending bit of LPIs targeting @vcpu
* with our own data structures. This relies on the LPI being
* mapped before.
*/
static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
{
- gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+ gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
struct vgic_irq *irq;
int last_byte_offset = -1;
int ret = 0;
u32 *intids;
int nr_irqs, i;
- nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
+ nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
if (nr_irqs < 0)
return nr_irqs;
@@ -364,6 +436,7 @@ static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
u64 reg = GITS_TYPER_PLPIS;
/*
@@ -374,8 +447,9 @@ static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
* To avoid memory waste in the guest, we keep the number of IDBits and
* DevBits low - as least for the time being.
*/
- reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
- reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
+ reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
+ reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
+ reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
return extract_bytes(reg, addr & 7, len);
}
@@ -384,7 +458,23 @@ static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
- return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
+ u32 val;
+
+ val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
+ val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
+ return val;
+}
+
+static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 rev = GITS_IIDR_REV(val);
+
+ if (rev >= NR_ITS_ABIS)
+ return -EINVAL;
+ return vgic_its_set_abi(its, rev);
}
static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
@@ -425,25 +515,25 @@ static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
u32 devid, u32 eventid)
{
struct kvm_vcpu *vcpu;
- struct its_itte *itte;
+ struct its_ite *ite;
if (!its->enabled)
return -EBUSY;
- itte = find_itte(its, devid, eventid);
- if (!itte || !its_is_collection_mapped(itte->collection))
+ ite = find_ite(its, devid, eventid);
+ if (!ite || !its_is_collection_mapped(ite->collection))
return E_ITS_INT_UNMAPPED_INTERRUPT;
- vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
+ vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
if (!vcpu)
return E_ITS_INT_UNMAPPED_INTERRUPT;
if (!vcpu->arch.vgic_cpu.lpis_enabled)
return -EBUSY;
- spin_lock(&itte->irq->irq_lock);
- itte->irq->pending_latch = true;
- vgic_queue_irq_unlock(kvm, itte->irq);
+ spin_lock(&ite->irq->irq_lock);
+ ite->irq->pending_latch = true;
+ vgic_queue_irq_unlock(kvm, ite->irq);
return 0;
}
@@ -511,15 +601,15 @@ int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
}
/* Requires the its_lock to be held. */
-static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
+static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
{
- list_del(&itte->itte_list);
+ list_del(&ite->ite_list);
/* This put matches the get in vgic_add_lpi. */
- if (itte->irq)
- vgic_put_irq(kvm, itte->irq);
+ if (ite->irq)
+ vgic_put_irq(kvm, ite->irq);
- kfree(itte);
+ kfree(ite);
}
static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
@@ -529,9 +619,11 @@ static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
+#define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
+#define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
@@ -544,17 +636,17 @@ static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
- struct its_itte *itte;
+ struct its_ite *ite;
- itte = find_itte(its, device_id, event_id);
- if (itte && itte->collection) {
+ ite = find_ite(its, device_id, event_id);
+ if (ite && ite->collection) {
/*
* Though the spec talks about removing the pending state, we
* don't bother here since we clear the ITTE anyway and the
* pending state is a property of the ITTE struct.
*/
- its_free_itte(kvm, itte);
+ its_free_ite(kvm, ite);
return 0;
}
@@ -572,26 +664,26 @@ static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
u32 event_id = its_cmd_get_id(its_cmd);
u32 coll_id = its_cmd_get_collection(its_cmd);
struct kvm_vcpu *vcpu;
- struct its_itte *itte;
+ struct its_ite *ite;
struct its_collection *collection;
- itte = find_itte(its, device_id, event_id);
- if (!itte)
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
return E_ITS_MOVI_UNMAPPED_INTERRUPT;
- if (!its_is_collection_mapped(itte->collection))
+ if (!its_is_collection_mapped(ite->collection))
return E_ITS_MOVI_UNMAPPED_COLLECTION;
collection = find_collection(its, coll_id);
if (!its_is_collection_mapped(collection))
return E_ITS_MOVI_UNMAPPED_COLLECTION;
- itte->collection = collection;
+ ite->collection = collection;
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
- spin_lock(&itte->irq->irq_lock);
- itte->irq->target_vcpu = vcpu;
- spin_unlock(&itte->irq->irq_lock);
+ spin_lock(&ite->irq->irq_lock);
+ ite->irq->target_vcpu = vcpu;
+ spin_unlock(&ite->irq->irq_lock);
return 0;
}
@@ -600,16 +692,31 @@ static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
* Check whether an ID can be stored into the corresponding guest table.
* For a direct table this is pretty easy, but gets a bit nasty for
* indirect tables. We check whether the resulting guest physical address
- * is actually valid (covered by a memslot and guest accessbible).
+ * is actually valid (covered by a memslot and guest accessible).
* For this we have to read the respective first level entry.
*/
-static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
+static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
+ gpa_t *eaddr)
{
int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+ u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
+ int esz = GITS_BASER_ENTRY_SIZE(baser);
int index;
- u64 indirect_ptr;
gfn_t gfn;
- int esz = GITS_BASER_ENTRY_SIZE(baser);
+
+ switch (type) {
+ case GITS_BASER_TYPE_DEVICE:
+ if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
+ return false;
+ break;
+ case GITS_BASER_TYPE_COLLECTION:
+ /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
+ if (id >= BIT_ULL(16))
+ return false;
+ break;
+ default:
+ return false;
+ }
if (!(baser & GITS_BASER_INDIRECT)) {
phys_addr_t addr;
@@ -620,6 +727,8 @@ static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
addr = BASER_ADDRESS(baser) + id * esz;
gfn = addr >> PAGE_SHIFT;
+ if (eaddr)
+ *eaddr = addr;
return kvm_is_visible_gfn(its->dev->kvm, gfn);
}
@@ -652,6 +761,8 @@ static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
indirect_ptr += index * esz;
gfn = indirect_ptr >> PAGE_SHIFT;
+ if (eaddr)
+ *eaddr = indirect_ptr;
return kvm_is_visible_gfn(its->dev->kvm, gfn);
}
@@ -661,7 +772,7 @@ static int vgic_its_alloc_collection(struct vgic_its *its,
{
struct its_collection *collection;
- if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
+ if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
return E_ITS_MAPC_COLLECTION_OOR;
collection = kzalloc(sizeof(*collection), GFP_KERNEL);
@@ -679,7 +790,7 @@ static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
{
struct its_collection *collection;
struct its_device *device;
- struct its_itte *itte;
+ struct its_ite *ite;
/*
* Clearing the mapping for that collection ID removes the
@@ -690,15 +801,34 @@ static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
if (!collection)
return;
- for_each_lpi_its(device, itte, its)
- if (itte->collection &&
- itte->collection->collection_id == coll_id)
- itte->collection = NULL;
+ for_each_lpi_its(device, ite, its)
+ if (ite->collection &&
+ ite->collection->collection_id == coll_id)
+ ite->collection = NULL;
list_del(&collection->coll_list);
kfree(collection);
}
+/* Must be called with its_lock mutex held */
+static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
+ struct its_collection *collection,
+ u32 lpi_id, u32 event_id)
+{
+ struct its_ite *ite;
+
+ ite = kzalloc(sizeof(*ite), GFP_KERNEL);
+ if (!ite)
+ return ERR_PTR(-ENOMEM);
+
+ ite->event_id = event_id;
+ ite->collection = collection;
+ ite->lpi = lpi_id;
+
+ list_add_tail(&ite->ite_list, &device->itt_head);
+ return ite;
+}
+
/*
* The MAPTI and MAPI commands map LPIs to ITTEs.
* Must be called with its_lock mutex held.
@@ -709,16 +839,20 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
u32 coll_id = its_cmd_get_collection(its_cmd);
- struct its_itte *itte;
+ struct its_ite *ite;
+ struct kvm_vcpu *vcpu = NULL;
struct its_device *device;
struct its_collection *collection, *new_coll = NULL;
- int lpi_nr;
struct vgic_irq *irq;
+ int lpi_nr;
device = find_its_device(its, device_id);
if (!device)
return E_ITS_MAPTI_UNMAPPED_DEVICE;
+ if (event_id >= BIT_ULL(device->num_eventid_bits))
+ return E_ITS_MAPTI_ID_OOR;
+
if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
lpi_nr = its_cmd_get_physical_id(its_cmd);
else
@@ -728,7 +862,7 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
return E_ITS_MAPTI_PHYSICALID_OOR;
/* If there is an existing mapping, behavior is UNPREDICTABLE. */
- if (find_itte(its, device_id, event_id))
+ if (find_ite(its, device_id, event_id))
return 0;
collection = find_collection(its, coll_id);
@@ -739,36 +873,24 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
new_coll = collection;
}
- itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
- if (!itte) {
+ ite = vgic_its_alloc_ite(device, collection, lpi_nr, event_id);
+ if (IS_ERR(ite)) {
if (new_coll)
vgic_its_free_collection(its, coll_id);
- return -ENOMEM;
+ return PTR_ERR(ite);
}
- itte->event_id = event_id;
- list_add_tail(&itte->itte_list, &device->itt_head);
-
- itte->collection = collection;
- itte->lpi = lpi_nr;
+ if (its_is_collection_mapped(collection))
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
- irq = vgic_add_lpi(kvm, lpi_nr);
+ irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
if (IS_ERR(irq)) {
if (new_coll)
vgic_its_free_collection(its, coll_id);
- its_free_itte(kvm, itte);
+ its_free_ite(kvm, ite);
return PTR_ERR(irq);
}
- itte->irq = irq;
-
- update_affinity_itte(kvm, itte);
-
- /*
- * We "cache" the configuration table entries in out struct vgic_irq's.
- * However we only have those structs for mapped IRQs, so we read in
- * the respective config data from memory here upon mapping the LPI.
- */
- update_lpi_config(kvm, itte->irq, NULL);
+ ite->irq = irq;
return 0;
}
@@ -776,20 +898,40 @@ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
/* Requires the its_lock to be held. */
static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
{
- struct its_itte *itte, *temp;
+ struct its_ite *ite, *temp;
/*
* The spec says that unmapping a device with still valid
* ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
* since we cannot leave the memory unreferenced.
*/
- list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
- its_free_itte(kvm, itte);
+ list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
+ its_free_ite(kvm, ite);
list_del(&device->dev_list);
kfree(device);
}
+/* Must be called with its_lock mutex held */
+static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
+ u32 device_id, gpa_t itt_addr,
+ u8 num_eventid_bits)
+{
+ struct its_device *device;
+
+ device = kzalloc(sizeof(*device), GFP_KERNEL);
+ if (!device)
+ return ERR_PTR(-ENOMEM);
+
+ device->device_id = device_id;
+ device->itt_addr = itt_addr;
+ device->num_eventid_bits = num_eventid_bits;
+ INIT_LIST_HEAD(&device->itt_head);
+
+ list_add_tail(&device->dev_list, &its->device_list);
+ return device;
+}
+
/*
* MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
* Must be called with the its_lock mutex held.
@@ -799,11 +941,16 @@ static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
bool valid = its_cmd_get_validbit(its_cmd);
+ u8 num_eventid_bits = its_cmd_get_size(its_cmd);
+ gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
struct its_device *device;
- if (!vgic_its_check_id(its, its->baser_device_table, device_id))
+ if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
return E_ITS_MAPD_DEVICE_OOR;
+ if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
+ return E_ITS_MAPD_ITTSIZE_OOR;
+
device = find_its_device(its, device_id);
/*
@@ -821,14 +968,10 @@ static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
if (!valid)
return 0;
- device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
- if (!device)
- return -ENOMEM;
-
- device->device_id = device_id;
- INIT_LIST_HEAD(&device->itt_head);
-
- list_add_tail(&device->dev_list, &its->device_list);
+ device = vgic_its_alloc_device(its, device_id, itt_addr,
+ num_eventid_bits);
+ if (IS_ERR(device))
+ return PTR_ERR(device);
return 0;
}
@@ -883,14 +1026,14 @@ static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
- struct its_itte *itte;
+ struct its_ite *ite;
- itte = find_itte(its, device_id, event_id);
- if (!itte)
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
- itte->irq->pending_latch = false;
+ ite->irq->pending_latch = false;
return 0;
}
@@ -904,14 +1047,14 @@ static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
- struct its_itte *itte;
+ struct its_ite *ite;
- itte = find_itte(its, device_id, event_id);
- if (!itte)
+ ite = find_ite(its, device_id, event_id);
+ if (!ite)
return E_ITS_INV_UNMAPPED_INTERRUPT;
- return update_lpi_config(kvm, itte->irq, NULL);
+ return update_lpi_config(kvm, ite->irq, NULL);
}
/*
@@ -938,7 +1081,7 @@ static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
- irq_count = vgic_copy_lpi_list(kvm, &intids);
+ irq_count = vgic_copy_lpi_list(vcpu, &intids);
if (irq_count < 0)
return irq_count;
@@ -1213,6 +1356,33 @@ static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
return extract_bytes(its->creadr, addr & 0x7, len);
}
+static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
+ struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val)
+{
+ u32 cmd_offset;
+ int ret = 0;
+
+ mutex_lock(&its->cmd_lock);
+
+ if (its->enabled) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ cmd_offset = ITS_CMD_OFFSET(val);
+ if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ its->creadr = cmd_offset;
+out:
+ mutex_unlock(&its->cmd_lock);
+ return ret;
+}
+
#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
struct vgic_its *its,
@@ -1241,6 +1411,7 @@ static void vgic_mmio_write_its_baser(struct kvm *kvm,
gpa_t addr, unsigned int len,
unsigned long val)
{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
u64 entry_size, device_type;
u64 reg, *regptr, clearbits = 0;
@@ -1251,12 +1422,12 @@ static void vgic_mmio_write_its_baser(struct kvm *kvm,
switch (BASER_INDEX(addr)) {
case 0:
regptr = &its->baser_device_table;
- entry_size = 8;
+ entry_size = abi->dte_esz;
device_type = GITS_BASER_TYPE_DEVICE;
break;
case 1:
regptr = &its->baser_coll_table;
- entry_size = 8;
+ entry_size = abi->cte_esz;
device_type = GITS_BASER_TYPE_COLLECTION;
clearbits = GITS_BASER_INDIRECT;
break;
@@ -1317,6 +1488,16 @@ static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
.its_write = wr, \
}
+#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
+{ \
+ .reg_offset = off, \
+ .len = length, \
+ .access_flags = acc, \
+ .its_read = rd, \
+ .its_write = wr, \
+ .uaccess_its_write = uwr, \
+}
+
static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
gpa_t addr, unsigned int len, unsigned long val)
{
@@ -1327,8 +1508,9 @@ static struct vgic_register_region its_registers[] = {
REGISTER_ITS_DESC(GITS_CTLR,
vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
VGIC_ACCESS_32bit),
- REGISTER_ITS_DESC(GITS_IIDR,
- vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
+ REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
+ vgic_mmio_read_its_iidr, its_mmio_write_wi,
+ vgic_mmio_uaccess_write_its_iidr, 4,
VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_TYPER,
vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
@@ -1339,8 +1521,9 @@ static struct vgic_register_region its_registers[] = {
REGISTER_ITS_DESC(GITS_CWRITER,
vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
- REGISTER_ITS_DESC(GITS_CREADR,
- vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
+ REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
+ vgic_mmio_read_its_creadr, its_mmio_write_wi,
+ vgic_mmio_uaccess_write_its_creadr, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_BASER,
vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
@@ -1357,17 +1540,19 @@ void vgic_enable_lpis(struct kvm_vcpu *vcpu)
its_sync_lpi_pending_table(vcpu);
}
-static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its)
+static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
+ u64 addr)
{
struct vgic_io_device *iodev = &its->iodev;
int ret;
- if (!its->initialized)
- return -EBUSY;
-
- if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
- return -ENXIO;
+ mutex_lock(&kvm->slots_lock);
+ if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
+ ret = -EBUSY;
+ goto out;
+ }
+ its->vgic_its_base = addr;
iodev->regions = its_registers;
iodev->nr_regions = ARRAY_SIZE(its_registers);
kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
@@ -1375,9 +1560,9 @@ static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its)
iodev->base_addr = its->vgic_its_base;
iodev->iodev_type = IODEV_ITS;
iodev->its = its;
- mutex_lock(&kvm->slots_lock);
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
+out:
mutex_unlock(&kvm->slots_lock);
return ret;
@@ -1387,7 +1572,6 @@ static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its)
(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
- ((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \
GITS_BASER_PAGE_SIZE_64K)
#define INITIAL_PROPBASER_VALUE \
@@ -1415,7 +1599,6 @@ static int vgic_its_create(struct kvm_device *dev, u32 type)
INIT_LIST_HEAD(&its->collection_list);
dev->kvm->arch.vgic.has_its = true;
- its->initialized = false;
its->enabled = false;
its->dev = dev;
@@ -1427,16 +1610,23 @@ static int vgic_its_create(struct kvm_device *dev, u32 type)
dev->private = its;
- return 0;
+ return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
+}
+
+static void vgic_its_free_device(struct kvm *kvm, struct its_device *dev)
+{
+ struct its_ite *ite, *tmp;
+
+ list_for_each_entry_safe(ite, tmp, &dev->itt_head, ite_list)
+ its_free_ite(kvm, ite);
+ list_del(&dev->dev_list);
+ kfree(dev);
}
static void vgic_its_destroy(struct kvm_device *kvm_dev)
{
struct kvm *kvm = kvm_dev->kvm;
struct vgic_its *its = kvm_dev->private;
- struct its_device *dev;
- struct its_itte *itte;
- struct list_head *dev_cur, *dev_temp;
struct list_head *cur, *temp;
/*
@@ -1447,25 +1637,710 @@ static void vgic_its_destroy(struct kvm_device *kvm_dev)
return;
mutex_lock(&its->its_lock);
- list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
- dev = container_of(dev_cur, struct its_device, dev_list);
- list_for_each_safe(cur, temp, &dev->itt_head) {
- itte = (container_of(cur, struct its_itte, itte_list));
- its_free_itte(kvm, itte);
- }
- list_del(dev_cur);
- kfree(dev);
+ list_for_each_safe(cur, temp, &its->device_list) {
+ struct its_device *dev;
+
+ dev = list_entry(cur, struct its_device, dev_list);
+ vgic_its_free_device(kvm, dev);
}
list_for_each_safe(cur, temp, &its->collection_list) {
+ struct its_collection *coll;
+
+ coll = list_entry(cur, struct its_collection, coll_list);
list_del(cur);
- kfree(container_of(cur, struct its_collection, coll_list));
+ kfree(coll);
}
mutex_unlock(&its->its_lock);
kfree(its);
}
+int vgic_its_has_attr_regs(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ const struct vgic_register_region *region;
+ gpa_t offset = attr->attr;
+ int align;
+
+ align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
+
+ if (offset & align)
+ return -EINVAL;
+
+ region = vgic_find_mmio_region(its_registers,
+ ARRAY_SIZE(its_registers),
+ offset);
+ if (!region)
+ return -ENXIO;
+
+ return 0;
+}
+
+int vgic_its_attr_regs_access(struct kvm_device *dev,
+ struct kvm_device_attr *attr,
+ u64 *reg, bool is_write)
+{
+ const struct vgic_register_region *region;
+ struct vgic_its *its;
+ gpa_t addr, offset;
+ unsigned int len;
+ int align, ret = 0;
+
+ its = dev->private;
+ offset = attr->attr;
+
+ /*
+ * Although the spec supports upper/lower 32-bit accesses to
+ * 64-bit ITS registers, the userspace ABI requires 64-bit
+ * accesses to all 64-bit wide registers. We therefore only
+ * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
+ * registers
+ */
+ if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
+ align = 0x3;
+ else
+ align = 0x7;
+
+ if (offset & align)
+ return -EINVAL;
+
+ mutex_lock(&dev->kvm->lock);
+
+ if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
+ ret = -ENXIO;
+ goto out;
+ }
+
+ region = vgic_find_mmio_region(its_registers,
+ ARRAY_SIZE(its_registers),
+ offset);
+ if (!region) {
+ ret = -ENXIO;
+ goto out;
+ }
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ addr = its->vgic_its_base + offset;
+
+ len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
+
+ if (is_write) {
+ if (region->uaccess_its_write)
+ ret = region->uaccess_its_write(dev->kvm, its, addr,
+ len, *reg);
+ else
+ region->its_write(dev->kvm, its, addr, len, *reg);
+ } else {
+ *reg = region->its_read(dev->kvm, its, addr, len);
+ }
+ unlock_all_vcpus(dev->kvm);
+out:
+ mutex_unlock(&dev->kvm->lock);
+ return ret;
+}
+
+static u32 compute_next_devid_offset(struct list_head *h,
+ struct its_device *dev)
+{
+ struct its_device *next;
+ u32 next_offset;
+
+ if (list_is_last(&dev->dev_list, h))
+ return 0;
+ next = list_next_entry(dev, dev_list);
+ next_offset = next->device_id - dev->device_id;
+
+ return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
+}
+
+static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
+{
+ struct its_ite *next;
+ u32 next_offset;
+
+ if (list_is_last(&ite->ite_list, h))
+ return 0;
+ next = list_next_entry(ite, ite_list);
+ next_offset = next->event_id - ite->event_id;
+
+ return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
+}
+
+/**
+ * entry_fn_t - Callback called on a table entry restore path
+ * @its: its handle
+ * @id: id of the entry
+ * @entry: pointer to the entry
+ * @opaque: pointer to an opaque data
+ *
+ * Return: < 0 on error, 0 if last element was identified, id offset to next
+ * element otherwise
+ */
+typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
+ void *opaque);
+
+/**
+ * scan_its_table - Scan a contiguous table in guest RAM and applies a function
+ * to each entry
+ *
+ * @its: its handle
+ * @base: base gpa of the table
+ * @size: size of the table in bytes
+ * @esz: entry size in bytes
+ * @start_id: the ID of the first entry in the table
+ * (non zero for 2d level tables)
+ * @fn: function to apply on each entry
+ *
+ * Return: < 0 on error, 0 if last element was identified, 1 otherwise
+ * (the last element may not be found on second level tables)
+ */
+static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
+ int start_id, entry_fn_t fn, void *opaque)
+{
+ void *entry = kzalloc(esz, GFP_KERNEL);
+ struct kvm *kvm = its->dev->kvm;
+ unsigned long len = size;
+ int id = start_id;
+ gpa_t gpa = base;
+ int ret;
+
+ while (len > 0) {
+ int next_offset;
+ size_t byte_offset;
+
+ ret = kvm_read_guest(kvm, gpa, entry, esz);
+ if (ret)
+ goto out;
+
+ next_offset = fn(its, id, entry, opaque);
+ if (next_offset <= 0) {
+ ret = next_offset;
+ goto out;
+ }
+
+ byte_offset = next_offset * esz;
+ id += next_offset;
+ gpa += byte_offset;
+ len -= byte_offset;
+ }
+ ret = 1;
+
+out:
+ kfree(entry);
+ return ret;
+}
+
+/**
+ * vgic_its_save_ite - Save an interrupt translation entry at @gpa
+ */
+static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
+ struct its_ite *ite, gpa_t gpa, int ite_esz)
+{
+ struct kvm *kvm = its->dev->kvm;
+ u32 next_offset;
+ u64 val;
+
+ next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
+ val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
+ ((u64)ite->lpi << KVM_ITS_ITE_PINTID_SHIFT) |
+ ite->collection->collection_id;
+ val = cpu_to_le64(val);
+ return kvm_write_guest(kvm, gpa, &val, ite_esz);
+}
+
+/**
+ * vgic_its_restore_ite - restore an interrupt translation entry
+ * @event_id: id used for indexing
+ * @ptr: pointer to the ITE entry
+ * @opaque: pointer to the its_device
+ */
+static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
+ void *ptr, void *opaque)
+{
+ struct its_device *dev = (struct its_device *)opaque;
+ struct its_collection *collection;
+ struct kvm *kvm = its->dev->kvm;
+ struct kvm_vcpu *vcpu = NULL;
+ u64 val;
+ u64 *p = (u64 *)ptr;
+ struct vgic_irq *irq;
+ u32 coll_id, lpi_id;
+ struct its_ite *ite;
+ u32 offset;
+
+ val = *p;
+
+ val = le64_to_cpu(val);
+
+ coll_id = val & KVM_ITS_ITE_ICID_MASK;
+ lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
+
+ if (!lpi_id)
+ return 1; /* invalid entry, no choice but to scan next entry */
+
+ if (lpi_id < VGIC_MIN_LPI)
+ return -EINVAL;
+
+ offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
+ if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
+ return -EINVAL;
+
+ collection = find_collection(its, coll_id);
+ if (!collection)
+ return -EINVAL;
+
+ ite = vgic_its_alloc_ite(dev, collection, lpi_id, event_id);
+ if (IS_ERR(ite))
+ return PTR_ERR(ite);
+
+ if (its_is_collection_mapped(collection))
+ vcpu = kvm_get_vcpu(kvm, collection->target_addr);
+
+ irq = vgic_add_lpi(kvm, lpi_id, vcpu);
+ if (IS_ERR(irq))
+ return PTR_ERR(irq);
+ ite->irq = irq;
+
+ return offset;
+}
+
+static int vgic_its_ite_cmp(void *priv, struct list_head *a,
+ struct list_head *b)
+{
+ struct its_ite *itea = container_of(a, struct its_ite, ite_list);
+ struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
+
+ if (itea->event_id < iteb->event_id)
+ return -1;
+ else
+ return 1;
+}
+
+static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ gpa_t base = device->itt_addr;
+ struct its_ite *ite;
+ int ret;
+ int ite_esz = abi->ite_esz;
+
+ list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
+
+ list_for_each_entry(ite, &device->itt_head, ite_list) {
+ gpa_t gpa = base + ite->event_id * ite_esz;
+
+ ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ gpa_t base = dev->itt_addr;
+ int ret;
+ int ite_esz = abi->ite_esz;
+ size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
+
+ ret = scan_its_table(its, base, max_size, ite_esz, 0,
+ vgic_its_restore_ite, dev);
+
+ return ret;
+}
+
+/**
+ * vgic_its_save_dte - Save a device table entry at a given GPA
+ *
+ * @its: ITS handle
+ * @dev: ITS device
+ * @ptr: GPA
+ */
+static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
+ gpa_t ptr, int dte_esz)
+{
+ struct kvm *kvm = its->dev->kvm;
+ u64 val, itt_addr_field;
+ u32 next_offset;
+
+ itt_addr_field = dev->itt_addr >> 8;
+ next_offset = compute_next_devid_offset(&its->device_list, dev);
+ val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
+ ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
+ (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
+ (dev->num_eventid_bits - 1));
+ val = cpu_to_le64(val);
+ return kvm_write_guest(kvm, ptr, &val, dte_esz);
+}
+
+/**
+ * vgic_its_restore_dte - restore a device table entry
+ *
+ * @its: its handle
+ * @id: device id the DTE corresponds to
+ * @ptr: kernel VA where the 8 byte DTE is located
+ * @opaque: unused
+ *
+ * Return: < 0 on error, 0 if the dte is the last one, id offset to the
+ * next dte otherwise
+ */
+static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
+ void *ptr, void *opaque)
+{
+ struct its_device *dev;
+ gpa_t itt_addr;
+ u8 num_eventid_bits;
+ u64 entry = *(u64 *)ptr;
+ bool valid;
+ u32 offset;
+ int ret;
+
+ entry = le64_to_cpu(entry);
+
+ valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
+ num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
+ itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
+ >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
+
+ if (!valid)
+ return 1;
+
+ /* dte entry is valid */
+ offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
+
+ dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
+ if (IS_ERR(dev))
+ return PTR_ERR(dev);
+
+ ret = vgic_its_restore_itt(its, dev);
+ if (ret) {
+ vgic_its_free_device(its->dev->kvm, dev);
+ return ret;
+ }
+
+ return offset;
+}
+
+static int vgic_its_device_cmp(void *priv, struct list_head *a,
+ struct list_head *b)
+{
+ struct its_device *deva = container_of(a, struct its_device, dev_list);
+ struct its_device *devb = container_of(b, struct its_device, dev_list);
+
+ if (deva->device_id < devb->device_id)
+ return -1;
+ else
+ return 1;
+}
+
+/**
+ * vgic_its_save_device_tables - Save the device table and all ITT
+ * into guest RAM
+ *
+ * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
+ * returns the GPA of the device entry
+ */
+static int vgic_its_save_device_tables(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ struct its_device *dev;
+ int dte_esz = abi->dte_esz;
+ u64 baser;
+
+ baser = its->baser_device_table;
+
+ list_sort(NULL, &its->device_list, vgic_its_device_cmp);
+
+ list_for_each_entry(dev, &its->device_list, dev_list) {
+ int ret;
+ gpa_t eaddr;
+
+ if (!vgic_its_check_id(its, baser,
+ dev->device_id, &eaddr))
+ return -EINVAL;
+
+ ret = vgic_its_save_itt(its, dev);
+ if (ret)
+ return ret;
+
+ ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * handle_l1_dte - callback used for L1 device table entries (2 stage case)
+ *
+ * @its: its handle
+ * @id: index of the entry in the L1 table
+ * @addr: kernel VA
+ * @opaque: unused
+ *
+ * L1 table entries are scanned by steps of 1 entry
+ * Return < 0 if error, 0 if last dte was found when scanning the L2
+ * table, +1 otherwise (meaning next L1 entry must be scanned)
+ */
+static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
+ void *opaque)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ int l2_start_id = id * (SZ_64K / abi->dte_esz);
+ u64 entry = *(u64 *)addr;
+ int dte_esz = abi->dte_esz;
+ gpa_t gpa;
+ int ret;
+
+ entry = le64_to_cpu(entry);
+
+ if (!(entry & KVM_ITS_L1E_VALID_MASK))
+ return 1;
+
+ gpa = entry & KVM_ITS_L1E_ADDR_MASK;
+
+ ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
+ l2_start_id, vgic_its_restore_dte, NULL);
+
+ if (ret <= 0)
+ return ret;
+
+ return 1;
+}
+
+/**
+ * vgic_its_restore_device_tables - Restore the device table and all ITT
+ * from guest RAM to internal data structs
+ */
+static int vgic_its_restore_device_tables(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ u64 baser = its->baser_device_table;
+ int l1_esz, ret;
+ int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
+ gpa_t l1_gpa;
+
+ if (!(baser & GITS_BASER_VALID))
+ return 0;
+
+ l1_gpa = BASER_ADDRESS(baser);
+
+ if (baser & GITS_BASER_INDIRECT) {
+ l1_esz = GITS_LVL1_ENTRY_SIZE;
+ ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
+ handle_l1_dte, NULL);
+ } else {
+ l1_esz = abi->dte_esz;
+ ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
+ vgic_its_restore_dte, NULL);
+ }
+
+ if (ret > 0)
+ ret = -EINVAL;
+
+ return ret;
+}
+
+static int vgic_its_save_cte(struct vgic_its *its,
+ struct its_collection *collection,
+ gpa_t gpa, int esz)
+{
+ u64 val;
+
+ val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
+ ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
+ collection->collection_id);
+ val = cpu_to_le64(val);
+ return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
+}
+
+static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
+{
+ struct its_collection *collection;
+ struct kvm *kvm = its->dev->kvm;
+ u32 target_addr, coll_id;
+ u64 val;
+ int ret;
+
+ BUG_ON(esz > sizeof(val));
+ ret = kvm_read_guest(kvm, gpa, &val, esz);
+ if (ret)
+ return ret;
+ val = le64_to_cpu(val);
+ if (!(val & KVM_ITS_CTE_VALID_MASK))
+ return 0;
+
+ target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
+ coll_id = val & KVM_ITS_CTE_ICID_MASK;
+
+ if (target_addr >= atomic_read(&kvm->online_vcpus))
+ return -EINVAL;
+
+ collection = find_collection(its, coll_id);
+ if (collection)
+ return -EEXIST;
+ ret = vgic_its_alloc_collection(its, &collection, coll_id);
+ if (ret)
+ return ret;
+ collection->target_addr = target_addr;
+ return 1;
+}
+
+/**
+ * vgic_its_save_collection_table - Save the collection table into
+ * guest RAM
+ */
+static int vgic_its_save_collection_table(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ struct its_collection *collection;
+ u64 val;
+ gpa_t gpa;
+ size_t max_size, filled = 0;
+ int ret, cte_esz = abi->cte_esz;
+
+ gpa = BASER_ADDRESS(its->baser_coll_table);
+ if (!gpa)
+ return 0;
+
+ max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
+
+ list_for_each_entry(collection, &its->collection_list, coll_list) {
+ ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
+ if (ret)
+ return ret;
+ gpa += cte_esz;
+ filled += cte_esz;
+ }
+
+ if (filled == max_size)
+ return 0;
+
+ /*
+ * table is not fully filled, add a last dummy element
+ * with valid bit unset
+ */
+ val = 0;
+ BUG_ON(cte_esz > sizeof(val));
+ ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
+ return ret;
+}
+
+/**
+ * vgic_its_restore_collection_table - reads the collection table
+ * in guest memory and restores the ITS internal state. Requires the
+ * BASER registers to be restored before.
+ */
+static int vgic_its_restore_collection_table(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+ int cte_esz = abi->cte_esz;
+ size_t max_size, read = 0;
+ gpa_t gpa;
+ int ret;
+
+ if (!(its->baser_coll_table & GITS_BASER_VALID))
+ return 0;
+
+ gpa = BASER_ADDRESS(its->baser_coll_table);
+
+ max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
+
+ while (read < max_size) {
+ ret = vgic_its_restore_cte(its, gpa, cte_esz);
+ if (ret <= 0)
+ break;
+ gpa += cte_esz;
+ read += cte_esz;
+ }
+ return ret;
+}
+
+/**
+ * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
+ * according to v0 ABI
+ */
+static int vgic_its_save_tables_v0(struct vgic_its *its)
+{
+ struct kvm *kvm = its->dev->kvm;
+ int ret;
+
+ mutex_lock(&kvm->lock);
+ mutex_lock(&its->its_lock);
+
+ if (!lock_all_vcpus(kvm)) {
+ mutex_unlock(&its->its_lock);
+ mutex_unlock(&kvm->lock);
+ return -EBUSY;
+ }
+
+ ret = vgic_its_save_device_tables(its);
+ if (ret)
+ goto out;
+
+ ret = vgic_its_save_collection_table(its);
+
+out:
+ unlock_all_vcpus(kvm);
+ mutex_unlock(&its->its_lock);
+ mutex_unlock(&kvm->lock);
+ return ret;
+}
+
+/**
+ * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
+ * to internal data structs according to V0 ABI
+ *
+ */
+static int vgic_its_restore_tables_v0(struct vgic_its *its)
+{
+ struct kvm *kvm = its->dev->kvm;
+ int ret;
+
+ mutex_lock(&kvm->lock);
+ mutex_lock(&its->its_lock);
+
+ if (!lock_all_vcpus(kvm)) {
+ mutex_unlock(&its->its_lock);
+ mutex_unlock(&kvm->lock);
+ return -EBUSY;
+ }
+
+ ret = vgic_its_restore_collection_table(its);
+ if (ret)
+ goto out;
+
+ ret = vgic_its_restore_device_tables(its);
+out:
+ unlock_all_vcpus(kvm);
+ mutex_unlock(&its->its_lock);
+ mutex_unlock(&kvm->lock);
+
+ return ret;
+}
+
+static int vgic_its_commit_v0(struct vgic_its *its)
+{
+ const struct vgic_its_abi *abi;
+
+ abi = vgic_its_get_abi(its);
+ its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
+ its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
+
+ its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
+ << GITS_BASER_ENTRY_SIZE_SHIFT);
+
+ its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
+ << GITS_BASER_ENTRY_SIZE_SHIFT);
+ return 0;
+}
+
static int vgic_its_has_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
@@ -1480,8 +2355,14 @@ static int vgic_its_has_attr(struct kvm_device *dev,
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0;
+ case KVM_DEV_ARM_ITS_SAVE_TABLES:
+ return 0;
+ case KVM_DEV_ARM_ITS_RESTORE_TABLES:
+ return 0;
}
break;
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
+ return vgic_its_has_attr_regs(dev, attr);
}
return -ENXIO;
}
@@ -1509,18 +2390,30 @@ static int vgic_its_set_attr(struct kvm_device *dev,
if (ret)
return ret;
- its->vgic_its_base = addr;
-
- return 0;
+ return vgic_register_its_iodev(dev->kvm, its, addr);
}
- case KVM_DEV_ARM_VGIC_GRP_CTRL:
+ case KVM_DEV_ARM_VGIC_GRP_CTRL: {
+ const struct vgic_its_abi *abi = vgic_its_get_abi(its);
+
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
- its->initialized = true;
-
+ /* Nothing to do */
return 0;
+ case KVM_DEV_ARM_ITS_SAVE_TABLES:
+ return abi->save_tables(its);
+ case KVM_DEV_ARM_ITS_RESTORE_TABLES:
+ return abi->restore_tables(its);
}
- break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 reg;
+
+ if (get_user(reg, uaddr))
+ return -EFAULT;
+
+ return vgic_its_attr_regs_access(dev, attr, &reg, true);
+ }
}
return -ENXIO;
}
@@ -1541,10 +2434,20 @@ static int vgic_its_get_attr(struct kvm_device *dev,
if (copy_to_user(uaddr, &addr, sizeof(addr)))
return -EFAULT;
break;
+ }
+ case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
+ u64 __user *uaddr = (u64 __user *)(long)attr->addr;
+ u64 reg;
+ int ret;
+
+ ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
+ if (ret)
+ return ret;
+ return put_user(reg, uaddr);
+ }
default:
return -ENXIO;
}
- }
return 0;
}
@@ -1563,30 +2466,3 @@ int kvm_vgic_register_its_device(void)
return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
KVM_DEV_TYPE_ARM_VGIC_ITS);
}
-
-/*
- * Registers all ITSes with the kvm_io_bus framework.
- * To follow the existing VGIC initialization sequence, this has to be
- * done as late as possible, just before the first VCPU runs.
- */
-int vgic_register_its_iodevs(struct kvm *kvm)
-{
- struct kvm_device *dev;
- int ret = 0;
-
- list_for_each_entry(dev, &kvm->devices, vm_node) {
- if (dev->ops != &kvm_arm_vgic_its_ops)
- continue;
-
- ret = vgic_register_its_iodev(kvm, dev->private);
- if (ret)
- return ret;
- /*
- * We don't need to care about tearing down previously
- * registered ITSes, as the kvm_io_bus framework removes
- * them for us if the VM gets destroyed.
- */
- }
-
- return ret;
-}
diff --git a/virt/kvm/arm/vgic/vgic-kvm-device.c b/virt/kvm/arm/vgic/vgic-kvm-device.c
index d181d2baee9c..10ae6f394b71 100644
--- a/virt/kvm/arm/vgic/vgic-kvm-device.c
+++ b/virt/kvm/arm/vgic/vgic-kvm-device.c
@@ -37,6 +37,14 @@ int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
return 0;
}
+static int vgic_check_type(struct kvm *kvm, int type_needed)
+{
+ if (kvm->arch.vgic.vgic_model != type_needed)
+ return -ENODEV;
+ else
+ return 0;
+}
+
/**
* kvm_vgic_addr - set or get vgic VM base addresses
* @kvm: pointer to the vm struct
@@ -57,40 +65,41 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
{
int r = 0;
struct vgic_dist *vgic = &kvm->arch.vgic;
- int type_needed;
phys_addr_t *addr_ptr, alignment;
mutex_lock(&kvm->lock);
switch (type) {
case KVM_VGIC_V2_ADDR_TYPE_DIST:
- type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
addr_ptr = &vgic->vgic_dist_base;
alignment = SZ_4K;
break;
case KVM_VGIC_V2_ADDR_TYPE_CPU:
- type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
addr_ptr = &vgic->vgic_cpu_base;
alignment = SZ_4K;
break;
case KVM_VGIC_V3_ADDR_TYPE_DIST:
- type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
addr_ptr = &vgic->vgic_dist_base;
alignment = SZ_64K;
break;
case KVM_VGIC_V3_ADDR_TYPE_REDIST:
- type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
+ r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
+ if (r)
+ break;
+ if (write) {
+ r = vgic_v3_set_redist_base(kvm, *addr);
+ goto out;
+ }
addr_ptr = &vgic->vgic_redist_base;
- alignment = SZ_64K;
break;
default:
r = -ENODEV;
- goto out;
}
- if (vgic->vgic_model != type_needed) {
- r = -ENODEV;
+ if (r)
goto out;
- }
if (write) {
r = vgic_check_ioaddr(kvm, addr_ptr, *addr, alignment);
@@ -259,13 +268,13 @@ static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
}
}
-static void unlock_all_vcpus(struct kvm *kvm)
+void unlock_all_vcpus(struct kvm *kvm)
{
unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
}
/* Returns true if all vcpus were locked, false otherwise */
-static bool lock_all_vcpus(struct kvm *kvm)
+bool lock_all_vcpus(struct kvm *kvm)
{
struct kvm_vcpu *tmp_vcpu;
int c;
@@ -580,6 +589,24 @@ static int vgic_v3_set_attr(struct kvm_device *dev,
reg = tmp32;
return vgic_v3_attr_regs_access(dev, attr, &reg, true);
}
+ case KVM_DEV_ARM_VGIC_GRP_CTRL: {
+ int ret;
+
+ switch (attr->attr) {
+ case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
+ mutex_lock(&dev->kvm->lock);
+
+ if (!lock_all_vcpus(dev->kvm)) {
+ mutex_unlock(&dev->kvm->lock);
+ return -EBUSY;
+ }
+ ret = vgic_v3_save_pending_tables(dev->kvm);
+ unlock_all_vcpus(dev->kvm);
+ mutex_unlock(&dev->kvm->lock);
+ return ret;
+ }
+ break;
+ }
}
return -ENXIO;
}
@@ -658,6 +685,8 @@ static int vgic_v3_has_attr(struct kvm_device *dev,
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0;
+ case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
+ return 0;
}
}
return -ENXIO;
diff --git a/virt/kvm/arm/vgic/vgic-mmio-v3.c b/virt/kvm/arm/vgic/vgic-mmio-v3.c
index 6afb3b484886..99da1a207c19 100644
--- a/virt/kvm/arm/vgic/vgic-mmio-v3.c
+++ b/virt/kvm/arm/vgic/vgic-mmio-v3.c
@@ -556,67 +556,130 @@ unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
return SZ_64K;
}
-int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
+/**
+ * vgic_register_redist_iodev - register a single redist iodev
+ * @vcpu: The VCPU to which the redistributor belongs
+ *
+ * Register a KVM iodev for this VCPU's redistributor using the address
+ * provided.
+ *
+ * Return 0 on success, -ERRNO otherwise.
+ */
+int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct vgic_dist *vgic = &kvm->arch.vgic;
+ struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
+ struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
+ gpa_t rd_base, sgi_base;
+ int ret;
+
+ /*
+ * We may be creating VCPUs before having set the base address for the
+ * redistributor region, in which case we will come back to this
+ * function for all VCPUs when the base address is set. Just return
+ * without doing any work for now.
+ */
+ if (IS_VGIC_ADDR_UNDEF(vgic->vgic_redist_base))
+ return 0;
+
+ if (!vgic_v3_check_base(kvm))
+ return -EINVAL;
+
+ rd_base = vgic->vgic_redist_base + kvm_vcpu_get_idx(vcpu) * SZ_64K * 2;
+ sgi_base = rd_base + SZ_64K;
+
+ kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
+ rd_dev->base_addr = rd_base;
+ rd_dev->iodev_type = IODEV_REDIST;
+ rd_dev->regions = vgic_v3_rdbase_registers;
+ rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
+ rd_dev->redist_vcpu = vcpu;
+
+ mutex_lock(&kvm->slots_lock);
+ ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
+ SZ_64K, &rd_dev->dev);
+ mutex_unlock(&kvm->slots_lock);
+
+ if (ret)
+ return ret;
+
+ kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
+ sgi_dev->base_addr = sgi_base;
+ sgi_dev->iodev_type = IODEV_REDIST;
+ sgi_dev->regions = vgic_v3_sgibase_registers;
+ sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
+ sgi_dev->redist_vcpu = vcpu;
+
+ mutex_lock(&kvm->slots_lock);
+ ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
+ SZ_64K, &sgi_dev->dev);
+ mutex_unlock(&kvm->slots_lock);
+ if (ret)
+ kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
+ &rd_dev->dev);
+
+ return ret;
+}
+
+static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
+{
+ struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
+ struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
+
+ kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
+ kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
+}
+
+static int vgic_register_all_redist_iodevs(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
int c, ret = 0;
kvm_for_each_vcpu(c, vcpu, kvm) {
- gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
- gpa_t sgi_base = rd_base + SZ_64K;
- struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
- struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
-
- kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
- rd_dev->base_addr = rd_base;
- rd_dev->iodev_type = IODEV_REDIST;
- rd_dev->regions = vgic_v3_rdbase_registers;
- rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
- rd_dev->redist_vcpu = vcpu;
-
- mutex_lock(&kvm->slots_lock);
- ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
- SZ_64K, &rd_dev->dev);
- mutex_unlock(&kvm->slots_lock);
-
+ ret = vgic_register_redist_iodev(vcpu);
if (ret)
break;
-
- kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
- sgi_dev->base_addr = sgi_base;
- sgi_dev->iodev_type = IODEV_REDIST;
- sgi_dev->regions = vgic_v3_sgibase_registers;
- sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
- sgi_dev->redist_vcpu = vcpu;
-
- mutex_lock(&kvm->slots_lock);
- ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
- SZ_64K, &sgi_dev->dev);
- mutex_unlock(&kvm->slots_lock);
- if (ret) {
- kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
- &rd_dev->dev);
- break;
- }
}
if (ret) {
/* The current c failed, so we start with the previous one. */
for (c--; c >= 0; c--) {
- struct vgic_cpu *vgic_cpu;
-
vcpu = kvm_get_vcpu(kvm, c);
- vgic_cpu = &vcpu->arch.vgic_cpu;
- kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
- &vgic_cpu->rd_iodev.dev);
- kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
- &vgic_cpu->sgi_iodev.dev);
+ vgic_unregister_redist_iodev(vcpu);
}
}
return ret;
}
+int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr)
+{
+ struct vgic_dist *vgic = &kvm->arch.vgic;
+ int ret;
+
+ /* vgic_check_ioaddr makes sure we don't do this twice */
+ ret = vgic_check_ioaddr(kvm, &vgic->vgic_redist_base, addr, SZ_64K);
+ if (ret)
+ return ret;
+
+ vgic->vgic_redist_base = addr;
+ if (!vgic_v3_check_base(kvm)) {
+ vgic->vgic_redist_base = VGIC_ADDR_UNDEF;
+ return -EINVAL;
+ }
+
+ /*
+ * Register iodevs for each existing VCPU. Adding more VCPUs
+ * afterwards will register the iodevs when needed.
+ */
+ ret = vgic_register_all_redist_iodevs(kvm);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
{
const struct vgic_register_region *region;
diff --git a/virt/kvm/arm/vgic/vgic-mmio.c b/virt/kvm/arm/vgic/vgic-mmio.c
index 2a5db1352722..1c17b2a2f105 100644
--- a/virt/kvm/arm/vgic/vgic-mmio.c
+++ b/virt/kvm/arm/vgic/vgic-mmio.c
@@ -446,13 +446,12 @@ static int match_region(const void *key, const void *elt)
return 0;
}
-/* Find the proper register handler entry given a certain address offset. */
-static const struct vgic_register_region *
-vgic_find_mmio_region(const struct vgic_register_region *region, int nr_regions,
- unsigned int offset)
+const struct vgic_register_region *
+vgic_find_mmio_region(const struct vgic_register_region *regions,
+ int nr_regions, unsigned int offset)
{
- return bsearch((void *)(uintptr_t)offset, region, nr_regions,
- sizeof(region[0]), match_region);
+ return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
+ sizeof(regions[0]), match_region);
}
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
diff --git a/virt/kvm/arm/vgic/vgic-mmio.h b/virt/kvm/arm/vgic/vgic-mmio.h
index 98bb566b660a..ea4171acdef3 100644
--- a/virt/kvm/arm/vgic/vgic-mmio.h
+++ b/virt/kvm/arm/vgic/vgic-mmio.h
@@ -36,8 +36,13 @@ struct vgic_register_region {
};
unsigned long (*uaccess_read)(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len);
- void (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr,
- unsigned int len, unsigned long val);
+ union {
+ void (*uaccess_write)(struct kvm_vcpu *vcpu, gpa_t addr,
+ unsigned int len, unsigned long val);
+ int (*uaccess_its_write)(struct kvm *kvm, struct vgic_its *its,
+ gpa_t addr, unsigned int len,
+ unsigned long val);
+ };
};
extern struct kvm_io_device_ops kvm_io_gic_ops;
@@ -192,4 +197,9 @@ u64 vgic_sanitise_shareability(u64 reg);
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
u64 (*sanitise_fn)(u64));
+/* Find the proper register handler entry given a certain address offset */
+const struct vgic_register_region *
+vgic_find_mmio_region(const struct vgic_register_region *regions,
+ int nr_regions, unsigned int offset);
+
#endif
diff --git a/virt/kvm/arm/vgic/vgic-v3.c b/virt/kvm/arm/vgic/vgic-v3.c
index df1503650300..8fa737edde6f 100644
--- a/virt/kvm/arm/vgic/vgic-v3.c
+++ b/virt/kvm/arm/vgic/vgic-v3.c
@@ -234,19 +234,125 @@ void vgic_v3_enable(struct kvm_vcpu *vcpu)
vgic_v3->vgic_hcr = ICH_HCR_EN;
}
-/* check for overlapping regions and for regions crossing the end of memory */
-static bool vgic_v3_check_base(struct kvm *kvm)
+int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
+{
+ struct kvm_vcpu *vcpu;
+ int byte_offset, bit_nr;
+ gpa_t pendbase, ptr;
+ bool status;
+ u8 val;
+ int ret;
+
+retry:
+ vcpu = irq->target_vcpu;
+ if (!vcpu)
+ return 0;
+
+ pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+
+ byte_offset = irq->intid / BITS_PER_BYTE;
+ bit_nr = irq->intid % BITS_PER_BYTE;
+ ptr = pendbase + byte_offset;
+
+ ret = kvm_read_guest(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+
+ status = val & (1 << bit_nr);
+
+ spin_lock(&irq->irq_lock);
+ if (irq->target_vcpu != vcpu) {
+ spin_unlock(&irq->irq_lock);
+ goto retry;
+ }
+ irq->pending_latch = status;
+ vgic_queue_irq_unlock(vcpu->kvm, irq);
+
+ if (status) {
+ /* clear consumed data */
+ val &= ~(1 << bit_nr);
+ ret = kvm_write_guest(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * vgic_its_save_pending_tables - Save the pending tables into guest RAM
+ * kvm lock and all vcpu lock must be held
+ */
+int vgic_v3_save_pending_tables(struct kvm *kvm)
+{
+ struct vgic_dist *dist = &kvm->arch.vgic;
+ int last_byte_offset = -1;
+ struct vgic_irq *irq;
+ int ret;
+
+ list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
+ int byte_offset, bit_nr;
+ struct kvm_vcpu *vcpu;
+ gpa_t pendbase, ptr;
+ bool stored;
+ u8 val;
+
+ vcpu = irq->target_vcpu;
+ if (!vcpu)
+ continue;
+
+ pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
+
+ byte_offset = irq->intid / BITS_PER_BYTE;
+ bit_nr = irq->intid % BITS_PER_BYTE;
+ ptr = pendbase + byte_offset;
+
+ if (byte_offset != last_byte_offset) {
+ ret = kvm_read_guest(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+ last_byte_offset = byte_offset;
+ }
+
+ stored = val & (1U << bit_nr);
+ if (stored == irq->pending_latch)
+ continue;
+
+ if (irq->pending_latch)
+ val |= 1 << bit_nr;
+ else
+ val &= ~(1 << bit_nr);
+
+ ret = kvm_write_guest(kvm, ptr, &val, 1);
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+/*
+ * Check for overlapping regions and for regions crossing the end of memory
+ * for base addresses which have already been set.
+ */
+bool vgic_v3_check_base(struct kvm *kvm)
{
struct vgic_dist *d = &kvm->arch.vgic;
gpa_t redist_size = KVM_VGIC_V3_REDIST_SIZE;
redist_size *= atomic_read(&kvm->online_vcpus);
- if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
+ if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
+ d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
return false;
- if (d->vgic_redist_base + redist_size < d->vgic_redist_base)
+
+ if (!IS_VGIC_ADDR_UNDEF(d->vgic_redist_base) &&
+ d->vgic_redist_base + redist_size < d->vgic_redist_base)
return false;
+ /* Both base addresses must be set to check if they overlap */
+ if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) ||
+ IS_VGIC_ADDR_UNDEF(d->vgic_redist_base))
+ return true;
+
if (d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE <= d->vgic_redist_base)
return true;
if (d->vgic_redist_base + redist_size <= d->vgic_dist_base)
@@ -291,20 +397,6 @@ int vgic_v3_map_resources(struct kvm *kvm)
goto out;
}
- ret = vgic_register_redist_iodevs(kvm, dist->vgic_redist_base);
- if (ret) {
- kvm_err("Unable to register VGICv3 redist MMIO regions\n");
- goto out;
- }
-
- if (vgic_has_its(kvm)) {
- ret = vgic_register_its_iodevs(kvm);
- if (ret) {
- kvm_err("Unable to register VGIC ITS MMIO regions\n");
- goto out;
- }
- }
-
dist->ready = true;
out:
diff --git a/virt/kvm/arm/vgic/vgic.c b/virt/kvm/arm/vgic/vgic.c
index 4346bc7d08dc..83b24d20ff8f 100644
--- a/virt/kvm/arm/vgic/vgic.c
+++ b/virt/kvm/arm/vgic/vgic.c
@@ -21,7 +21,7 @@
#include "vgic.h"
#define CREATE_TRACE_POINTS
-#include "../trace.h"
+#include "trace.h"
#ifdef CONFIG_DEBUG_SPINLOCK
#define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)
diff --git a/virt/kvm/arm/vgic/vgic.h b/virt/kvm/arm/vgic/vgic.h
index 799fd651b260..da83e4caa272 100644
--- a/virt/kvm/arm/vgic/vgic.h
+++ b/virt/kvm/arm/vgic/vgic.h
@@ -73,6 +73,29 @@
KVM_REG_ARM_VGIC_SYSREG_CRM_MASK | \
KVM_REG_ARM_VGIC_SYSREG_OP2_MASK)
+/*
+ * As per Documentation/virtual/kvm/devices/arm-vgic-its.txt,
+ * below macros are defined for ITS table entry encoding.
+ */
+#define KVM_ITS_CTE_VALID_SHIFT 63
+#define KVM_ITS_CTE_VALID_MASK BIT_ULL(63)
+#define KVM_ITS_CTE_RDBASE_SHIFT 16
+#define KVM_ITS_CTE_ICID_MASK GENMASK_ULL(15, 0)
+#define KVM_ITS_ITE_NEXT_SHIFT 48
+#define KVM_ITS_ITE_PINTID_SHIFT 16
+#define KVM_ITS_ITE_PINTID_MASK GENMASK_ULL(47, 16)
+#define KVM_ITS_ITE_ICID_MASK GENMASK_ULL(15, 0)
+#define KVM_ITS_DTE_VALID_SHIFT 63
+#define KVM_ITS_DTE_VALID_MASK BIT_ULL(63)
+#define KVM_ITS_DTE_NEXT_SHIFT 49
+#define KVM_ITS_DTE_NEXT_MASK GENMASK_ULL(62, 49)
+#define KVM_ITS_DTE_ITTADDR_SHIFT 5
+#define KVM_ITS_DTE_ITTADDR_MASK GENMASK_ULL(48, 5)
+#define KVM_ITS_DTE_SIZE_MASK GENMASK_ULL(4, 0)
+#define KVM_ITS_L1E_VALID_MASK BIT_ULL(63)
+/* we only support 64 kB translation table page size */
+#define KVM_ITS_L1E_ADDR_MASK GENMASK_ULL(51, 16)
+
static inline bool irq_is_pending(struct vgic_irq *irq)
{
if (irq->config == VGIC_CONFIG_EDGE)
@@ -157,12 +180,15 @@ void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
void vgic_v3_enable(struct kvm_vcpu *vcpu);
int vgic_v3_probe(const struct gic_kvm_info *info);
int vgic_v3_map_resources(struct kvm *kvm);
-int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t dist_base_address);
+int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq);
+int vgic_v3_save_pending_tables(struct kvm *kvm);
+int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr);
+int vgic_register_redist_iodev(struct kvm_vcpu *vcpu);
+bool vgic_v3_check_base(struct kvm *kvm);
void vgic_v3_load(struct kvm_vcpu *vcpu);
void vgic_v3_put(struct kvm_vcpu *vcpu);
-int vgic_register_its_iodevs(struct kvm *kvm);
bool vgic_has_its(struct kvm *kvm);
int kvm_vgic_register_its_device(void);
void vgic_enable_lpis(struct kvm_vcpu *vcpu);
@@ -187,4 +213,7 @@ int vgic_init(struct kvm *kvm);
int vgic_debug_init(struct kvm *kvm);
int vgic_debug_destroy(struct kvm *kvm);
+bool lock_all_vcpus(struct kvm *kvm);
+void unlock_all_vcpus(struct kvm *kvm);
+
#endif