summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/power/energy-model.txt144
-rw-r--r--Documentation/scheduler/sched-energy.txt425
-rw-r--r--Documentation/sysctl/kernel.txt12
-rw-r--r--MAINTAINERS9
-rw-r--r--fs/exec.c4
-rw-r--r--fs/proc/task_nommu.c2
-rw-r--r--include/linux/init_task.h1
-rw-r--r--include/linux/kthread.h9
-rw-r--r--include/linux/sched.h33
-rw-r--r--include/linux/sched/signal.h5
-rw-r--r--include/linux/sched/sysctl.h7
-rw-r--r--include/linux/sched/task.h4
-rw-r--r--include/linux/sched/task_stack.h2
-rw-r--r--include/linux/sched/topology.h8
-rw-r--r--include/linux/wait.h6
-rw-r--r--init/init_task.c6
-rw-r--r--kernel/fork.c24
-rw-r--r--kernel/kthread.c43
-rw-r--r--kernel/sched/core.c12
-rw-r--r--kernel/sched/deadline.c6
-rw-r--r--kernel/sched/debug.c4
-rw-r--r--kernel/sched/fair.c458
-rw-r--r--kernel/sched/isolation.c2
-rw-r--r--kernel/sched/pelt.c45
-rw-r--r--kernel/sched/pelt.h114
-rw-r--r--kernel/sched/rt.c6
-rw-r--r--kernel/sched/sched.h54
-rw-r--r--kernel/sched/topology.c33
-rw-r--r--kernel/sysctl.c11
29 files changed, 1165 insertions, 324 deletions
diff --git a/Documentation/power/energy-model.txt b/Documentation/power/energy-model.txt
new file mode 100644
index 000000000000..a2b0ae4c76bd
--- /dev/null
+++ b/Documentation/power/energy-model.txt
@@ -0,0 +1,144 @@
+ ====================
+ Energy Model of CPUs
+ ====================
+
+1. Overview
+-----------
+
+The Energy Model (EM) framework serves as an interface between drivers knowing
+the power consumed by CPUs at various performance levels, and the kernel
+subsystems willing to use that information to make energy-aware decisions.
+
+The source of the information about the power consumed by CPUs can vary greatly
+from one platform to another. These power costs can be estimated using
+devicetree data in some cases. In others, the firmware will know better.
+Alternatively, userspace might be best positioned. And so on. In order to avoid
+each and every client subsystem to re-implement support for each and every
+possible source of information on its own, the EM framework intervenes as an
+abstraction layer which standardizes the format of power cost tables in the
+kernel, hence enabling to avoid redundant work.
+
+The figure below depicts an example of drivers (Arm-specific here, but the
+approach is applicable to any architecture) providing power costs to the EM
+framework, and interested clients reading the data from it.
+
+ +---------------+ +-----------------+ +---------------+
+ | Thermal (IPA) | | Scheduler (EAS) | | Other |
+ +---------------+ +-----------------+ +---------------+
+ | | em_pd_energy() |
+ | | em_cpu_get() |
+ +---------+ | +---------+
+ | | |
+ v v v
+ +---------------------+
+ | Energy Model |
+ | Framework |
+ +---------------------+
+ ^ ^ ^
+ | | | em_register_perf_domain()
+ +----------+ | +---------+
+ | | |
+ +---------------+ +---------------+ +--------------+
+ | cpufreq-dt | | arm_scmi | | Other |
+ +---------------+ +---------------+ +--------------+
+ ^ ^ ^
+ | | |
+ +--------------+ +---------------+ +--------------+
+ | Device Tree | | Firmware | | ? |
+ +--------------+ +---------------+ +--------------+
+
+The EM framework manages power cost tables per 'performance domain' in the
+system. A performance domain is a group of CPUs whose performance is scaled
+together. Performance domains generally have a 1-to-1 mapping with CPUFreq
+policies. All CPUs in a performance domain are required to have the same
+micro-architecture. CPUs in different performance domains can have different
+micro-architectures.
+
+
+2. Core APIs
+------------
+
+ 2.1 Config options
+
+CONFIG_ENERGY_MODEL must be enabled to use the EM framework.
+
+
+ 2.2 Registration of performance domains
+
+Drivers are expected to register performance domains into the EM framework by
+calling the following API:
+
+ int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
+ struct em_data_callback *cb);
+
+Drivers must specify the CPUs of the performance domains using the cpumask
+argument, and provide a callback function returning <frequency, power> tuples
+for each capacity state. The callback function provided by the driver is free
+to fetch data from any relevant location (DT, firmware, ...), and by any mean
+deemed necessary. See Section 3. for an example of driver implementing this
+callback, and kernel/power/energy_model.c for further documentation on this
+API.
+
+
+ 2.3 Accessing performance domains
+
+Subsystems interested in the energy model of a CPU can retrieve it using the
+em_cpu_get() API. The energy model tables are allocated once upon creation of
+the performance domains, and kept in memory untouched.
+
+The energy consumed by a performance domain can be estimated using the
+em_pd_energy() API. The estimation is performed assuming that the schedutil
+CPUfreq governor is in use.
+
+More details about the above APIs can be found in include/linux/energy_model.h.
+
+
+3. Example driver
+-----------------
+
+This section provides a simple example of a CPUFreq driver registering a
+performance domain in the Energy Model framework using the (fake) 'foo'
+protocol. The driver implements an est_power() function to be provided to the
+EM framework.
+
+ -> drivers/cpufreq/foo_cpufreq.c
+
+01 static int est_power(unsigned long *mW, unsigned long *KHz, int cpu)
+02 {
+03 long freq, power;
+04
+05 /* Use the 'foo' protocol to ceil the frequency */
+06 freq = foo_get_freq_ceil(cpu, *KHz);
+07 if (freq < 0);
+08 return freq;
+09
+10 /* Estimate the power cost for the CPU at the relevant freq. */
+11 power = foo_estimate_power(cpu, freq);
+12 if (power < 0);
+13 return power;
+14
+15 /* Return the values to the EM framework */
+16 *mW = power;
+17 *KHz = freq;
+18
+19 return 0;
+20 }
+21
+22 static int foo_cpufreq_init(struct cpufreq_policy *policy)
+23 {
+24 struct em_data_callback em_cb = EM_DATA_CB(est_power);
+25 int nr_opp, ret;
+26
+27 /* Do the actual CPUFreq init work ... */
+28 ret = do_foo_cpufreq_init(policy);
+29 if (ret)
+30 return ret;
+31
+32 /* Find the number of OPPs for this policy */
+33 nr_opp = foo_get_nr_opp(policy);
+34
+35 /* And register the new performance domain */
+36 em_register_perf_domain(policy->cpus, nr_opp, &em_cb);
+37
+38 return 0;
+39 }
diff --git a/Documentation/scheduler/sched-energy.txt b/Documentation/scheduler/sched-energy.txt
new file mode 100644
index 000000000000..197d81f4b836
--- /dev/null
+++ b/Documentation/scheduler/sched-energy.txt
@@ -0,0 +1,425 @@
+ =======================
+ Energy Aware Scheduling
+ =======================
+
+1. Introduction
+---------------
+
+Energy Aware Scheduling (or EAS) gives the scheduler the ability to predict
+the impact of its decisions on the energy consumed by CPUs. EAS relies on an
+Energy Model (EM) of the CPUs to select an energy efficient CPU for each task,
+with a minimal impact on throughput. This document aims at providing an
+introduction on how EAS works, what are the main design decisions behind it, and
+details what is needed to get it to run.
+
+Before going any further, please note that at the time of writing:
+
+ /!\ EAS does not support platforms with symmetric CPU topologies /!\
+
+EAS operates only on heterogeneous CPU topologies (such as Arm big.LITTLE)
+because this is where the potential for saving energy through scheduling is
+the highest.
+
+The actual EM used by EAS is _not_ maintained by the scheduler, but by a
+dedicated framework. For details about this framework and what it provides,
+please refer to its documentation (see Documentation/power/energy-model.txt).
+
+
+2. Background and Terminology
+-----------------------------
+
+To make it clear from the start:
+ - energy = [joule] (resource like a battery on powered devices)
+ - power = energy/time = [joule/second] = [watt]
+
+The goal of EAS is to minimize energy, while still getting the job done. That
+is, we want to maximize:
+
+ performance [inst/s]
+ --------------------
+ power [W]
+
+which is equivalent to minimizing:
+
+ energy [J]
+ -----------
+ instruction
+
+while still getting 'good' performance. It is essentially an alternative
+optimization objective to the current performance-only objective for the
+scheduler. This alternative considers two objectives: energy-efficiency and
+performance.
+
+The idea behind introducing an EM is to allow the scheduler to evaluate the
+implications of its decisions rather than blindly applying energy-saving
+techniques that may have positive effects only on some platforms. At the same
+time, the EM must be as simple as possible to minimize the scheduler latency
+impact.
+
+In short, EAS changes the way CFS tasks are assigned to CPUs. When it is time
+for the scheduler to decide where a task should run (during wake-up), the EM
+is used to break the tie between several good CPU candidates and pick the one
+that is predicted to yield the best energy consumption without harming the
+system's throughput. The predictions made by EAS rely on specific elements of
+knowledge about the platform's topology, which include the 'capacity' of CPUs,
+and their respective energy costs.
+
+
+3. Topology information
+-----------------------
+
+EAS (as well as the rest of the scheduler) uses the notion of 'capacity' to
+differentiate CPUs with different computing throughput. The 'capacity' of a CPU
+represents the amount of work it can absorb when running at its highest
+frequency compared to the most capable CPU of the system. Capacity values are
+normalized in a 1024 range, and are comparable with the utilization signals of
+tasks and CPUs computed by the Per-Entity Load Tracking (PELT) mechanism. Thanks
+to capacity and utilization values, EAS is able to estimate how big/busy a
+task/CPU is, and to take this into consideration when evaluating performance vs
+energy trade-offs. The capacity of CPUs is provided via arch-specific code
+through the arch_scale_cpu_capacity() callback.
+
+The rest of platform knowledge used by EAS is directly read from the Energy
+Model (EM) framework. The EM of a platform is composed of a power cost table
+per 'performance domain' in the system (see Documentation/power/energy-model.txt
+for futher details about performance domains).
+
+The scheduler manages references to the EM objects in the topology code when the
+scheduling domains are built, or re-built. For each root domain (rd), the
+scheduler maintains a singly linked list of all performance domains intersecting
+the current rd->span. Each node in the list contains a pointer to a struct
+em_perf_domain as provided by the EM framework.
+
+The lists are attached to the root domains in order to cope with exclusive
+cpuset configurations. Since the boundaries of exclusive cpusets do not
+necessarily match those of performance domains, the lists of different root
+domains can contain duplicate elements.
+
+Example 1.
+ Let us consider a platform with 12 CPUs, split in 3 performance domains
+ (pd0, pd4 and pd8), organized as follows:
+
+ CPUs: 0 1 2 3 4 5 6 7 8 9 10 11
+ PDs: |--pd0--|--pd4--|---pd8---|
+ RDs: |----rd1----|-----rd2-----|
+
+ Now, consider that userspace decided to split the system with two
+ exclusive cpusets, hence creating two independent root domains, each
+ containing 6 CPUs. The two root domains are denoted rd1 and rd2 in the
+ above figure. Since pd4 intersects with both rd1 and rd2, it will be
+ present in the linked list '->pd' attached to each of them:
+ * rd1->pd: pd0 -> pd4
+ * rd2->pd: pd4 -> pd8
+
+ Please note that the scheduler will create two duplicate list nodes for
+ pd4 (one for each list). However, both just hold a pointer to the same
+ shared data structure of the EM framework.
+
+Since the access to these lists can happen concurrently with hotplug and other
+things, they are protected by RCU, like the rest of topology structures
+manipulated by the scheduler.
+
+EAS also maintains a static key (sched_energy_present) which is enabled when at
+least one root domain meets all conditions for EAS to start. Those conditions
+are summarized in Section 6.
+
+
+4. Energy-Aware task placement
+------------------------------
+
+EAS overrides the CFS task wake-up balancing code. It uses the EM of the
+platform and the PELT signals to choose an energy-efficient target CPU during
+wake-up balance. When EAS is enabled, select_task_rq_fair() calls
+find_energy_efficient_cpu() to do the placement decision. This function looks
+for the CPU with the highest spare capacity (CPU capacity - CPU utilization) in
+each performance domain since it is the one which will allow us to keep the
+frequency the lowest. Then, the function checks if placing the task there could
+save energy compared to leaving it on prev_cpu, i.e. the CPU where the task ran
+in its previous activation.
+
+find_energy_efficient_cpu() uses compute_energy() to estimate what will be the
+energy consumed by the system if the waking task was migrated. compute_energy()
+looks at the current utilization landscape of the CPUs and adjusts it to
+'simulate' the task migration. The EM framework provides the em_pd_energy() API
+which computes the expected energy consumption of each performance domain for
+the given utilization landscape.
+
+An example of energy-optimized task placement decision is detailed below.
+
+Example 2.
+ Let us consider a (fake) platform with 2 independent performance domains
+ composed of two CPUs each. CPU0 and CPU1 are little CPUs; CPU2 and CPU3
+ are big.
+
+ The scheduler must decide where to place a task P whose util_avg = 200
+ and prev_cpu = 0.
+
+ The current utilization landscape of the CPUs is depicted on the graph
+ below. CPUs 0-3 have a util_avg of 400, 100, 600 and 500 respectively
+ Each performance domain has three Operating Performance Points (OPPs).
+ The CPU capacity and power cost associated with each OPP is listed in
+ the Energy Model table. The util_avg of P is shown on the figures
+ below as 'PP'.
+
+ CPU util.
+ 1024 - - - - - - - Energy Model
+ +-----------+-------------+
+ | Little | Big |
+ 768 ============= +-----+-----+------+------+
+ | Cap | Pwr | Cap | Pwr |
+ +-----+-----+------+------+
+ 512 =========== - ##- - - - - | 170 | 50 | 512 | 400 |
+ ## ## | 341 | 150 | 768 | 800 |
+ 341 -PP - - - - ## ## | 512 | 300 | 1024 | 1700 |
+ PP ## ## +-----+-----+------+------+
+ 170 -## - - - - ## ##
+ ## ## ## ##
+ ------------ -------------
+ CPU0 CPU1 CPU2 CPU3
+
+ Current OPP: ===== Other OPP: - - - util_avg (100 each): ##
+
+
+ find_energy_efficient_cpu() will first look for the CPUs with the
+ maximum spare capacity in the two performance domains. In this example,
+ CPU1 and CPU3. Then it will estimate the energy of the system if P was
+ placed on either of them, and check if that would save some energy
+ compared to leaving P on CPU0. EAS assumes that OPPs follow utilization
+ (which is coherent with the behaviour of the schedutil CPUFreq
+ governor, see Section 6. for more details on this topic).
+
+ Case 1. P is migrated to CPU1
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ 1024 - - - - - - -
+
+ Energy calculation:
+ 768 ============= * CPU0: 200 / 341 * 150 = 88
+ * CPU1: 300 / 341 * 150 = 131
+ * CPU2: 600 / 768 * 800 = 625
+ 512 - - - - - - - ##- - - - - * CPU3: 500 / 768 * 800 = 520
+ ## ## => total_energy = 1364
+ 341 =========== ## ##
+ PP ## ##
+ 170 -## - - PP- ## ##
+ ## ## ## ##
+ ------------ -------------
+ CPU0 CPU1 CPU2 CPU3
+
+
+ Case 2. P is migrated to CPU3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ 1024 - - - - - - -
+
+ Energy calculation:
+ 768 ============= * CPU0: 200 / 341 * 150 = 88
+ * CPU1: 100 / 341 * 150 = 43
+ PP * CPU2: 600 / 768 * 800 = 625
+ 512 - - - - - - - ##- - -PP - * CPU3: 700 / 768 * 800 = 729
+ ## ## => total_energy = 1485
+ 341 =========== ## ##
+ ## ##
+ 170 -## - - - - ## ##
+ ## ## ## ##
+ ------------ -------------
+ CPU0 CPU1 CPU2 CPU3
+
+
+ Case 3. P stays on prev_cpu / CPU 0
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ 1024 - - - - - - -
+
+ Energy calculation:
+ 768 ============= * CPU0: 400 / 512 * 300 = 234
+ * CPU1: 100 / 512 * 300 = 58
+ * CPU2: 600 / 768 * 800 = 625
+ 512 =========== - ##- - - - - * CPU3: 500 / 768 * 800 = 520
+ ## ## => total_energy = 1437
+ 341 -PP - - - - ## ##
+ PP ## ##
+ 170 -## - - - - ## ##
+ ## ## ## ##
+ ------------ -------------
+ CPU0 CPU1 CPU2 CPU3
+
+
+ From these calculations, the Case 1 has the lowest total energy. So CPU 1
+ is be the best candidate from an energy-efficiency standpoint.
+
+Big CPUs are generally more power hungry than the little ones and are thus used
+mainly when a task doesn't fit the littles. However, little CPUs aren't always
+necessarily more energy-efficient than big CPUs. For some systems, the high OPPs
+of the little CPUs can be less energy-efficient than the lowest OPPs of the
+bigs, for example. So, if the little CPUs happen to have enough utilization at
+a specific point in time, a small task waking up at that moment could be better
+of executing on the big side in order to save energy, even though it would fit
+on the little side.
+
+And even in the case where all OPPs of the big CPUs are less energy-efficient
+than those of the little, using the big CPUs for a small task might still, under
+specific conditions, save energy. Indeed, placing a task on a little CPU can
+result in raising the OPP of the entire performance domain, and that will
+increase the cost of the tasks already running there. If the waking task is
+placed on a big CPU, its own execution cost might be higher than if it was
+running on a little, but it won't impact the other tasks of the little CPUs
+which will keep running at a lower OPP. So, when considering the total energy
+consumed by CPUs, the extra cost of running that one task on a big core can be
+smaller than the cost of raising the OPP on the little CPUs for all the other
+tasks.
+
+The examples above would be nearly impossible to get right in a generic way, and
+for all platforms, without knowing the cost of running at different OPPs on all
+CPUs of the system. Thanks to its EM-based design, EAS should cope with them
+correctly without too many troubles. However, in order to ensure a minimal
+impact on throughput for high-utilization scenarios, EAS also implements another
+mechanism called 'over-utilization'.
+
+
+5. Over-utilization
+-------------------
+
+From a general standpoint, the use-cases where EAS can help the most are those
+involving a light/medium CPU utilization. Whenever long CPU-bound tasks are
+being run, they will require all of the available CPU capacity, and there isn't
+much that can be done by the scheduler to save energy without severly harming
+throughput. In order to avoid hurting performance with EAS, CPUs are flagged as
+'over-utilized' as soon as they are used at more than 80% of their compute
+capacity. As long as no CPUs are over-utilized in a root domain, load balancing
+is disabled and EAS overridess the wake-up balancing code. EAS is likely to load
+the most energy efficient CPUs of the system more than the others if that can be
+done without harming throughput. So, the load-balancer is disabled to prevent
+it from breaking the energy-efficient task placement found by EAS. It is safe to
+do so when the system isn't overutilized since being below the 80% tipping point
+implies that:
+
+ a. there is some idle time on all CPUs, so the utilization signals used by
+ EAS are likely to accurately represent the 'size' of the various tasks
+ in the system;
+ b. all tasks should already be provided with enough CPU capacity,
+ regardless of their nice values;
+ c. since there is spare capacity all tasks must be blocking/sleeping
+ regularly and balancing at wake-up is sufficient.
+
+As soon as one CPU goes above the 80% tipping point, at least one of the three
+assumptions above becomes incorrect. In this scenario, the 'overutilized' flag
+is raised for the entire root domain, EAS is disabled, and the load-balancer is
+re-enabled. By doing so, the scheduler falls back onto load-based algorithms for
+wake-up and load balance under CPU-bound conditions. This provides a better
+respect of the nice values of tasks.
+
+Since the notion of overutilization largely relies on detecting whether or not
+there is some idle time in the system, the CPU capacity 'stolen' by higher
+(than CFS) scheduling classes (as well as IRQ) must be taken into account. As
+such, the detection of overutilization accounts for the capacity used not only
+by CFS tasks, but also by the other scheduling classes and IRQ.
+
+
+6. Dependencies and requirements for EAS
+----------------------------------------
+
+Energy Aware Scheduling depends on the CPUs of the system having specific
+hardware properties and on other features of the kernel being enabled. This
+section lists these dependencies and provides hints as to how they can be met.
+
+
+ 6.1 - Asymmetric CPU topology
+
+As mentioned in the introduction, EAS is only supported on platforms with
+asymmetric CPU topologies for now. This requirement is checked at run-time by
+looking for the presence of the SD_ASYM_CPUCAPACITY flag when the scheduling
+domains are built.
+
+The flag is set/cleared automatically by the scheduler topology code whenever
+there are CPUs with different capacities in a root domain. The capacities of
+CPUs are provided by arch-specific code through the arch_scale_cpu_capacity()
+callback. As an example, arm and arm64 share an implementation of this callback
+which uses a combination of CPUFreq data and device-tree bindings to compute the
+capacity of CPUs (see drivers/base/arch_topology.c for more details).
+
+So, in order to use EAS on your platform your architecture must implement the
+arch_scale_cpu_capacity() callback, and some of the CPUs must have a lower
+capacity than others.
+
+Please note that EAS is not fundamentally incompatible with SMP, but no
+significant savings on SMP platforms have been observed yet. This restriction
+could be amended in the future if proven otherwise.
+
+
+ 6.2 - Energy Model presence
+
+EAS uses the EM of a platform to estimate the impact of scheduling decisions on
+energy. So, your platform must provide power cost tables to the EM framework in
+order to make EAS start. To do so, please refer to documentation of the
+independent EM framework in Documentation/power/energy-model.txt.
+
+Please also note that the scheduling domains need to be re-built after the
+EM has been registered in order to start EAS.
+
+
+ 6.3 - Energy Model complexity
+
+The task wake-up path is very latency-sensitive. When the EM of a platform is
+too complex (too many CPUs, too many performance domains, too many performance
+states, ...), the cost of using it in the wake-up path can become prohibitive.
+The energy-aware wake-up algorithm has a complexity of:
+
+ C = Nd * (Nc + Ns)
+
+with: Nd the number of performance domains; Nc the number of CPUs; and Ns the
+total number of OPPs (ex: for two perf. domains with 4 OPPs each, Ns = 8).
+
+A complexity check is performed at the root domain level, when scheduling
+domains are built. EAS will not start on a root domain if its C happens to be
+higher than the completely arbitrary EM_MAX_COMPLEXITY threshold (2048 at the
+time of writing).
+
+If you really want to use EAS but the complexity of your platform's Energy
+Model is too high to be used with a single root domain, you're left with only
+two possible options:
+
+ 1. split your system into separate, smaller, root domains using exclusive
+ cpusets and enable EAS locally on each of them. This option has the
+ benefit to work out of the box but the drawback of preventing load
+ balance between root domains, which can result in an unbalanced system
+ overall;
+ 2. submit patches to reduce the complexity of the EAS wake-up algorithm,
+ hence enabling it to cope with larger EMs in reasonable time.
+
+
+ 6.4 - Schedutil governor
+
+EAS tries to predict at which OPP will the CPUs be running in the close future
+in order to estimate their energy consumption. To do so, it is assumed that OPPs
+of CPUs follow their utilization.
+
+Although it is very difficult to provide hard guarantees regarding the accuracy
+of this assumption in practice (because the hardware might not do what it is
+told to do, for example), schedutil as opposed to other CPUFreq governors at
+least _requests_ frequencies calculated using the utilization signals.
+Consequently, the only sane governor to use together with EAS is schedutil,
+because it is the only one providing some degree of consistency between
+frequency requests and energy predictions.
+
+Using EAS with any other governor than schedutil is not supported.
+
+
+ 6.5 Scale-invariant utilization signals
+
+In order to make accurate prediction across CPUs and for all performance
+states, EAS needs frequency-invariant and CPU-invariant PELT signals. These can
+be obtained using the architecture-defined arch_scale{cpu,freq}_capacity()
+callbacks.
+
+Using EAS on a platform that doesn't implement these two callbacks is not
+supported.
+
+
+ 6.6 Multithreading (SMT)
+
+EAS in its current form is SMT unaware and is not able to leverage
+multithreaded hardware to save energy. EAS considers threads as independent
+CPUs, which can actually be counter-productive for both performance and energy.
+
+EAS on SMT is not supported.
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index c0527d8a468a..379063e58326 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -79,6 +79,7 @@ show up in /proc/sys/kernel:
- reboot-cmd [ SPARC only ]
- rtsig-max
- rtsig-nr
+- sched_energy_aware
- seccomp/ ==> Documentation/userspace-api/seccomp_filter.rst
- sem
- sem_next_id [ sysv ipc ]
@@ -890,6 +891,17 @@ rtsig-nr shows the number of RT signals currently queued.
==============================================================
+sched_energy_aware:
+
+Enables/disables Energy Aware Scheduling (EAS). EAS starts
+automatically on platforms where it can run (that is,
+platforms with asymmetric CPU topologies and having an Energy
+Model available). If your platform happens to meet the
+requirements for EAS but you do not want to use it, change
+this value to 0.
+
+==============================================================
+
sched_schedstats:
Enables/disables scheduler statistics. Enabling this feature
diff --git a/MAINTAINERS b/MAINTAINERS
index 5e5529b9ffc8..366362b16f34 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -12280,14 +12280,6 @@ S: Maintained
F: drivers/net/ppp/pptp.c
W: http://sourceforge.net/projects/accel-pptp
-PREEMPTIBLE KERNEL
-M: Robert Love <rml@tech9.net>
-L: kpreempt-tech@lists.sourceforge.net
-W: https://www.kernel.org/pub/linux/kernel/people/rml/preempt-kernel
-S: Supported
-F: Documentation/preempt-locking.txt
-F: include/linux/preempt.h
-
PRINTK
M: Petr Mladek <pmladek@suse.com>
M: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
@@ -13525,6 +13517,7 @@ F: kernel/sched/
F: include/linux/sched.h
F: include/uapi/linux/sched.h
F: include/linux/wait.h
+F: include/linux/preempt.h
SCR24X CHIP CARD INTERFACE DRIVER
M: Lubomir Rintel <lkundrak@v3.sk>
diff --git a/fs/exec.c b/fs/exec.c
index bcf383730bea..74f3672146a7 100644
--- a/fs/exec.c
+++ b/fs/exec.c
@@ -1189,7 +1189,7 @@ no_thread_group:
flush_itimer_signals();
#endif
- if (atomic_read(&oldsighand->count) != 1) {
+ if (refcount_read(&oldsighand->count) != 1) {
struct sighand_struct *newsighand;
/*
* This ->sighand is shared with the CLONE_SIGHAND
@@ -1199,7 +1199,7 @@ no_thread_group:
if (!newsighand)
return -ENOMEM;
- atomic_set(&newsighand->count, 1);
+ refcount_set(&newsighand->count, 1);
memcpy(newsighand->action, oldsighand->action,
sizeof(newsighand->action));
diff --git a/fs/proc/task_nommu.c b/fs/proc/task_nommu.c
index 0b63d68dedb2..f912872fbf91 100644
--- a/fs/proc/task_nommu.c
+++ b/fs/proc/task_nommu.c
@@ -64,7 +64,7 @@ void task_mem(struct seq_file *m, struct mm_struct *mm)
else
bytes += kobjsize(current->files);
- if (current->sighand && atomic_read(&current->sighand->count) > 1)
+ if (current->sighand && refcount_read(&current->sighand->count) > 1)
sbytes += kobjsize(current->sighand);
else
bytes += kobjsize(current->sighand);
diff --git a/include/linux/init_task.h b/include/linux/init_task.h
index a7083a45a26c..6049baa5b8bc 100644
--- a/include/linux/init_task.h
+++ b/include/linux/init_task.h
@@ -13,6 +13,7 @@
#include <linux/securebits.h>
#include <linux/seqlock.h>
#include <linux/rbtree.h>
+#include <linux/refcount.h>
#include <linux/sched/autogroup.h>
#include <net/net_namespace.h>
#include <linux/sched/rt.h>
diff --git a/include/linux/kthread.h b/include/linux/kthread.h
index 1577a2d56e9d..2c89e60bc752 100644
--- a/include/linux/kthread.h
+++ b/include/linux/kthread.h
@@ -86,7 +86,7 @@ enum {
struct kthread_worker {
unsigned int flags;
- spinlock_t lock;
+ raw_spinlock_t lock;
struct list_head work_list;
struct list_head delayed_work_list;
struct task_struct *task;
@@ -107,7 +107,7 @@ struct kthread_delayed_work {
};
#define KTHREAD_WORKER_INIT(worker) { \
- .lock = __SPIN_LOCK_UNLOCKED((worker).lock), \
+ .lock = __RAW_SPIN_LOCK_UNLOCKED((worker).lock), \
.work_list = LIST_HEAD_INIT((worker).work_list), \
.delayed_work_list = LIST_HEAD_INIT((worker).delayed_work_list),\
}
@@ -165,9 +165,8 @@ extern void __kthread_init_worker(struct kthread_worker *worker,
#define kthread_init_delayed_work(dwork, fn) \
do { \
kthread_init_work(&(dwork)->work, (fn)); \
- __init_timer(&(dwork)->timer, \
- kthread_delayed_work_timer_fn, \
- TIMER_IRQSAFE); \
+ timer_setup(&(dwork)->timer, \
+ kthread_delayed_work_timer_fn, 0); \
} while (0)
int kthread_worker_fn(void *worker_ptr);
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 89ddece0b003..903ef29b62c3 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -21,6 +21,7 @@
#include <linux/seccomp.h>
#include <linux/nodemask.h>
#include <linux/rcupdate.h>
+#include <linux/refcount.h>
#include <linux/resource.h>
#include <linux/latencytop.h>
#include <linux/sched/prio.h>
@@ -356,12 +357,6 @@ struct util_est {
* For cfs_rq, it is the aggregated load_avg of all runnable and
* blocked sched_entities.
*
- * load_avg may also take frequency scaling into account:
- *
- * load_avg = runnable% * scale_load_down(load) * freq%
- *
- * where freq% is the CPU frequency normalized to the highest frequency.
- *
* [util_avg definition]
*
* util_avg = running% * SCHED_CAPACITY_SCALE
@@ -370,17 +365,14 @@ struct util_est {
* a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
* and blocked sched_entities.
*
- * util_avg may also factor frequency scaling and CPU capacity scaling:
- *
- * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
- *
- * where freq% is the same as above, and capacity% is the CPU capacity
- * normalized to the greatest capacity (due to uarch differences, etc).
+ * load_avg and util_avg don't direcly factor frequency scaling and CPU
+ * capacity scaling. The scaling is done through the rq_clock_pelt that
+ * is used for computing those signals (see update_rq_clock_pelt())
*
- * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
- * themselves are in the range of [0, 1]. To do fixed point arithmetics,
- * we therefore scale them to as large a range as necessary. This is for
- * example reflected by util_avg's SCHED_CAPACITY_SCALE.
+ * N.B., the above ratios (runnable% and running%) themselves are in the
+ * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
+ * to as large a range as necessary. This is for example reflected by
+ * util_avg's SCHED_CAPACITY_SCALE.
*
* [Overflow issue]
*
@@ -607,7 +599,7 @@ struct task_struct {
randomized_struct_fields_start
void *stack;
- atomic_t usage;
+ refcount_t usage;
/* Per task flags (PF_*), defined further below: */
unsigned int flags;
unsigned int ptrace;
@@ -1187,7 +1179,7 @@ struct task_struct {
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* A live task holds one reference: */
- atomic_t stack_refcount;
+ refcount_t stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
int patch_state;
@@ -1403,7 +1395,6 @@ extern struct pid *cad_pid;
#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
-#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
@@ -1753,9 +1744,9 @@ static __always_inline bool need_resched(void)
static inline unsigned int task_cpu(const struct task_struct *p)
{
#ifdef CONFIG_THREAD_INFO_IN_TASK
- return p->cpu;
+ return READ_ONCE(p->cpu);
#else
- return task_thread_info(p)->cpu;
+ return READ_ONCE(task_thread_info(p)->cpu);
#endif
}
diff --git a/include/linux/sched/signal.h b/include/linux/sched/signal.h
index 13789d10a50e..ae5655197698 100644
--- a/include/linux/sched/signal.h
+++ b/include/linux/sched/signal.h
@@ -8,13 +8,14 @@
#include <linux/sched/jobctl.h>
#include <linux/sched/task.h>
#include <linux/cred.h>
+#include <linux/refcount.h>
/*
* Types defining task->signal and task->sighand and APIs using them:
*/
struct sighand_struct {
- atomic_t count;
+ refcount_t count;
struct k_sigaction action[_NSIG];
spinlock_t siglock;
wait_queue_head_t signalfd_wqh;
@@ -82,7 +83,7 @@ struct multiprocess_signals {
* the locking of signal_struct.
*/
struct signal_struct {
- atomic_t sigcnt;
+ refcount_t sigcnt;
atomic_t live;
int nr_threads;
struct list_head thread_head;
diff --git a/include/linux/sched/sysctl.h b/include/linux/sched/sysctl.h
index a9c32daeb9d8..99ce6d728df7 100644
--- a/include/linux/sched/sysctl.h
+++ b/include/linux/sched/sysctl.h
@@ -83,4 +83,11 @@ extern int sysctl_schedstats(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos);
+#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+extern unsigned int sysctl_sched_energy_aware;
+extern int sched_energy_aware_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp,
+ loff_t *ppos);
+#endif
+
#endif /* _LINUX_SCHED_SYSCTL_H */
diff --git a/include/linux/sched/task.h b/include/linux/sched/task.h
index 44c6f15800ff..2e97a2227045 100644
--- a/include/linux/sched/task.h
+++ b/include/linux/sched/task.h
@@ -88,13 +88,13 @@ extern void sched_exec(void);
#define sched_exec() {}
#endif
-#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
+#define get_task_struct(tsk) do { refcount_inc(&(tsk)->usage); } while(0)
extern void __put_task_struct(struct task_struct *t);
static inline void put_task_struct(struct task_struct *t)
{
- if (atomic_dec_and_test(&t->usage))
+ if (refcount_dec_and_test(&t->usage))
__put_task_struct(t);
}
diff --git a/include/linux/sched/task_stack.h b/include/linux/sched/task_stack.h
index 6a841929073f..2413427e439c 100644
--- a/include/linux/sched/task_stack.h
+++ b/include/linux/sched/task_stack.h
@@ -61,7 +61,7 @@ static inline unsigned long *end_of_stack(struct task_struct *p)
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline void *try_get_task_stack(struct task_struct *tsk)
{
- return atomic_inc_not_zero(&tsk->stack_refcount) ?
+ return refcount_inc_not_zero(&tsk->stack_refcount) ?
task_stack_page(tsk) : NULL;
}
diff --git a/include/linux/sched/topology.h b/include/linux/sched/topology.h
index c31d3a47a47c..57c7ed3fe465 100644
--- a/include/linux/sched/topology.h
+++ b/include/linux/sched/topology.h
@@ -176,10 +176,10 @@ typedef int (*sched_domain_flags_f)(void);
#define SDTL_OVERLAP 0x01
struct sd_data {
- struct sched_domain **__percpu sd;
- struct sched_domain_shared **__percpu sds;
- struct sched_group **__percpu sg;
- struct sched_group_capacity **__percpu sgc;
+ struct sched_domain *__percpu *sd;
+ struct sched_domain_shared *__percpu *sds;
+ struct sched_group *__percpu *sg;
+ struct sched_group_capacity *__percpu *sgc;
};
struct sched_domain_topology_level {
diff --git a/include/linux/wait.h b/include/linux/wait.h
index ed7c122cb31f..5f3efabc36f4 100644
--- a/include/linux/wait.h
+++ b/include/linux/wait.h
@@ -308,7 +308,7 @@ do { \
#define __wait_event_freezable(wq_head, condition) \
___wait_event(wq_head, condition, TASK_INTERRUPTIBLE, 0, 0, \
- schedule(); try_to_freeze())
+ freezable_schedule())
/**
* wait_event_freezable - sleep (or freeze) until a condition gets true
@@ -367,7 +367,7 @@ do { \
#define __wait_event_freezable_timeout(wq_head, condition, timeout) \
___wait_event(wq_head, ___wait_cond_timeout(condition), \
TASK_INTERRUPTIBLE, 0, timeout, \
- __ret = schedule_timeout(__ret); try_to_freeze())
+ __ret = freezable_schedule_timeout(__ret))
/*
* like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
@@ -588,7 +588,7 @@ do { \
#define __wait_event_freezable_exclusive(wq, condition) \
___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0, \
- schedule(); try_to_freeze())
+ freezable_schedule())
#define wait_event_freezable_exclusive(wq, condition) \
({ \
diff --git a/init/init_task.c b/init/init_task.c
index 5aebe3be4d7c..46dbf546264d 100644
--- a/init/init_task.c
+++ b/init/init_task.c
@@ -44,7 +44,7 @@ static struct signal_struct init_signals = {
};
static struct sighand_struct init_sighand = {
- .count = ATOMIC_INIT(1),
+ .count = REFCOUNT_INIT(1),
.action = { { { .sa_handler = SIG_DFL, } }, },
.siglock = __SPIN_LOCK_UNLOCKED(init_sighand.siglock),
.signalfd_wqh = __WAIT_QUEUE_HEAD_INITIALIZER(init_sighand.signalfd_wqh),
@@ -61,11 +61,11 @@ struct task_struct init_task
= {
#ifdef CONFIG_THREAD_INFO_IN_TASK
.thread_info = INIT_THREAD_INFO(init_task),
- .stack_refcount = ATOMIC_INIT(1),
+ .stack_refcount = REFCOUNT_INIT(1),
#endif
.state = 0,
.stack = init_stack,
- .usage = ATOMIC_INIT(2),
+ .usage = REFCOUNT_INIT(2),
.flags = PF_KTHREAD,
.prio = MAX_PRIO - 20,
.static_prio = MAX_PRIO - 20,
diff --git a/kernel/fork.c b/kernel/fork.c
index b69248e6f0e0..77059b211608 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -429,7 +429,7 @@ static void release_task_stack(struct task_struct *tsk)
#ifdef CONFIG_THREAD_INFO_IN_TASK
void put_task_stack(struct task_struct *tsk)
{
- if (atomic_dec_and_test(&tsk->stack_refcount))
+ if (refcount_dec_and_test(&tsk->stack_refcount))
release_task_stack(tsk);
}
#endif
@@ -447,7 +447,7 @@ void free_task(struct task_struct *tsk)
* If the task had a separate stack allocation, it should be gone
* by now.
*/
- WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
+ WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
#endif
rt_mutex_debug_task_free(tsk);
ftrace_graph_exit_task(tsk);
@@ -710,14 +710,14 @@ static inline void free_signal_struct(struct signal_struct *sig)
static inline void put_signal_struct(struct signal_struct *sig)
{
- if (atomic_dec_and_test(&sig->sigcnt))
+ if (refcount_dec_and_test(&sig->sigcnt))
free_signal_struct(sig);
}
void __put_task_struct(struct task_struct *tsk)
{
WARN_ON(!tsk->exit_state);
- WARN_ON(atomic_read(&tsk->usage));
+ WARN_ON(refcount_read(&tsk->usage));
WARN_ON(tsk == current);
cgroup_free(tsk);
@@ -867,7 +867,7 @@ static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
tsk->stack_vm_area = stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
- atomic_set(&tsk->stack_refcount, 1);
+ refcount_set(&tsk->stack_refcount, 1);
#endif
if (err)
@@ -896,7 +896,7 @@ static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
* One for us, one for whoever does the "release_task()" (usually
* parent)
*/
- atomic_set(&tsk->usage, 2);
+ refcount_set(&tsk->usage, 2);
#ifdef CONFIG_BLK_DEV_IO_TRACE
tsk->btrace_seq = 0;
#endif
@@ -1463,7 +1463,7 @@ static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
struct sighand_struct *sig;
if (clone_flags & CLONE_SIGHAND) {
- atomic_inc(&current->sighand->count);
+ refcount_inc(&current->sighand->count);
return 0;
}
sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
@@ -1471,7 +1471,7 @@ static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
if (!sig)
return -ENOMEM;
- atomic_set(&sig->count, 1);
+ refcount_set(&sig->count, 1);
spin_lock_irq(&current->sighand->siglock);
memcpy(sig->action, current->sighand->action, sizeof(sig->action));
spin_unlock_irq(&current->sighand->siglock);
@@ -1480,7 +1480,7 @@ static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
void __cleanup_sighand(struct sighand_struct *sighand)
{
- if (atomic_dec_and_test(&sighand->count)) {
+ if (refcount_dec_and_test(&sighand->count)) {
signalfd_cleanup(sighand);
/*
* sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
@@ -1527,7 +1527,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
sig->nr_threads = 1;
atomic_set(&sig->live, 1);
- atomic_set(&sig->sigcnt, 1);
+ refcount_set(&sig->sigcnt, 1);
/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
@@ -2082,7 +2082,7 @@ static __latent_entropy struct task_struct *copy_process(
} else {
current->signal->nr_threads++;
atomic_inc(&current->signal->live);
- atomic_inc(&current->signal->sigcnt);
+ refcount_inc(&current->signal->sigcnt);
task_join_group_stop(p);
list_add_tail_rcu(&p->thread_group,
&p->group_leader->thread_group);
@@ -2439,7 +2439,7 @@ static int check_unshare_flags(unsigned long unshare_flags)
return -EINVAL;
}
if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
- if (atomic_read(&current->sighand->count) > 1)
+ if (refcount_read(&current->sighand->count) > 1)
return -EINVAL;
}
if (unshare_flags & CLONE_VM) {
diff --git a/kernel/kthread.c b/kernel/kthread.c
index 65234c89d85b..9cf20cc5ebe3 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -605,7 +605,7 @@ void __kthread_init_worker(struct kthread_worker *worker,
struct lock_class_key *key)
{
memset(worker, 0, sizeof(struct kthread_worker));
- spin_lock_init(&worker->lock);
+ raw_spin_lock_init(&worker->lock);
lockdep_set_class_and_name(&worker->lock, key, name);
INIT_LIST_HEAD(&worker->work_list);
INIT_LIST_HEAD(&worker->delayed_work_list);
@@ -647,21 +647,21 @@ repeat:
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
- spin_lock_irq(&worker->lock);
+ raw_spin_lock_irq(&worker->lock);
worker->task = NULL;
- spin_unlock_irq(&worker->lock);
+ raw_spin_unlock_irq(&worker->lock);
return 0;
}
work = NULL;
- spin_lock_irq(&worker->lock);
+ raw_spin_lock_irq(&worker->lock);
if (!list_empty(&worker->work_list)) {
work = list_first_entry(&worker->work_list,
struct kthread_work, node);
list_del_init(&work->node);
}
worker->current_work = work;
- spin_unlock_irq(&worker->lock);
+ raw_spin_unlock_irq(&worker->lock);
if (work) {
__set_current_state(TASK_RUNNING);
@@ -818,12 +818,12 @@ bool kthread_queue_work(struct kthread_worker *worker,
bool ret = false;
unsigned long flags;
- spin_lock_irqsave(&worker->lock, flags);
+ raw_spin_lock_irqsave(&worker->lock, flags);
if (!queuing_blocked(worker, work)) {
kthread_insert_work(worker, work, &worker->work_list);
ret = true;
}
- spin_unlock_irqrestore(&worker->lock, flags);
+ raw_spin_unlock_irqrestore(&worker->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(kthread_queue_work);
@@ -841,6 +841,7 @@ void kthread_delayed_work_timer_fn(struct timer_list *t)
struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
struct kthread_work *work = &dwork->work;
struct kthread_worker *worker = work->worker;
+ unsigned long flags;
/*
* This might happen when a pending work is reinitialized.
@@ -849,7 +850,7 @@ void kthread_delayed_work_timer_fn(struct timer_list *t)
if (WARN_ON_ONCE(!worker))
return;
- spin_lock(&worker->lock);
+ raw_spin_lock_irqsave(&worker->lock, flags);
/* Work must not be used with >1 worker, see kthread_queue_work(). */
WARN_ON_ONCE(work->worker != worker);
@@ -858,7 +859,7 @@ void kthread_delayed_work_timer_fn(struct timer_list *t)
list_del_init(&work->node);
kthread_insert_work(worker, work, &worker->work_list);
- spin_unlock(&worker->lock);
+ raw_spin_unlock_irqrestore(&worker->lock, flags);
}
EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
@@ -914,14 +915,14 @@ bool kthread_queue_delayed_work(struct kthread_worker *worker,
unsigned long flags;
bool ret = false;
- spin_lock_irqsave(&worker->lock, flags);
+ raw_spin_lock_irqsave(&worker->lock, flags);
if (!queuing_blocked(worker, work)) {
__kthread_queue_delayed_work(worker, dwork, delay);
ret = true;
}
- spin_unlock_irqrestore(&worker->lock, flags);
+ raw_spin_unlock_irqrestore(&worker->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
@@ -957,7 +958,7 @@ void kthread_flush_work(struct kthread_work *work)
if (!worker)
return;
- spin_lock_irq(&worker->lock);
+ raw_spin_lock_irq(&worker->lock);
/* Work must not be used with >1 worker, see kthread_queue_work(). */
WARN_ON_ONCE(work->worker != worker);
@@ -969,7 +970,7 @@ void kthread_flush_work(struct kthread_work *work)
else
noop = true;
- spin_unlock_irq(&worker->lock);
+ raw_spin_unlock_irq(&worker->lock);
if (!noop)
wait_for_completion(&fwork.done);
@@ -1002,9 +1003,9 @@ static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
* any queuing is blocked by setting the canceling counter.
*/
work->canceling++;
- spin_unlock_irqrestore(&worker->lock, *flags);
+ raw_spin_unlock_irqrestore(&worker->lock, *flags);
del_timer_sync(&dwork->timer);
- spin_lock_irqsave(&worker->lock, *flags);
+ raw_spin_lock_irqsave(&worker->lock, *flags);
work->canceling--;
}
@@ -1051,7 +1052,7 @@ bool kthread_mod_delayed_work(struct kthread_worker *worker,
unsigned long flags;
int ret = false;
- spin_lock_irqsave(&worker->lock, flags);
+ raw_spin_lock_irqsave(&worker->lock, flags);
/* Do not bother with canceling when never queued. */
if (!work->worker)
@@ -1068,7 +1069,7 @@ bool kthread_mod_delayed_work(struct kthread_worker *worker,
fast_queue:
__kthread_queue_delayed_work(worker, dwork, delay);
out:
- spin_unlock_irqrestore(&worker->lock, flags);
+ raw_spin_unlock_irqrestore(&worker->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
@@ -1082,7 +1083,7 @@ static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
if (!worker)
goto out;
- spin_lock_irqsave(&worker->lock, flags);
+ raw_spin_lock_irqsave(&worker->lock, flags);
/* Work must not be used with >1 worker, see kthread_queue_work(). */
WARN_ON_ONCE(work->worker != worker);
@@ -1096,13 +1097,13 @@ static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
* In the meantime, block any queuing by setting the canceling counter.
*/
work->canceling++;
- spin_unlock_irqrestore(&worker->lock, flags);
+ raw_spin_unlock_irqrestore(&worker->lock, flags);
kthread_flush_work(work);
- spin_lock_irqsave(&worker->lock, flags);
+ raw_spin_lock_irqsave(&worker->lock, flags);
work->canceling--;
out_fast:
- spin_unlock_irqrestore(&worker->lock, flags);
+ raw_spin_unlock_irqrestore(&worker->lock, flags);
out:
return ret;
}
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 0002995570db..f3901b84d217 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -107,11 +107,12 @@ struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
* [L] ->on_rq
* RELEASE (rq->lock)
*
- * If we observe the old CPU in task_rq_lock, the acquire of
+ * If we observe the old CPU in task_rq_lock(), the acquire of
* the old rq->lock will fully serialize against the stores.
*
- * If we observe the new CPU in task_rq_lock, the acquire will
- * pair with the WMB to ensure we must then also see migrating.
+ * If we observe the new CPU in task_rq_lock(), the address
+ * dependency headed by '[L] rq = task_rq()' and the acquire
+ * will pair with the WMB to ensure we then also see migrating.
*/
if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
rq_pin_lock(rq, rf);
@@ -180,6 +181,7 @@ static void update_rq_clock_task(struct rq *rq, s64 delta)
if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
update_irq_load_avg(rq, irq_delta + steal);
#endif
+ update_rq_clock_pelt(rq, delta);
}
void update_rq_clock(struct rq *rq)
@@ -956,7 +958,7 @@ static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
{
lockdep_assert_held(&rq->lock);
- p->on_rq = TASK_ON_RQ_MIGRATING;
+ WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
dequeue_task(rq, p, DEQUEUE_NOCLOCK);
set_task_cpu(p, new_cpu);
rq_unlock(rq, rf);
@@ -2459,7 +2461,7 @@ void wake_up_new_task(struct task_struct *p)
#endif
rq = __task_rq_lock(p, &rf);
update_rq_clock(rq);
- post_init_entity_util_avg(&p->se);
+ post_init_entity_util_avg(p);
activate_task(rq, p, ENQUEUE_NOCLOCK);
p->on_rq = TASK_ON_RQ_QUEUED;
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index fb8b7b5d745d..6a73e41a2016 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -1767,7 +1767,7 @@ pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
deadline_queue_push_tasks(rq);
if (rq->curr->sched_class != &dl_sched_class)
- update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
return p;
}
@@ -1776,7 +1776,7 @@ static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
{
update_curr_dl(rq);
- update_dl_rq_load_avg(rq_clock_task(rq), rq, 1);
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
enqueue_pushable_dl_task(rq, p);
}
@@ -1793,7 +1793,7 @@ static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
{
update_curr_dl(rq);
- update_dl_rq_load_avg(rq_clock_task(rq), rq, 1);
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
/*
* Even when we have runtime, update_curr_dl() might have resulted in us
* not being the leftmost task anymore. In that case NEED_RESCHED will
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index de3de997e245..8039d62ae36e 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -315,6 +315,7 @@ void register_sched_domain_sysctl(void)
{
static struct ctl_table *cpu_entries;
static struct ctl_table **cpu_idx;
+ static bool init_done = false;
char buf[32];
int i;
@@ -344,7 +345,10 @@ void register_sched_domain_sysctl(void)
if (!cpumask_available(sd_sysctl_cpus)) {
if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
return;
+ }
+ if (!init_done) {
+ init_done = true;
/* init to possible to not have holes in @cpu_entries */
cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
}
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 310d0637fe4b..8213ff6e365d 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -248,13 +248,6 @@ const struct sched_class fair_sched_class;
*/
#ifdef CONFIG_FAIR_GROUP_SCHED
-
-/* cpu runqueue to which this cfs_rq is attached */
-static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
-{
- return cfs_rq->rq;
-}
-
static inline struct task_struct *task_of(struct sched_entity *se)
{
SCHED_WARN_ON(!entity_is_task(se));
@@ -282,79 +275,103 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
return grp->my_q;
}
-static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
- if (!cfs_rq->on_list) {
- struct rq *rq = rq_of(cfs_rq);
- int cpu = cpu_of(rq);
+ struct rq *rq = rq_of(cfs_rq);
+ int cpu = cpu_of(rq);
+
+ if (cfs_rq->on_list)
+ return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
+
+ cfs_rq->on_list = 1;
+
+ /*
+ * Ensure we either appear before our parent (if already
+ * enqueued) or force our parent to appear after us when it is
+ * enqueued. The fact that we always enqueue bottom-up
+ * reduces this to two cases and a special case for the root
+ * cfs_rq. Furthermore, it also means that we will always reset
+ * tmp_alone_branch either when the branch is connected
+ * to a tree or when we reach the top of the tree
+ */
+ if (cfs_rq->tg->parent &&
+ cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
/*
- * Ensure we either appear before our parent (if already
- * enqueued) or force our parent to appear after us when it is
- * enqueued. The fact that we always enqueue bottom-up
- * reduces this to two cases and a special case for the root
- * cfs_rq. Furthermore, it also means that we will always reset
- * tmp_alone_branch either when the branch is connected
- * to a tree or when we reach the beg of the tree
+ * If parent is already on the list, we add the child
+ * just before. Thanks to circular linked property of
+ * the list, this means to put the child at the tail
+ * of the list that starts by parent.
*/
- if (cfs_rq->tg->parent &&
- cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
- /*
- * If parent is already on the list, we add the child
- * just before. Thanks to circular linked property of
- * the list, this means to put the child at the tail
- * of the list that starts by parent.
- */
- list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
- &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
- /*
- * The branch is now connected to its tree so we can
- * reset tmp_alone_branch to the beginning of the
- * list.
- */
- rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
- } else if (!cfs_rq->tg->parent) {
- /*
- * cfs rq without parent should be put
- * at the tail of the list.
- */
- list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
- &rq->leaf_cfs_rq_list);
- /*
- * We have reach the beg of a tree so we can reset
- * tmp_alone_branch to the beginning of the list.
- */
- rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
- } else {
- /*
- * The parent has not already been added so we want to
- * make sure that it will be put after us.
- * tmp_alone_branch points to the beg of the branch
- * where we will add parent.
- */
- list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
- rq->tmp_alone_branch);
- /*
- * update tmp_alone_branch to points to the new beg
- * of the branch
- */
- rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
- }
+ list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
+ &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
+ /*
+ * The branch is now connected to its tree so we can
+ * reset tmp_alone_branch to the beginning of the
+ * list.
+ */
+ rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
+ return true;
+ }
- cfs_rq->on_list = 1;
+ if (!cfs_rq->tg->parent) {
+ /*
+ * cfs rq without parent should be put
+ * at the tail of the list.
+ */
+ list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
+ &rq->leaf_cfs_rq_list);
+ /*
+ * We have reach the top of a tree so we can reset
+ * tmp_alone_branch to the beginning of the list.
+ */
+ rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
+ return true;
}
+
+ /*
+ * The parent has not already been added so we want to
+ * make sure that it will be put after us.
+ * tmp_alone_branch points to the begin of the branch
+ * where we will add parent.
+ */
+ list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
+ /*
+ * update tmp_alone_branch to points to the new begin
+ * of the branch
+ */
+ rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
+ return false;
}
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (cfs_rq->on_list) {
+ struct rq *rq = rq_of(cfs_rq);
+
+ /*
+ * With cfs_rq being unthrottled/throttled during an enqueue,
+ * it can happen the tmp_alone_branch points the a leaf that
+ * we finally want to del. In this case, tmp_alone_branch moves
+ * to the prev element but it will point to rq->leaf_cfs_rq_list
+ * at the end of the enqueue.
+ */
+ if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
+ rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
+
list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
cfs_rq->on_list = 0;
}
}
-/* Iterate through all leaf cfs_rq's on a runqueue: */
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
- list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
+static inline void assert_list_leaf_cfs_rq(struct rq *rq)
+{
+ SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
+}
+
+/* Iterate thr' all leaf cfs_rq's on a runqueue */
+#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
+ list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
+ leaf_cfs_rq_list)
/* Do the two (enqueued) entities belong to the same group ? */
static inline struct cfs_rq *
@@ -410,12 +427,6 @@ static inline struct task_struct *task_of(struct sched_entity *se)
return container_of(se, struct task_struct, se);
}
-static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
-{
- return container_of(cfs_rq, struct rq, cfs);
-}
-
-
#define for_each_sched_entity(se) \
for (; se; se = NULL)
@@ -438,16 +449,21 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
return NULL;
}
-static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
+ return true;
}
static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
- for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
+static inline void assert_list_leaf_cfs_rq(struct rq *rq)
+{
+}
+
+#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
+ for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
@@ -686,9 +702,8 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
return calc_delta_fair(sched_slice(cfs_rq, se), se);
}
-#ifdef CONFIG_SMP
#include "pelt.h"
-#include "sched-pelt.h"
+#ifdef CONFIG_SMP
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
static unsigned long task_h_load(struct task_struct *p);
@@ -744,8 +759,9 @@ static void attach_entity_cfs_rq(struct sched_entity *se);
* Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
* if util_avg > util_avg_cap.
*/
-void post_init_entity_util_avg(struct sched_entity *se)
+void post_init_entity_util_avg(struct task_struct *p)
{
+ struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
struct sched_avg *sa = &se->avg;
long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
@@ -763,22 +779,19 @@ void post_init_entity_util_avg(struct sched_entity *se)
}
}
- if (entity_is_task(se)) {
- struct task_struct *p = task_of(se);
- if (p->sched_class != &fair_sched_class) {
- /*
- * For !fair tasks do:
- *
- update_cfs_rq_load_avg(now, cfs_rq);
- attach_entity_load_avg(cfs_rq, se, 0);
- switched_from_fair(rq, p);
- *
- * such that the next switched_to_fair() has the
- * expected state.
- */
- se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
- return;
- }
+ if (p->sched_class != &fair_sched_class) {
+ /*
+ * For !fair tasks do:
+ *
+ update_cfs_rq_load_avg(now, cfs_rq);
+ attach_entity_load_avg(cfs_rq, se, 0);
+ switched_from_fair(rq, p);
+ *
+ * such that the next switched_to_fair() has the
+ * expected state.
+ */
+ se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
+ return;
}
attach_entity_cfs_rq(se);
@@ -788,7 +801,7 @@ void post_init_entity_util_avg(struct sched_entity *se)
void init_entity_runnable_average(struct sched_entity *se)
{
}
-void post_init_entity_util_avg(struct sched_entity *se)
+void post_init_entity_util_avg(struct task_struct *p)
{
}
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
@@ -1035,7 +1048,7 @@ unsigned int sysctl_numa_balancing_scan_size = 256;
unsigned int sysctl_numa_balancing_scan_delay = 1000;
struct numa_group {
- atomic_t refcount;
+ refcount_t refcount;
spinlock_t lock; /* nr_tasks, tasks */
int nr_tasks;
@@ -1104,7 +1117,7 @@ static unsigned int task_scan_start(struct task_struct *p)
unsigned long shared = group_faults_shared(ng);
unsigned long private = group_faults_priv(ng);
- period *= atomic_read(&ng->refcount);
+ period *= refcount_read(&ng->refcount);
period *= shared + 1;
period /= private + shared + 1;
}
@@ -1127,7 +1140,7 @@ static unsigned int task_scan_max(struct task_struct *p)
unsigned long private = group_faults_priv(ng);
unsigned long period = smax;
- period *= atomic_read(&ng->refcount);
+ period *= refcount_read(&ng->refcount);
period *= shared + 1;
period /= private + shared + 1;
@@ -2203,12 +2216,12 @@ static void task_numa_placement(struct task_struct *p)
static inline int get_numa_group(struct numa_group *grp)
{
- return atomic_inc_not_zero(&grp->refcount);
+ return refcount_inc_not_zero(&grp->refcount);
}
static inline void put_numa_group(struct numa_group *grp)
{
- if (atomic_dec_and_test(&grp->refcount))
+ if (refcount_dec_and_test(&grp->refcount))
kfree_rcu(grp, rcu);
}
@@ -2229,7 +2242,7 @@ static void task_numa_group(struct task_struct *p, int cpupid, int flags,
if (!grp)
return;
- atomic_set(&grp->refcount, 1);
+ refcount_set(&grp->refcount, 1);
grp->active_nodes = 1;
grp->max_faults_cpu = 0;
spin_lock_init(&grp->lock);
@@ -3122,7 +3135,7 @@ void set_task_rq_fair(struct sched_entity *se,
p_last_update_time = prev->avg.last_update_time;
n_last_update_time = next->avg.last_update_time;
#endif
- __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
+ __update_load_avg_blocked_se(p_last_update_time, se);
se->avg.last_update_time = n_last_update_time;
}
@@ -3257,11 +3270,11 @@ update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cf
/*
* runnable_sum can't be lower than running_sum
- * As running sum is scale with CPU capacity wehreas the runnable sum
- * is not we rescale running_sum 1st
+ * Rescale running sum to be in the same range as runnable sum
+ * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
+ * runnable_sum is in [0 : LOAD_AVG_MAX]
*/
- running_sum = se->avg.util_sum /
- arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
+ running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
runnable_sum = max(runnable_sum, running_sum);
load_sum = (s64)se_weight(se) * runnable_sum;
@@ -3364,7 +3377,7 @@ static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum
/**
* update_cfs_rq_load_avg - update the cfs_rq's load/util averages
- * @now: current time, as per cfs_rq_clock_task()
+ * @now: current time, as per cfs_rq_clock_pelt()
* @cfs_rq: cfs_rq to update
*
* The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
@@ -3409,7 +3422,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
decayed = 1;
}
- decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
+ decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
#ifndef CONFIG_64BIT
smp_wmb();
@@ -3499,9 +3512,7 @@ static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
- u64 now = cfs_rq_clock_task(cfs_rq);
- struct rq *rq = rq_of(cfs_rq);
- int cpu = cpu_of(rq);
+ u64 now = cfs_rq_clock_pelt(cfs_rq);
int decayed;
/*
@@ -3509,7 +3520,7 @@ static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
* track group sched_entity load average for task_h_load calc in migration
*/
if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
- __update_load_avg_se(now, cpu, cfs_rq, se);
+ __update_load_avg_se(now, cfs_rq, se);
decayed = update_cfs_rq_load_avg(now, cfs_rq);
decayed |= propagate_entity_load_avg(se);
@@ -3561,7 +3572,7 @@ void sync_entity_load_avg(struct sched_entity *se)
u64 last_update_time;
last_update_time = cfs_rq_last_update_time(cfs_rq);
- __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
+ __update_load_avg_blocked_se(last_update_time, se);
}
/*
@@ -3577,10 +3588,6 @@ void remove_entity_load_avg(struct sched_entity *se)
* tasks cannot exit without having gone through wake_up_new_task() ->
* post_init_entity_util_avg() which will have added things to the
* cfs_rq, so we can remove unconditionally.
- *
- * Similarly for groups, they will have passed through
- * post_init_entity_util_avg() before unregister_sched_fair_group()
- * calls this.
*/
sync_entity_load_avg(se);
@@ -3654,6 +3661,7 @@ util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
long last_ewma_diff;
struct util_est ue;
+ int cpu;
if (!sched_feat(UTIL_EST))
return;
@@ -3688,6 +3696,14 @@ util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
return;
/*
+ * To avoid overestimation of actual task utilization, skip updates if
+ * we cannot grant there is idle time in this CPU.
+ */
+ cpu = cpu_of(rq_of(cfs_rq));
+ if (task_util(p) > capacity_orig_of(cpu))
+ return;
+
+ /*
* Update Task's estimated utilization
*
* When *p completes an activation we can consolidate another sample
@@ -4429,6 +4445,10 @@ static int tg_unthrottle_up(struct task_group *tg, void *data)
/* adjust cfs_rq_clock_task() */
cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
cfs_rq->throttled_clock_task;
+
+ /* Add cfs_rq with already running entity in the list */
+ if (cfs_rq->nr_running >= 1)
+ list_add_leaf_cfs_rq(cfs_rq);
}
return 0;
@@ -4440,8 +4460,10 @@ static int tg_throttle_down(struct task_group *tg, void *data)
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
/* group is entering throttled state, stop time */
- if (!cfs_rq->throttle_count)
+ if (!cfs_rq->throttle_count) {
cfs_rq->throttled_clock_task = rq_clock_task(rq);
+ list_del_leaf_cfs_rq(cfs_rq);
+ }
cfs_rq->throttle_count++;
return 0;
@@ -4544,6 +4566,8 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
break;
}
+ assert_list_leaf_cfs_rq(rq);
+
if (!se)
add_nr_running(rq, task_delta);
@@ -4565,7 +4589,7 @@ static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
struct rq *rq = rq_of(cfs_rq);
struct rq_flags rf;
- rq_lock(rq, &rf);
+ rq_lock_irqsave(rq, &rf);
if (!cfs_rq_throttled(cfs_rq))
goto next;
@@ -4582,7 +4606,7 @@ static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
unthrottle_cfs_rq(cfs_rq);
next:
- rq_unlock(rq, &rf);
+ rq_unlock_irqrestore(rq, &rf);
if (!remaining)
break;
@@ -4598,7 +4622,7 @@ next:
* period the timer is deactivated until scheduling resumes; cfs_b->idle is
* used to track this state.
*/
-static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
+static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
{
u64 runtime, runtime_expires;
int throttled;
@@ -4640,11 +4664,11 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
runtime = cfs_b->runtime;
cfs_b->distribute_running = 1;
- raw_spin_unlock(&cfs_b->lock);
+ raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
/* we can't nest cfs_b->lock while distributing bandwidth */
runtime = distribute_cfs_runtime(cfs_b, runtime,
runtime_expires);
- raw_spin_lock(&cfs_b->lock);
+ raw_spin_lock_irqsave(&cfs_b->lock, flags);
cfs_b->distribute_running = 0;
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
@@ -4753,17 +4777,18 @@ static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
+ unsigned long flags;
u64 expires;
/* confirm we're still not at a refresh boundary */
- raw_spin_lock(&cfs_b->lock);
+ raw_spin_lock_irqsave(&cfs_b->lock, flags);
if (cfs_b->distribute_running) {
- raw_spin_unlock(&cfs_b->lock);
+ raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
return;
}
if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
- raw_spin_unlock(&cfs_b->lock);
+ raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
return;
}
@@ -4774,18 +4799,18 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
if (runtime)
cfs_b->distribute_running = 1;
- raw_spin_unlock(&cfs_b->lock);
+ raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
if (!runtime)
return;
runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
- raw_spin_lock(&cfs_b->lock);
+ raw_spin_lock_irqsave(&cfs_b->lock, flags);
if (expires == cfs_b->runtime_expires)
lsub_positive(&cfs_b->runtime, runtime);
cfs_b->distribute_running = 0;
- raw_spin_unlock(&cfs_b->lock);
+ raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
}
/*
@@ -4863,20 +4888,21 @@ static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
struct cfs_bandwidth *cfs_b =
container_of(timer, struct cfs_bandwidth, period_timer);
+ unsigned long flags;
int overrun;
int idle = 0;
- raw_spin_lock(&cfs_b->lock);
+ raw_spin_lock_irqsave(&cfs_b->lock, flags);
for (;;) {
overrun = hrtimer_forward_now(timer, cfs_b->period);
if (!overrun)
break;
- idle = do_sched_cfs_period_timer(cfs_b, overrun);
+ idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
}
if (idle)
cfs_b->period_active = 0;
- raw_spin_unlock(&cfs_b->lock);
+ raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
@@ -4986,6 +5012,12 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
}
#else /* CONFIG_CFS_BANDWIDTH */
+
+static inline bool cfs_bandwidth_used(void)
+{
+ return false;
+}
+
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
return rq_clock_task(rq_of(cfs_rq));
@@ -5177,6 +5209,23 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
}
+ if (cfs_bandwidth_used()) {
+ /*
+ * When bandwidth control is enabled; the cfs_rq_throttled()
+ * breaks in the above iteration can result in incomplete
+ * leaf list maintenance, resulting in triggering the assertion
+ * below.
+ */
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+
+ if (list_add_leaf_cfs_rq(cfs_rq))
+ break;
+ }
+ }
+
+ assert_list_leaf_cfs_rq(rq);
+
hrtick_update(rq);
}
@@ -5556,11 +5605,6 @@ static unsigned long capacity_of(int cpu)
return cpu_rq(cpu)->cpu_capacity;
}
-static unsigned long capacity_orig_of(int cpu)
-{
- return cpu_rq(cpu)->cpu_capacity_orig;
-}
-
static unsigned long cpu_avg_load_per_task(int cpu)
{
struct rq *rq = cpu_rq(cpu);
@@ -6053,7 +6097,7 @@ static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int
bool idle = true;
for_each_cpu(cpu, cpu_smt_mask(core)) {
- cpumask_clear_cpu(cpu, cpus);
+ __cpumask_clear_cpu(cpu, cpus);
if (!available_idle_cpu(cpu))
idle = false;
}
@@ -6073,7 +6117,7 @@ static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int
/*
* Scan the local SMT mask for idle CPUs.
*/
-static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
+static int select_idle_smt(struct task_struct *p, int target)
{
int cpu;
@@ -6097,7 +6141,7 @@ static inline int select_idle_core(struct task_struct *p, struct sched_domain *s
return -1;
}
-static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
+static inline int select_idle_smt(struct task_struct *p, int target)
{
return -1;
}
@@ -6202,7 +6246,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
if ((unsigned)i < nr_cpumask_bits)
return i;
- i = select_idle_smt(p, sd, target);
+ i = select_idle_smt(p, target);
if ((unsigned)i < nr_cpumask_bits)
return i;
@@ -6608,7 +6652,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
if (sd_flag & SD_BALANCE_WAKE) {
record_wakee(p);
- if (static_branch_unlikely(&sched_energy_present)) {
+ if (sched_energy_enabled()) {
new_cpu = find_energy_efficient_cpu(p, prev_cpu);
if (new_cpu >= 0)
return new_cpu;
@@ -7027,6 +7071,12 @@ idle:
if (new_tasks > 0)
goto again;
+ /*
+ * rq is about to be idle, check if we need to update the
+ * lost_idle_time of clock_pelt
+ */
+ update_idle_rq_clock_pelt(rq);
+
return NULL;
}
@@ -7647,10 +7697,27 @@ static inline bool others_have_blocked(struct rq *rq)
#ifdef CONFIG_FAIR_GROUP_SCHED
+static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
+{
+ if (cfs_rq->load.weight)
+ return false;
+
+ if (cfs_rq->avg.load_sum)
+ return false;
+
+ if (cfs_rq->avg.util_sum)
+ return false;
+
+ if (cfs_rq->avg.runnable_load_sum)
+ return false;
+
+ return true;
+}
+
static void update_blocked_averages(int cpu)
{
struct rq *rq = cpu_rq(cpu);
- struct cfs_rq *cfs_rq;
+ struct cfs_rq *cfs_rq, *pos;
const struct sched_class *curr_class;
struct rq_flags rf;
bool done = true;
@@ -7662,14 +7729,10 @@ static void update_blocked_averages(int cpu)
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
*/
- for_each_leaf_cfs_rq(rq, cfs_rq) {
+ for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
struct sched_entity *se;
- /* throttled entities do not contribute to load */
- if (throttled_hierarchy(cfs_rq))
- continue;
-
- if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
+ if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
update_tg_load_avg(cfs_rq, 0);
/* Propagate pending load changes to the parent, if any: */
@@ -7677,14 +7740,21 @@ static void update_blocked_averages(int cpu)
if (se && !skip_blocked_update(se))
update_load_avg(cfs_rq_of(se), se, 0);
+ /*
+ * There can be a lot of idle CPU cgroups. Don't let fully
+ * decayed cfs_rqs linger on the list.
+ */
+ if (cfs_rq_is_decayed(cfs_rq))
+ list_del_leaf_cfs_rq(cfs_rq);
+
/* Don't need periodic decay once load/util_avg are null */
if (cfs_rq_has_blocked(cfs_rq))
done = false;
}
curr_class = rq->curr->sched_class;
- update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
- update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
+ update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
update_irq_load_avg(rq, 0);
/* Don't need periodic decay once load/util_avg are null */
if (others_have_blocked(rq))
@@ -7754,11 +7824,11 @@ static inline void update_blocked_averages(int cpu)
rq_lock_irqsave(rq, &rf);
update_rq_clock(rq);
- update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
+ update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
curr_class = rq->curr->sched_class;
- update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
- update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
+ update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
+ update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
update_irq_load_avg(rq, 0);
#ifdef CONFIG_NO_HZ_COMMON
rq->last_blocked_load_update_tick = jiffies;
@@ -8452,9 +8522,7 @@ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
return 0;
- env->imbalance = DIV_ROUND_CLOSEST(
- sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
- SCHED_CAPACITY_SCALE);
+ env->imbalance = sds->busiest_stat.group_load;
return 1;
}
@@ -8636,7 +8704,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
*/
update_sd_lb_stats(env, &sds);
- if (static_branch_unlikely(&sched_energy_present)) {
+ if (sched_energy_enabled()) {
struct root_domain *rd = env->dst_rq->rd;
if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
@@ -8827,21 +8895,25 @@ static struct rq *find_busiest_queue(struct lb_env *env,
*/
#define MAX_PINNED_INTERVAL 512
-static int need_active_balance(struct lb_env *env)
+static inline bool
+asym_active_balance(struct lb_env *env)
{
- struct sched_domain *sd = env->sd;
+ /*
+ * ASYM_PACKING needs to force migrate tasks from busy but
+ * lower priority CPUs in order to pack all tasks in the
+ * highest priority CPUs.
+ */
+ return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
+ sched_asym_prefer(env->dst_cpu, env->src_cpu);
+}
- if (env->idle == CPU_NEWLY_IDLE) {
+static inline bool
+voluntary_active_balance(struct lb_env *env)
+{
+ struct sched_domain *sd = env->sd;
- /*
- * ASYM_PACKING needs to force migrate tasks from busy but
- * lower priority CPUs in order to pack all tasks in the
- * highest priority CPUs.
- */
- if ((sd->flags & SD_ASYM_PACKING) &&
- sched_asym_prefer(env->dst_cpu, env->src_cpu))
- return 1;
- }
+ if (asym_active_balance(env))
+ return 1;
/*
* The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
@@ -8859,6 +8931,16 @@ static int need_active_balance(struct lb_env *env)
if (env->src_grp_type == group_misfit_task)
return 1;
+ return 0;
+}
+
+static int need_active_balance(struct lb_env *env)
+{
+ struct sched_domain *sd = env->sd;
+
+ if (voluntary_active_balance(env))
+ return 1;
+
return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}
@@ -9023,7 +9105,7 @@ more_balance:
if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
/* Prevent to re-select dst_cpu via env's CPUs */
- cpumask_clear_cpu(env.dst_cpu, env.cpus);
+ __cpumask_clear_cpu(env.dst_cpu, env.cpus);
env.dst_rq = cpu_rq(env.new_dst_cpu);
env.dst_cpu = env.new_dst_cpu;
@@ -9050,7 +9132,7 @@ more_balance:
/* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(env.flags & LBF_ALL_PINNED)) {
- cpumask_clear_cpu(cpu_of(busiest), cpus);
+ __cpumask_clear_cpu(cpu_of(busiest), cpus);
/*
* Attempting to continue load balancing at the current
* sched_domain level only makes sense if there are
@@ -9120,7 +9202,7 @@ more_balance:
} else
sd->nr_balance_failed = 0;
- if (likely(!active_balance)) {
+ if (likely(!active_balance) || voluntary_active_balance(&env)) {
/* We were unbalanced, so reset the balancing interval */
sd->balance_interval = sd->min_interval;
} else {
@@ -9469,15 +9551,8 @@ static void kick_ilb(unsigned int flags)
}
/*
- * Current heuristic for kicking the idle load balancer in the presence
- * of an idle cpu in the system.
- * - This rq has more than one task.
- * - This rq has at least one CFS task and the capacity of the CPU is
- * significantly reduced because of RT tasks or IRQs.
- * - At parent of LLC scheduler domain level, this cpu's scheduler group has
- * multiple busy cpu.
- * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
- * domain span are idle.
+ * Current decision point for kicking the idle load balancer in the presence
+ * of idle CPUs in the system.
*/
static void nohz_balancer_kick(struct rq *rq)
{
@@ -9519,8 +9594,13 @@ static void nohz_balancer_kick(struct rq *rq)
sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
if (sds) {
/*
- * XXX: write a coherent comment on why we do this.
- * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
+ * If there is an imbalance between LLC domains (IOW we could
+ * increase the overall cache use), we need some less-loaded LLC
+ * domain to pull some load. Likewise, we may need to spread
+ * load within the current LLC domain (e.g. packed SMT cores but
+ * other CPUs are idle). We can't really know from here how busy
+ * the others are - so just get a nohz balance going if it looks
+ * like this LLC domain has tasks we could move.
*/
nr_busy = atomic_read(&sds->nr_busy_cpus);
if (nr_busy > 1) {
@@ -9533,7 +9613,7 @@ static void nohz_balancer_kick(struct rq *rq)
sd = rcu_dereference(rq->sd);
if (sd) {
if ((rq->cfs.h_nr_running >= 1) &&
- check_cpu_capacity(rq, sd)) {
+ check_cpu_capacity(rq, sd)) {
flags = NOHZ_KICK_MASK;
goto unlock;
}
@@ -9541,11 +9621,7 @@ static void nohz_balancer_kick(struct rq *rq)
sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
if (sd) {
- for_each_cpu(i, sched_domain_span(sd)) {
- if (i == cpu ||
- !cpumask_test_cpu(i, nohz.idle_cpus_mask))
- continue;
-
+ for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
if (sched_asym_prefer(i, cpu)) {
flags = NOHZ_KICK_MASK;
goto unlock;
@@ -10546,10 +10622,10 @@ const struct sched_class fair_sched_class = {
#ifdef CONFIG_SCHED_DEBUG
void print_cfs_stats(struct seq_file *m, int cpu)
{
- struct cfs_rq *cfs_rq;
+ struct cfs_rq *cfs_rq, *pos;
rcu_read_lock();
- for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
+ for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
print_cfs_rq(m, cpu, cfs_rq);
rcu_read_unlock();
}
diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
index 81faddba9e20..b02d148e7672 100644
--- a/kernel/sched/isolation.c
+++ b/kernel/sched/isolation.c
@@ -80,7 +80,7 @@ static int __init housekeeping_setup(char *str, enum hk_flags flags)
cpumask_andnot(housekeeping_mask,
cpu_possible_mask, non_housekeeping_mask);
if (cpumask_empty(housekeeping_mask))
- cpumask_set_cpu(smp_processor_id(), housekeeping_mask);
+ __cpumask_set_cpu(smp_processor_id(), housekeeping_mask);
} else {
cpumask_var_t tmp;
diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c
index 90fb5bc12ad4..befce29bd882 100644
--- a/kernel/sched/pelt.c
+++ b/kernel/sched/pelt.c
@@ -26,7 +26,6 @@
#include <linux/sched.h>
#include "sched.h"
-#include "sched-pelt.h"
#include "pelt.h"
/*
@@ -106,16 +105,12 @@ static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
* n=1
*/
static __always_inline u32
-accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
+accumulate_sum(u64 delta, struct sched_avg *sa,
unsigned long load, unsigned long runnable, int running)
{
- unsigned long scale_freq, scale_cpu;
u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
u64 periods;
- scale_freq = arch_scale_freq_capacity(cpu);
- scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
-
delta += sa->period_contrib;
periods = delta / 1024; /* A period is 1024us (~1ms) */
@@ -137,13 +132,12 @@ accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
}
sa->period_contrib = delta;
- contrib = cap_scale(contrib, scale_freq);
if (load)
sa->load_sum += load * contrib;
if (runnable)
sa->runnable_load_sum += runnable * contrib;
if (running)
- sa->util_sum += contrib * scale_cpu;
+ sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
return periods;
}
@@ -177,7 +171,7 @@ accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
*/
static __always_inline int
-___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
+___update_load_sum(u64 now, struct sched_avg *sa,
unsigned long load, unsigned long runnable, int running)
{
u64 delta;
@@ -221,7 +215,7 @@ ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
* Step 1: accumulate *_sum since last_update_time. If we haven't
* crossed period boundaries, finish.
*/
- if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
+ if (!accumulate_sum(delta, sa, load, runnable, running))
return 0;
return 1;
@@ -267,9 +261,9 @@ ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runna
* runnable_load_avg = \Sum se->avg.runable_load_avg
*/
-int __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
+int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
{
- if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
+ if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
return 1;
}
@@ -277,9 +271,9 @@ int __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
return 0;
}
-int __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
+int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
+ if (___update_load_sum(now, &se->avg, !!se->on_rq, !!se->on_rq,
cfs_rq->curr == se)) {
___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
@@ -290,9 +284,9 @@ int __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_e
return 0;
}
-int __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
+int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
{
- if (___update_load_sum(now, cpu, &cfs_rq->avg,
+ if (___update_load_sum(now, &cfs_rq->avg,
scale_load_down(cfs_rq->load.weight),
scale_load_down(cfs_rq->runnable_weight),
cfs_rq->curr != NULL)) {
@@ -317,7 +311,7 @@ int __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
{
- if (___update_load_sum(now, rq->cpu, &rq->avg_rt,
+ if (___update_load_sum(now, &rq->avg_rt,
running,
running,
running)) {
@@ -340,7 +334,7 @@ int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
{
- if (___update_load_sum(now, rq->cpu, &rq->avg_dl,
+ if (___update_load_sum(now, &rq->avg_dl,
running,
running,
running)) {
@@ -365,22 +359,31 @@ int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
int update_irq_load_avg(struct rq *rq, u64 running)
{
int ret = 0;
+
+ /*
+ * We can't use clock_pelt because irq time is not accounted in
+ * clock_task. Instead we directly scale the running time to
+ * reflect the real amount of computation
+ */
+ running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
+ running = cap_scale(running, arch_scale_cpu_capacity(NULL, cpu_of(rq)));
+
/*
* We know the time that has been used by interrupt since last update
* but we don't when. Let be pessimistic and assume that interrupt has
* happened just before the update. This is not so far from reality
* because interrupt will most probably wake up task and trig an update
- * of rq clock during which the metric si updated.
+ * of rq clock during which the metric is updated.
* We start to decay with normal context time and then we add the
* interrupt context time.
* We can safely remove running from rq->clock because
* rq->clock += delta with delta >= running
*/
- ret = ___update_load_sum(rq->clock - running, rq->cpu, &rq->avg_irq,
+ ret = ___update_load_sum(rq->clock - running, &rq->avg_irq,
0,
0,
0);
- ret += ___update_load_sum(rq->clock, rq->cpu, &rq->avg_irq,
+ ret += ___update_load_sum(rq->clock, &rq->avg_irq,
1,
1,
1);
diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
index 7e56b489ff32..7489d5f56960 100644
--- a/kernel/sched/pelt.h
+++ b/kernel/sched/pelt.h
@@ -1,8 +1,9 @@
#ifdef CONFIG_SMP
+#include "sched-pelt.h"
-int __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se);
-int __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se);
-int __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq);
+int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
+int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
+int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
@@ -42,6 +43,101 @@ static inline void cfs_se_util_change(struct sched_avg *avg)
WRITE_ONCE(avg->util_est.enqueued, enqueued);
}
+/*
+ * The clock_pelt scales the time to reflect the effective amount of
+ * computation done during the running delta time but then sync back to
+ * clock_task when rq is idle.
+ *
+ *
+ * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
+ * @ max capacity ------******---------------******---------------
+ * @ half capacity ------************---------************---------
+ * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
+ *
+ */
+static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
+{
+ if (unlikely(is_idle_task(rq->curr))) {
+ /* The rq is idle, we can sync to clock_task */
+ rq->clock_pelt = rq_clock_task(rq);
+ return;
+ }
+
+ /*
+ * When a rq runs at a lower compute capacity, it will need
+ * more time to do the same amount of work than at max
+ * capacity. In order to be invariant, we scale the delta to
+ * reflect how much work has been really done.
+ * Running longer results in stealing idle time that will
+ * disturb the load signal compared to max capacity. This
+ * stolen idle time will be automatically reflected when the
+ * rq will be idle and the clock will be synced with
+ * rq_clock_task.
+ */
+
+ /*
+ * Scale the elapsed time to reflect the real amount of
+ * computation
+ */
+ delta = cap_scale(delta, arch_scale_cpu_capacity(NULL, cpu_of(rq)));
+ delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
+
+ rq->clock_pelt += delta;
+}
+
+/*
+ * When rq becomes idle, we have to check if it has lost idle time
+ * because it was fully busy. A rq is fully used when the /Sum util_sum
+ * is greater or equal to:
+ * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
+ * For optimization and computing rounding purpose, we don't take into account
+ * the position in the current window (period_contrib) and we use the higher
+ * bound of util_sum to decide.
+ */
+static inline void update_idle_rq_clock_pelt(struct rq *rq)
+{
+ u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
+ u32 util_sum = rq->cfs.avg.util_sum;
+ util_sum += rq->avg_rt.util_sum;
+ util_sum += rq->avg_dl.util_sum;
+
+ /*
+ * Reflecting stolen time makes sense only if the idle
+ * phase would be present at max capacity. As soon as the
+ * utilization of a rq has reached the maximum value, it is
+ * considered as an always runnig rq without idle time to
+ * steal. This potential idle time is considered as lost in
+ * this case. We keep track of this lost idle time compare to
+ * rq's clock_task.
+ */
+ if (util_sum >= divider)
+ rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
+}
+
+static inline u64 rq_clock_pelt(struct rq *rq)
+{
+ lockdep_assert_held(&rq->lock);
+ assert_clock_updated(rq);
+
+ return rq->clock_pelt - rq->lost_idle_time;
+}
+
+#ifdef CONFIG_CFS_BANDWIDTH
+/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
+static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
+{
+ if (unlikely(cfs_rq->throttle_count))
+ return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
+
+ return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
+}
+#else
+static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
+{
+ return rq_clock_pelt(rq_of(cfs_rq));
+}
+#endif
+
#else
static inline int
@@ -67,6 +163,18 @@ update_irq_load_avg(struct rq *rq, u64 running)
{
return 0;
}
+
+static inline u64 rq_clock_pelt(struct rq *rq)
+{
+ return rq_clock_task(rq);
+}
+
+static inline void
+update_rq_clock_pelt(struct rq *rq, s64 delta) { }
+
+static inline void
+update_idle_rq_clock_pelt(struct rq *rq) { }
+
#endif
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index e4f398ad9e73..90fa23d36565 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -1587,7 +1587,7 @@ pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* rt task
*/
if (rq->curr->sched_class != &rt_sched_class)
- update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
+ update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
return p;
}
@@ -1596,7 +1596,7 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
- update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
+ update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
/*
* The previous task needs to be made eligible for pushing
@@ -2325,7 +2325,7 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
struct sched_rt_entity *rt_se = &p->rt;
update_curr_rt(rq);
- update_rt_rq_load_avg(rq_clock_task(rq), rq, 1);
+ update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
watchdog(rq, p);
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 6665b9c02e2f..efa686eeff26 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -861,7 +861,10 @@ struct rq {
unsigned int clock_update_flags;
u64 clock;
- u64 clock_task;
+ /* Ensure that all clocks are in the same cache line */
+ u64 clock_task ____cacheline_aligned;
+ u64 clock_pelt;
+ unsigned long lost_idle_time;
atomic_t nr_iowait;
@@ -951,6 +954,22 @@ struct rq {
#endif
};
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* CPU runqueue to which this cfs_rq is attached */
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->rq;
+}
+
+#else
+
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+ return container_of(cfs_rq, struct rq, cfs);
+}
+#endif
+
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
@@ -1460,9 +1479,9 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
*/
smp_wmb();
#ifdef CONFIG_THREAD_INFO_IN_TASK
- p->cpu = cpu;
+ WRITE_ONCE(p->cpu, cpu);
#else
- task_thread_info(p)->cpu = cpu;
+ WRITE_ONCE(task_thread_info(p)->cpu, cpu);
#endif
p->wake_cpu = cpu;
#endif
@@ -1563,7 +1582,7 @@ static inline int task_on_rq_queued(struct task_struct *p)
static inline int task_on_rq_migrating(struct task_struct *p)
{
- return p->on_rq == TASK_ON_RQ_MIGRATING;
+ return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
}
/*
@@ -1781,7 +1800,7 @@ extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
unsigned long to_ratio(u64 period, u64 runtime);
extern void init_entity_runnable_average(struct sched_entity *se);
-extern void post_init_entity_util_avg(struct sched_entity *se);
+extern void post_init_entity_util_avg(struct task_struct *p);
#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
@@ -2211,6 +2230,13 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
# define arch_scale_freq_invariant() false
#endif
+#ifdef CONFIG_SMP
+static inline unsigned long capacity_orig_of(int cpu)
+{
+ return cpu_rq(cpu)->cpu_capacity_orig;
+}
+#endif
+
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
/**
* enum schedutil_type - CPU utilization type
@@ -2299,11 +2325,19 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned
#endif
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+
#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
-#else
+
+DECLARE_STATIC_KEY_FALSE(sched_energy_present);
+
+static inline bool sched_energy_enabled(void)
+{
+ return static_branch_unlikely(&sched_energy_present);
+}
+
+#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
+
#define perf_domain_span(pd) NULL
-#endif
+static inline bool sched_energy_enabled(void) { return false; }
-#ifdef CONFIG_SMP
-extern struct static_key_false sched_energy_present;
-#endif
+#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 7d905f55e7fa..ab7f371a3a17 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -201,11 +201,37 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
return 1;
}
-DEFINE_STATIC_KEY_FALSE(sched_energy_present);
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+DEFINE_STATIC_KEY_FALSE(sched_energy_present);
+unsigned int sysctl_sched_energy_aware = 1;
DEFINE_MUTEX(sched_energy_mutex);
bool sched_energy_update;
+#ifdef CONFIG_PROC_SYSCTL
+int sched_energy_aware_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+ int ret, state;
+
+ if (write && !capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+ if (!ret && write) {
+ state = static_branch_unlikely(&sched_energy_present);
+ if (state != sysctl_sched_energy_aware) {
+ mutex_lock(&sched_energy_mutex);
+ sched_energy_update = 1;
+ rebuild_sched_domains();
+ sched_energy_update = 0;
+ mutex_unlock(&sched_energy_mutex);
+ }
+ }
+
+ return ret;
+}
+#endif
+
static void free_pd(struct perf_domain *pd)
{
struct perf_domain *tmp;
@@ -322,6 +348,9 @@ static bool build_perf_domains(const struct cpumask *cpu_map)
struct cpufreq_policy *policy;
struct cpufreq_governor *gov;
+ if (!sysctl_sched_energy_aware)
+ goto free;
+
/* EAS is enabled for asymmetric CPU capacity topologies. */
if (!per_cpu(sd_asym_cpucapacity, cpu)) {
if (sched_debug()) {
@@ -676,7 +705,7 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
}
struct s_data {
- struct sched_domain ** __percpu sd;
+ struct sched_domain * __percpu *sd;
struct root_domain *rd;
};
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 7578e21a711b..7c2b9bc88ee8 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -472,6 +472,17 @@ static struct ctl_table kern_table[] = {
.extra1 = &one,
},
#endif
+#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+ {
+ .procname = "sched_energy_aware",
+ .data = &sysctl_sched_energy_aware,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = sched_energy_aware_handler,
+ .extra1 = &zero,
+ .extra2 = &one,
+ },
+#endif
#ifdef CONFIG_PROVE_LOCKING
{
.procname = "prove_locking",