summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/nvme/host/fc.c35
-rw-r--r--drivers/nvme/target/fc.c77
-rw-r--r--drivers/nvme/target/fcloop.c20
-rw-r--r--drivers/scsi/lpfc/lpfc_nvmet.c10
-rw-r--r--drivers/scsi/lpfc/lpfc_nvmet.h2
-rw-r--r--include/linux/nvme-fc-driver.h368
6 files changed, 378 insertions, 134 deletions
diff --git a/drivers/nvme/host/fc.c b/drivers/nvme/host/fc.c
index 7dfc4a2ecf1e..8012099fc3ee 100644
--- a/drivers/nvme/host/fc.c
+++ b/drivers/nvme/host/fc.c
@@ -1464,6 +1464,41 @@ nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
kfree(lsop);
}
+/**
+ * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
+ * upon the reception of a NVME LS request.
+ *
+ * The nvme-fc layer will copy payload to an internal structure for
+ * processing. As such, upon completion of the routine, the LLDD may
+ * immediately free/reuse the LS request buffer passed in the call.
+ *
+ * If this routine returns error, the LLDD should abort the exchange.
+ *
+ * @remoteport: pointer to the (registered) remote port that the LS
+ * was received from. The remoteport is associated with
+ * a specific localport.
+ * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
+ * used to reference the exchange corresponding to the LS
+ * when issuing an ls response.
+ * @lsreqbuf: pointer to the buffer containing the LS Request
+ * @lsreqbuf_len: length, in bytes, of the received LS request
+ */
+int
+nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
+ struct nvmefc_ls_rsp *lsrsp,
+ void *lsreqbuf, u32 lsreqbuf_len)
+{
+ struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
+ struct nvme_fc_lport *lport = rport->lport;
+
+ /* validate there's a routine to transmit a response */
+ if (!lport->ops->xmt_ls_rsp)
+ return(-EINVAL);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
+
/* *********************** NVME Ctrl Routines **************************** */
diff --git a/drivers/nvme/target/fc.c b/drivers/nvme/target/fc.c
index a8ceb7721640..aac7869a70bb 100644
--- a/drivers/nvme/target/fc.c
+++ b/drivers/nvme/target/fc.c
@@ -28,7 +28,7 @@ struct nvmet_fc_tgtport;
struct nvmet_fc_tgt_assoc;
struct nvmet_fc_ls_iod {
- struct nvmefc_tgt_ls_req *lsreq;
+ struct nvmefc_ls_rsp *lsrsp;
struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */
struct list_head ls_list; /* tgtport->ls_list */
@@ -1146,6 +1146,42 @@ __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
spin_unlock_irqrestore(&tgtport->lock, flags);
}
+/**
+ * nvmet_fc_invalidate_host - transport entry point called by an LLDD
+ * to remove references to a hosthandle for LS's.
+ *
+ * The nvmet-fc layer ensures that any references to the hosthandle
+ * on the targetport are forgotten (set to NULL). The LLDD will
+ * typically call this when a login with a remote host port has been
+ * lost, thus LS's for the remote host port are no longer possible.
+ *
+ * If an LS request is outstanding to the targetport/hosthandle (or
+ * issued concurrently with the call to invalidate the host), the
+ * LLDD is responsible for terminating/aborting the LS and completing
+ * the LS request. It is recommended that these terminations/aborts
+ * occur after calling to invalidate the host handle to avoid additional
+ * retries by the nvmet-fc transport. The nvmet-fc transport may
+ * continue to reference host handle while it cleans up outstanding
+ * NVME associations. The nvmet-fc transport will call the
+ * ops->host_release() callback to notify the LLDD that all references
+ * are complete and the related host handle can be recovered.
+ * Note: if there are no references, the callback may be called before
+ * the invalidate host call returns.
+ *
+ * @target_port: pointer to the (registered) target port that a prior
+ * LS was received on and which supplied the transport the
+ * hosthandle.
+ * @hosthandle: the handle (pointer) that represents the host port
+ * that no longer has connectivity and that LS's should
+ * no longer be directed to.
+ */
+void
+nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
+ void *hosthandle)
+{
+}
+EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
+
/*
* nvmet layer has called to terminate an association
*/
@@ -1371,7 +1407,7 @@ nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
dev_err(tgtport->dev,
"Create Association LS failed: %s\n",
validation_errors[ret]);
- iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
+ iod->lsrsp->rsplen = nvmet_fc_format_rjt(acc,
NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
FCNVME_RJT_RC_LOGIC,
FCNVME_RJT_EXP_NONE, 0);
@@ -1384,7 +1420,7 @@ nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
/* format a response */
- iod->lsreq->rsplen = sizeof(*acc);
+ iod->lsrsp->rsplen = sizeof(*acc);
nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
fcnvme_lsdesc_len(
@@ -1462,7 +1498,7 @@ nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
dev_err(tgtport->dev,
"Create Connection LS failed: %s\n",
validation_errors[ret]);
- iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
+ iod->lsrsp->rsplen = nvmet_fc_format_rjt(acc,
NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
(ret == VERR_NO_ASSOC) ?
FCNVME_RJT_RC_INV_ASSOC :
@@ -1477,7 +1513,7 @@ nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
/* format a response */
- iod->lsreq->rsplen = sizeof(*acc);
+ iod->lsrsp->rsplen = sizeof(*acc);
nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
@@ -1542,7 +1578,7 @@ nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
dev_err(tgtport->dev,
"Disconnect LS failed: %s\n",
validation_errors[ret]);
- iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
+ iod->lsrsp->rsplen = nvmet_fc_format_rjt(acc,
NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
(ret == VERR_NO_ASSOC) ?
FCNVME_RJT_RC_INV_ASSOC :
@@ -1555,7 +1591,7 @@ nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
/* format a response */
- iod->lsreq->rsplen = sizeof(*acc);
+ iod->lsrsp->rsplen = sizeof(*acc);
nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
fcnvme_lsdesc_len(
@@ -1577,9 +1613,9 @@ static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
static void
-nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
+nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
{
- struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
+ struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
struct nvmet_fc_tgtport *tgtport = iod->tgtport;
fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
@@ -1597,9 +1633,9 @@ nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
- ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
+ ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
if (ret)
- nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
+ nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
}
/*
@@ -1612,12 +1648,12 @@ nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
struct fcnvme_ls_rqst_w0 *w0 =
(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
- iod->lsreq->nvmet_fc_private = iod;
- iod->lsreq->rspbuf = iod->rspbuf;
- iod->lsreq->rspdma = iod->rspdma;
- iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
+ iod->lsrsp->nvme_fc_private = iod;
+ iod->lsrsp->rspbuf = iod->rspbuf;
+ iod->lsrsp->rspdma = iod->rspdma;
+ iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
/* Be preventative. handlers will later set to valid length */
- iod->lsreq->rsplen = 0;
+ iod->lsrsp->rsplen = 0;
iod->assoc = NULL;
@@ -1640,7 +1676,7 @@ nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
nvmet_fc_ls_disconnect(tgtport, iod);
break;
default:
- iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
+ iod->lsrsp->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
}
@@ -1674,14 +1710,15 @@ nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
*
* @target_port: pointer to the (registered) target port the LS was
* received on.
- * @lsreq: pointer to a lsreq request structure to be used to reference
+ * @lsrsp: pointer to a lsrsp structure to be used to reference
* the exchange corresponding to the LS.
* @lsreqbuf: pointer to the buffer containing the LS Request
* @lsreqbuf_len: length, in bytes, of the received LS request
*/
int
nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
- struct nvmefc_tgt_ls_req *lsreq,
+ void *hosthandle,
+ struct nvmefc_ls_rsp *lsrsp,
void *lsreqbuf, u32 lsreqbuf_len)
{
struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
@@ -1699,7 +1736,7 @@ nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
return -ENOENT;
}
- iod->lsreq = lsreq;
+ iod->lsrsp = lsrsp;
iod->fcpreq = NULL;
memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
iod->rqstdatalen = lsreqbuf_len;
diff --git a/drivers/nvme/target/fcloop.c b/drivers/nvme/target/fcloop.c
index f69ce66e2d44..c11805a155e8 100644
--- a/drivers/nvme/target/fcloop.c
+++ b/drivers/nvme/target/fcloop.c
@@ -228,7 +228,7 @@ struct fcloop_nport {
struct fcloop_lsreq {
struct nvmefc_ls_req *lsreq;
- struct nvmefc_tgt_ls_req tgt_ls_req;
+ struct nvmefc_ls_rsp ls_rsp;
int status;
struct list_head ls_list; /* fcloop_rport->ls_list */
};
@@ -267,9 +267,9 @@ struct fcloop_ini_fcpreq {
};
static inline struct fcloop_lsreq *
-tgt_ls_req_to_lsreq(struct nvmefc_tgt_ls_req *tgt_lsreq)
+ls_rsp_to_lsreq(struct nvmefc_ls_rsp *lsrsp)
{
- return container_of(tgt_lsreq, struct fcloop_lsreq, tgt_ls_req);
+ return container_of(lsrsp, struct fcloop_lsreq, ls_rsp);
}
static inline struct fcloop_fcpreq *
@@ -344,7 +344,7 @@ fcloop_ls_req(struct nvme_fc_local_port *localport,
}
tls_req->status = 0;
- ret = nvmet_fc_rcv_ls_req(rport->targetport, &tls_req->tgt_ls_req,
+ ret = nvmet_fc_rcv_ls_req(rport->targetport, NULL, &tls_req->ls_rsp,
lsreq->rqstaddr, lsreq->rqstlen);
return ret;
@@ -352,19 +352,19 @@ fcloop_ls_req(struct nvme_fc_local_port *localport,
static int
fcloop_xmt_ls_rsp(struct nvmet_fc_target_port *targetport,
- struct nvmefc_tgt_ls_req *tgt_lsreq)
+ struct nvmefc_ls_rsp *lsrsp)
{
- struct fcloop_lsreq *tls_req = tgt_ls_req_to_lsreq(tgt_lsreq);
+ struct fcloop_lsreq *tls_req = ls_rsp_to_lsreq(lsrsp);
struct nvmefc_ls_req *lsreq = tls_req->lsreq;
struct fcloop_tport *tport = targetport->private;
struct nvme_fc_remote_port *remoteport = tport->remoteport;
struct fcloop_rport *rport;
- memcpy(lsreq->rspaddr, tgt_lsreq->rspbuf,
- ((lsreq->rsplen < tgt_lsreq->rsplen) ?
- lsreq->rsplen : tgt_lsreq->rsplen));
+ memcpy(lsreq->rspaddr, lsrsp->rspbuf,
+ ((lsreq->rsplen < lsrsp->rsplen) ?
+ lsreq->rsplen : lsrsp->rsplen));
- tgt_lsreq->done(tgt_lsreq);
+ lsrsp->done(lsrsp);
if (remoteport) {
rport = remoteport->private;
diff --git a/drivers/scsi/lpfc/lpfc_nvmet.c b/drivers/scsi/lpfc/lpfc_nvmet.c
index 565419bf8d74..3b25bcb150ea 100644
--- a/drivers/scsi/lpfc/lpfc_nvmet.c
+++ b/drivers/scsi/lpfc/lpfc_nvmet.c
@@ -302,7 +302,7 @@ lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_wcqe_complete *wcqe)
{
struct lpfc_nvmet_tgtport *tgtp;
- struct nvmefc_tgt_ls_req *rsp;
+ struct nvmefc_ls_rsp *rsp;
struct lpfc_nvmet_rcv_ctx *ctxp;
uint32_t status, result;
@@ -335,7 +335,7 @@ lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
}
out:
- rsp = &ctxp->ctx.ls_req;
+ rsp = &ctxp->ctx.ls_rsp;
lpfc_nvmeio_data(phba, "NVMET LS CMPL: xri x%x stat x%x result x%x\n",
ctxp->oxid, status, result);
@@ -828,10 +828,10 @@ lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
static int
lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
- struct nvmefc_tgt_ls_req *rsp)
+ struct nvmefc_ls_rsp *rsp)
{
struct lpfc_nvmet_rcv_ctx *ctxp =
- container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_req);
+ container_of(rsp, struct lpfc_nvmet_rcv_ctx, ctx.ls_rsp);
struct lpfc_hba *phba = ctxp->phba;
struct hbq_dmabuf *nvmebuf =
(struct hbq_dmabuf *)ctxp->rqb_buffer;
@@ -1999,7 +1999,7 @@ dropit:
* lpfc_nvmet_xmt_ls_rsp_cmp should free the allocated ctxp.
*/
atomic_inc(&tgtp->rcv_ls_req_in);
- rc = nvmet_fc_rcv_ls_req(phba->targetport, &ctxp->ctx.ls_req,
+ rc = nvmet_fc_rcv_ls_req(phba->targetport, NULL, &ctxp->ctx.ls_rsp,
payload, size);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
diff --git a/drivers/scsi/lpfc/lpfc_nvmet.h b/drivers/scsi/lpfc/lpfc_nvmet.h
index b80b1639b9a7..f0196f3ef90d 100644
--- a/drivers/scsi/lpfc/lpfc_nvmet.h
+++ b/drivers/scsi/lpfc/lpfc_nvmet.h
@@ -105,7 +105,7 @@ struct lpfc_nvmet_ctx_info {
struct lpfc_nvmet_rcv_ctx {
union {
- struct nvmefc_tgt_ls_req ls_req;
+ struct nvmefc_ls_rsp ls_rsp;
struct nvmefc_tgt_fcp_req fcp_req;
} ctx;
struct list_head list;
diff --git a/include/linux/nvme-fc-driver.h b/include/linux/nvme-fc-driver.h
index 10f81629b9ce..41e7795a3ee4 100644
--- a/include/linux/nvme-fc-driver.h
+++ b/include/linux/nvme-fc-driver.h
@@ -10,47 +10,26 @@
/*
- * ********************** LLDD FC-NVME Host API ********************
+ * ********************** FC-NVME LS API ********************
*
- * For FC LLDD's that are the NVME Host role.
+ * Data structures used by both FC-NVME hosts and FC-NVME
+ * targets to perform FC-NVME LS requests or transmit
+ * responses.
*
- * ******************************************************************
+ * ***********************************************************
*/
-
-
/**
- * struct nvme_fc_port_info - port-specific ids and FC connection-specific
- * data element used during NVME Host role
- * registrations
- *
- * Static fields describing the port being registered:
- * @node_name: FC WWNN for the port
- * @port_name: FC WWPN for the port
- * @port_role: What NVME roles are supported (see FC_PORT_ROLE_xxx)
- * @dev_loss_tmo: maximum delay for reconnects to an association on
- * this device. Used only on a remoteport.
+ * struct nvmefc_ls_req - Request structure passed from the transport
+ * to the LLDD to perform a NVME-FC LS request and obtain
+ * a response.
+ * Used by nvme-fc transport (host) to send LS's such as
+ * Create Association, Create Connection and Disconnect
+ * Association.
+ * Used by the nvmet-fc transport (controller) to send
+ * LS's such as Disconnect Association.
*
- * Initialization values for dynamic port fields:
- * @port_id: FC N_Port_ID currently assigned the port. Upper 8 bits must
- * be set to 0.
- */
-struct nvme_fc_port_info {
- u64 node_name;
- u64 port_name;
- u32 port_role;
- u32 port_id;
- u32 dev_loss_tmo;
-};
-
-
-/**
- * struct nvmefc_ls_req - Request structure passed from NVME-FC transport
- * to LLDD in order to perform a NVME FC-4 LS
- * request and obtain a response.
- *
- * Values set by the NVME-FC layer prior to calling the LLDD ls_req
- * entrypoint.
+ * Values set by the requestor prior to calling the LLDD ls_req entrypoint:
* @rqstaddr: pointer to request buffer
* @rqstdma: PCI DMA address of request buffer
* @rqstlen: Length, in bytes, of request buffer
@@ -63,8 +42,8 @@ struct nvme_fc_port_info {
* @private: pointer to memory allocated alongside the ls request structure
* that is specifically for the LLDD to use while processing the
* request. The length of the buffer corresponds to the
- * lsrqst_priv_sz value specified in the nvme_fc_port_template
- * supplied by the LLDD.
+ * lsrqst_priv_sz value specified in the xxx_template supplied
+ * by the LLDD.
* @done: The callback routine the LLDD is to invoke upon completion of
* the LS request. req argument is the pointer to the original LS
* request structure. Status argument must be 0 upon success, a
@@ -86,6 +65,101 @@ struct nvmefc_ls_req {
} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
+/**
+ * struct nvmefc_ls_rsp - Structure passed from the transport to the LLDD
+ * to request the transmit the NVME-FC LS response to a
+ * NVME-FC LS request. The structure originates in the LLDD
+ * and is given to the transport via the xxx_rcv_ls_req()
+ * transport routine. As such, the structure represents the
+ * FC exchange context for the NVME-FC LS request that was
+ * received and which the response is to be sent for.
+ * Used by the LLDD to pass the nvmet-fc transport (controller)
+ * received LS's such as Create Association, Create Connection
+ * and Disconnect Association.
+ * Used by the LLDD to pass the nvme-fc transport (host)
+ * received LS's such as Disconnect Association or Disconnect
+ * Connection.
+ *
+ * The structure is allocated by the LLDD whenever a LS Request is received
+ * from the FC link. The address of the structure is passed to the nvmet-fc
+ * or nvme-fc layer via the xxx_rcv_ls_req() transport routines.
+ *
+ * The address of the structure is to be passed back to the LLDD
+ * when the response is to be transmit. The LLDD will use the address to
+ * map back to the LLDD exchange structure which maintains information such
+ * the remote N_Port that sent the LS as well as any FC exchange context.
+ * Upon completion of the LS response transmit, the LLDD will pass the
+ * address of the structure back to the transport LS rsp done() routine,
+ * allowing the transport release dma resources. Upon completion of
+ * the done() routine, no further access to the structure will be made by
+ * the transport and the LLDD can de-allocate the structure.
+ *
+ * Field initialization:
+ * At the time of the xxx_rcv_ls_req() call, there is no content that
+ * is valid in the structure.
+ *
+ * When the structure is used for the LLDD->xmt_ls_rsp() call, the
+ * transport layer will fully set the fields in order to specify the
+ * response payload buffer and its length as well as the done routine
+ * to be called upon completion of the transmit. The transport layer
+ * will also set a private pointer for its own use in the done routine.
+ *
+ * Values set by the transport layer prior to calling the LLDD xmt_ls_rsp
+ * entrypoint:
+ * @rspbuf: pointer to the LS response buffer
+ * @rspdma: PCI DMA address of the LS response buffer
+ * @rsplen: Length, in bytes, of the LS response buffer
+ * @done: The callback routine the LLDD is to invoke upon completion of
+ * transmitting the LS response. req argument is the pointer to
+ * the original ls request.
+ * @nvme_fc_private: pointer to an internal transport-specific structure
+ * used as part of the transport done() processing. The LLDD is
+ * not to access this pointer.
+ */
+struct nvmefc_ls_rsp {
+ void *rspbuf;
+ dma_addr_t rspdma;
+ u16 rsplen;
+
+ void (*done)(struct nvmefc_ls_rsp *rsp);
+ void *nvme_fc_private; /* LLDD is not to access !! */
+};
+
+
+
+/*
+ * ********************** LLDD FC-NVME Host API ********************
+ *
+ * For FC LLDD's that are the NVME Host role.
+ *
+ * ******************************************************************
+ */
+
+
+/**
+ * struct nvme_fc_port_info - port-specific ids and FC connection-specific
+ * data element used during NVME Host role
+ * registrations
+ *
+ * Static fields describing the port being registered:
+ * @node_name: FC WWNN for the port
+ * @port_name: FC WWPN for the port
+ * @port_role: What NVME roles are supported (see FC_PORT_ROLE_xxx)
+ * @dev_loss_tmo: maximum delay for reconnects to an association on
+ * this device. Used only on a remoteport.
+ *
+ * Initialization values for dynamic port fields:
+ * @port_id: FC N_Port_ID currently assigned the port. Upper 8 bits must
+ * be set to 0.
+ */
+struct nvme_fc_port_info {
+ u64 node_name;
+ u64 port_name;
+ u32 port_role;
+ u32 port_id;
+ u32 dev_loss_tmo;
+};
+
enum nvmefc_fcp_datadir {
NVMEFC_FCP_NODATA, /* payload_length and sg_cnt will be zero */
NVMEFC_FCP_WRITE,
@@ -337,6 +411,21 @@ struct nvme_fc_remote_port {
* indicating an FC transport Aborted status.
* Entrypoint is Mandatory.
*
+ * @xmt_ls_rsp: Called to transmit the response to a FC-NVME FC-4 LS service.
+ * The nvmefc_ls_rsp structure is the same LLDD-supplied exchange
+ * structure specified in the nvme_fc_rcv_ls_req() call made when
+ * the LS request was received. The structure will fully describe
+ * the buffers for the response payload and the dma address of the
+ * payload. The LLDD is to transmit the response (or return a
+ * non-zero errno status), and upon completion of the transmit, call
+ * the "done" routine specified in the nvmefc_ls_rsp structure
+ * (argument to done is the address of the nvmefc_ls_rsp structure
+ * itself). Upon the completion of the done routine, the LLDD shall
+ * consider the LS handling complete and the nvmefc_ls_rsp structure
+ * may be freed/released.
+ * Entrypoint is mandatory if the LLDD calls the nvme_fc_rcv_ls_req()
+ * entrypoint.
+ *
* @max_hw_queues: indicates the maximum number of hw queues the LLDD
* supports for cpu affinitization.
* Value is Mandatory. Must be at least 1.
@@ -371,7 +460,7 @@ struct nvme_fc_remote_port {
* @lsrqst_priv_sz: The LLDD sets this field to the amount of additional
* memory that it would like fc nvme layer to allocate on the LLDD's
* behalf whenever a ls request structure is allocated. The additional
- * memory area solely for the of the LLDD and its location is
+ * memory area is solely for use by the LLDD and its location is
* specified by the ls_request->private pointer.
* Value is Mandatory. Allowed to be zero.
*
@@ -405,6 +494,9 @@ struct nvme_fc_port_template {
struct nvme_fc_remote_port *,
void *hw_queue_handle,
struct nvmefc_fcp_req *);
+ int (*xmt_ls_rsp)(struct nvme_fc_local_port *localport,
+ struct nvme_fc_remote_port *rport,
+ struct nvmefc_ls_rsp *ls_rsp);
u32 max_hw_queues;
u16 max_sgl_segments;
@@ -441,6 +533,34 @@ void nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport);
int nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *remoteport,
u32 dev_loss_tmo);
+/*
+ * Routine called to pass a NVME-FC LS request, received by the lldd,
+ * to the nvme-fc transport.
+ *
+ * If the return value is zero: the LS was successfully accepted by the
+ * transport.
+ * If the return value is non-zero: the transport has not accepted the
+ * LS. The lldd should ABTS-LS the LS.
+ *
+ * Note: if the LLDD receives and ABTS for the LS prior to the transport
+ * calling the ops->xmt_ls_rsp() routine to transmit a response, the LLDD
+ * shall mark the LS as aborted, and when the xmt_ls_rsp() is called: the
+ * response shall not be transmit and the struct nvmefc_ls_rsp() done
+ * routine shall be called. The LLDD may transmit the ABTS response as
+ * soon as the LS was marked or can delay until the xmt_ls_rsp() call is
+ * made.
+ * Note: if an RCV LS was successfully posted to the transport and the
+ * remoteport is then unregistered before xmt_ls_rsp() was called for
+ * the lsrsp structure, the transport will still call xmt_ls_rsp()
+ * afterward to cleanup the outstanding lsrsp structure. The LLDD should
+ * noop the transmission of the rsp and call the lsrsp->done() routine
+ * to allow the lsrsp structure to be released.
+ */
+int nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *remoteport,
+ struct nvmefc_ls_rsp *lsrsp,
+ void *lsreqbuf, u32 lsreqbuf_len);
+
+
/*
* *************** LLDD FC-NVME Target/Subsystem API ***************
@@ -470,55 +590,6 @@ struct nvmet_fc_port_info {
};
-/**
- * struct nvmefc_tgt_ls_req - Structure used between LLDD and NVMET-FC
- * layer to represent the exchange context for
- * a FC-NVME Link Service (LS).
- *
- * The structure is allocated by the LLDD whenever a LS Request is received
- * from the FC link. The address of the structure is passed to the nvmet-fc
- * layer via the nvmet_fc_rcv_ls_req() call. The address of the structure
- * will be passed back to the LLDD when the response is to be transmit.
- * The LLDD is to use the address to map back to the LLDD exchange structure
- * which maintains information such as the targetport the LS was received
- * on, the remote FC NVME initiator that sent the LS, and any FC exchange
- * context. Upon completion of the LS response transmit, the address of the
- * structure will be passed back to the LS rsp done() routine, allowing the
- * nvmet-fc layer to release dma resources. Upon completion of the done()
- * routine, no further access will be made by the nvmet-fc layer and the
- * LLDD can de-allocate the structure.
- *
- * Field initialization:
- * At the time of the nvmet_fc_rcv_ls_req() call, there is no content that
- * is valid in the structure.
- *
- * When the structure is used for the LLDD->xmt_ls_rsp() call, the nvmet-fc
- * layer will fully set the fields in order to specify the response
- * payload buffer and its length as well as the done routine to be called
- * upon compeletion of the transmit. The nvmet-fc layer will also set a
- * private pointer for its own use in the done routine.
- *
- * Values set by the NVMET-FC layer prior to calling the LLDD xmt_ls_rsp
- * entrypoint.
- * @rspbuf: pointer to the LS response buffer
- * @rspdma: PCI DMA address of the LS response buffer
- * @rsplen: Length, in bytes, of the LS response buffer
- * @done: The callback routine the LLDD is to invoke upon completion of
- * transmitting the LS response. req argument is the pointer to
- * the original ls request.
- * @nvmet_fc_private: pointer to an internal NVMET-FC layer structure used
- * as part of the NVMET-FC processing. The LLDD is not to access
- * this pointer.
- */
-struct nvmefc_tgt_ls_req {
- void *rspbuf;
- dma_addr_t rspdma;
- u16 rsplen;
-
- void (*done)(struct nvmefc_tgt_ls_req *req);
- void *nvmet_fc_private; /* LLDD is not to access !! */
-};
-
/* Operations that NVME-FC layer may request the LLDD to perform for FCP */
enum {
NVMET_FCOP_READDATA = 1, /* xmt data to initiator */
@@ -693,17 +764,19 @@ struct nvmet_fc_target_port {
* Entrypoint is Mandatory.
*
* @xmt_ls_rsp: Called to transmit the response to a FC-NVME FC-4 LS service.
- * The nvmefc_tgt_ls_req structure is the same LLDD-supplied exchange
+ * The nvmefc_ls_rsp structure is the same LLDD-supplied exchange
* structure specified in the nvmet_fc_rcv_ls_req() call made when
- * the LS request was received. The structure will fully describe
+ * the LS request was received. The structure will fully describe
* the buffers for the response payload and the dma address of the
- * payload. The LLDD is to transmit the response (or return a non-zero
- * errno status), and upon completion of the transmit, call the
- * "done" routine specified in the nvmefc_tgt_ls_req structure
- * (argument to done is the ls reqwuest structure itself).
- * After calling the done routine, the LLDD shall consider the
- * LS handling complete and the nvmefc_tgt_ls_req structure may
- * be freed/released.
+ * payload. The LLDD is to transmit the response (or return a
+ * non-zero errno status), and upon completion of the transmit, call
+ * the "done" routine specified in the nvmefc_ls_rsp structure
+ * (argument to done is the address of the nvmefc_ls_rsp structure
+ * itself). Upon the completion of the done() routine, the LLDD shall
+ * consider the LS handling complete and the nvmefc_ls_rsp structure
+ * may be freed/released.
+ * The transport will always call the xmt_ls_rsp() routine for any
+ * LS received.
* Entrypoint is Mandatory.
*
* @fcp_op: Called to perform a data transfer or transmit a response.
@@ -798,6 +871,39 @@ struct nvmet_fc_target_port {
* should cause the initiator to rescan the discovery controller
* on the targetport.
*
+ * @ls_req: Called to issue a FC-NVME FC-4 LS service request.
+ * The nvme_fc_ls_req structure will fully describe the buffers for
+ * the request payload and where to place the response payload.
+ * The targetport that is to issue the LS request is identified by
+ * the targetport argument. The remote port that is to receive the
+ * LS request is identified by the hosthandle argument. The nvmet-fc
+ * transport is only allowed to issue FC-NVME LS's on behalf of an
+ * association that was created prior by a Create Association LS.
+ * The hosthandle will originate from the LLDD in the struct
+ * nvmefc_ls_rsp structure for the Create Association LS that
+ * was delivered to the transport. The transport will save the
+ * hosthandle as an attribute of the association. If the LLDD
+ * loses connectivity with the remote port, it must call the
+ * nvmet_fc_invalidate_host() routine to remove any references to
+ * the remote port in the transport.
+ * The LLDD is to allocate an exchange, issue the LS request, obtain
+ * the LS response, and call the "done" routine specified in the
+ * request structure (argument to done is the ls request structure
+ * itself).
+ * Entrypoint is Optional - but highly recommended.
+ *
+ * @ls_abort: called to request the LLDD to abort the indicated ls request.
+ * The call may return before the abort has completed. After aborting
+ * the request, the LLDD must still call the ls request done routine
+ * indicating an FC transport Aborted status.
+ * Entrypoint is Mandatory if the ls_req entry point is specified.
+ *
+ * @host_release: called to inform the LLDD that the request to invalidate
+ * the host port indicated by the hosthandle has been fully completed.
+ * No associations exist with the host port and there will be no
+ * further references to hosthandle.
+ * Entrypoint is Mandatory if the lldd calls nvmet_fc_invalidate_host().
+ *
* @max_hw_queues: indicates the maximum number of hw queues the LLDD
* supports for cpu affinitization.
* Value is Mandatory. Must be at least 1.
@@ -826,11 +932,19 @@ struct nvmet_fc_target_port {
* area solely for the of the LLDD and its location is specified by
* the targetport->private pointer.
* Value is Mandatory. Allowed to be zero.
+ *
+ * @lsrqst_priv_sz: The LLDD sets this field to the amount of additional
+ * memory that it would like nvmet-fc layer to allocate on the LLDD's
+ * behalf whenever a ls request structure is allocated. The additional
+ * memory area is solely for use by the LLDD and its location is
+ * specified by the ls_request->private pointer.
+ * Value is Mandatory. Allowed to be zero.
+ *
*/
struct nvmet_fc_target_template {
void (*targetport_delete)(struct nvmet_fc_target_port *tgtport);
int (*xmt_ls_rsp)(struct nvmet_fc_target_port *tgtport,
- struct nvmefc_tgt_ls_req *tls_req);
+ struct nvmefc_ls_rsp *ls_rsp);
int (*fcp_op)(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *fcpreq);
void (*fcp_abort)(struct nvmet_fc_target_port *tgtport,
@@ -840,6 +954,11 @@ struct nvmet_fc_target_template {
void (*defer_rcv)(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *fcpreq);
void (*discovery_event)(struct nvmet_fc_target_port *tgtport);
+ int (*ls_req)(struct nvmet_fc_target_port *targetport,
+ void *hosthandle, struct nvmefc_ls_req *lsreq);
+ void (*ls_abort)(struct nvmet_fc_target_port *targetport,
+ void *hosthandle, struct nvmefc_ls_req *lsreq);
+ void (*host_release)(void *hosthandle);
u32 max_hw_queues;
u16 max_sgl_segments;
@@ -848,7 +967,9 @@ struct nvmet_fc_target_template {
u32 target_features;
+ /* sizes of additional private data for data structures */
u32 target_priv_sz;
+ u32 lsrqst_priv_sz;
};
@@ -859,10 +980,61 @@ int nvmet_fc_register_targetport(struct nvmet_fc_port_info *portinfo,
int nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *tgtport);
+/*
+ * Routine called to pass a NVME-FC LS request, received by the lldd,
+ * to the nvmet-fc transport.
+ *
+ * If the return value is zero: the LS was successfully accepted by the
+ * transport.
+ * If the return value is non-zero: the transport has not accepted the
+ * LS. The lldd should ABTS-LS the LS.
+ *
+ * Note: if the LLDD receives and ABTS for the LS prior to the transport
+ * calling the ops->xmt_ls_rsp() routine to transmit a response, the LLDD
+ * shall mark the LS as aborted, and when the xmt_ls_rsp() is called: the
+ * response shall not be transmit and the struct nvmefc_ls_rsp() done
+ * routine shall be called. The LLDD may transmit the ABTS response as
+ * soon as the LS was marked or can delay until the xmt_ls_rsp() call is
+ * made.
+ * Note: if an RCV LS was successfully posted to the transport and the
+ * targetport is then unregistered before xmt_ls_rsp() was called for
+ * the lsrsp structure, the transport will still call xmt_ls_rsp()
+ * afterward to cleanup the outstanding lsrsp structure. The LLDD should
+ * noop the transmission of the rsp and call the lsrsp->done() routine
+ * to allow the lsrsp structure to be released.
+ */
int nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *tgtport,
- struct nvmefc_tgt_ls_req *lsreq,
+ void *hosthandle,
+ struct nvmefc_ls_rsp *rsp,
void *lsreqbuf, u32 lsreqbuf_len);
+/*
+ * Routine called by the LLDD whenever it has a logout or loss of
+ * connectivity to a NVME-FC host port which there had been active
+ * NVMe controllers for. The host port is indicated by the
+ * hosthandle. The hosthandle is given to the nvmet-fc transport
+ * when a NVME LS was received, typically to create a new association.
+ * The nvmet-fc transport will cache the hostport value with the
+ * association for use in LS requests for the association.
+ * When the LLDD calls this routine, the nvmet-fc transport will
+ * immediately terminate all associations that were created with
+ * the hosthandle host port.
+ * The LLDD, after calling this routine and having control returned,
+ * must assume the transport may subsequently utilize hosthandle as
+ * part of sending LS's to terminate the association. The LLDD
+ * should reject the LS's if they are attempted.
+ * Once the last association has terminated for the hosthandle host
+ * port, the nvmet-fc transport will call the ops->host_release()
+ * callback. As of the callback, the nvmet-fc transport will no
+ * longer reference hosthandle.
+ */
+void nvmet_fc_invalidate_host(struct nvmet_fc_target_port *tgtport,
+ void *hosthandle);
+
+/*
+ * If nvmet_fc_rcv_fcp_req returns non-zero, the transport has not accepted
+ * the FCP cmd. The lldd should ABTS-LS the cmd.
+ */
int nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *tgtport,
struct nvmefc_tgt_fcp_req *fcpreq,
void *cmdiubuf, u32 cmdiubuf_len);