diff options
-rw-r--r-- | kernel/locking/mutex.c | 372 | ||||
-rw-r--r-- | kernel/locking/ww_mutex.h | 369 |
2 files changed, 370 insertions, 371 deletions
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c index 070f6f1119cd..9906ca6cc912 100644 --- a/kernel/locking/mutex.c +++ b/kernel/locking/mutex.c @@ -281,215 +281,7 @@ void __sched mutex_lock(struct mutex *lock) EXPORT_SYMBOL(mutex_lock); #endif -/* - * Wait-Die: - * The newer transactions are killed when: - * It (the new transaction) makes a request for a lock being held - * by an older transaction. - * - * Wound-Wait: - * The newer transactions are wounded when: - * An older transaction makes a request for a lock being held by - * the newer transaction. - */ - -/* - * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired - * it. - */ -static __always_inline void -ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) -{ -#ifdef CONFIG_DEBUG_MUTEXES - /* - * If this WARN_ON triggers, you used ww_mutex_lock to acquire, - * but released with a normal mutex_unlock in this call. - * - * This should never happen, always use ww_mutex_unlock. - */ - DEBUG_LOCKS_WARN_ON(ww->ctx); - - /* - * Not quite done after calling ww_acquire_done() ? - */ - DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); - - if (ww_ctx->contending_lock) { - /* - * After -EDEADLK you tried to - * acquire a different ww_mutex? Bad! - */ - DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); - - /* - * You called ww_mutex_lock after receiving -EDEADLK, - * but 'forgot' to unlock everything else first? - */ - DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); - ww_ctx->contending_lock = NULL; - } - - /* - * Naughty, using a different class will lead to undefined behavior! - */ - DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); -#endif - ww_ctx->acquired++; - ww->ctx = ww_ctx; -} - -/* - * Determine if context @a is 'after' context @b. IOW, @a is a younger - * transaction than @b and depending on algorithm either needs to wait for - * @b or die. - */ -static inline bool __sched -__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) -{ - - return (signed long)(a->stamp - b->stamp) > 0; -} - -/* - * Wait-Die; wake a younger waiter context (when locks held) such that it can - * die. - * - * Among waiters with context, only the first one can have other locks acquired - * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and - * __ww_mutex_check_kill() wake any but the earliest context. - */ -static bool __sched -__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter, - struct ww_acquire_ctx *ww_ctx) -{ - if (!ww_ctx->is_wait_die) - return false; - - if (waiter->ww_ctx->acquired > 0 && - __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) { - debug_mutex_wake_waiter(lock, waiter); - wake_up_process(waiter->task); - } - - return true; -} - -/* - * Wound-Wait; wound a younger @hold_ctx if it holds the lock. - * - * Wound the lock holder if there are waiters with older transactions than - * the lock holders. Even if multiple waiters may wound the lock holder, - * it's sufficient that only one does. - */ -static bool __ww_mutex_wound(struct mutex *lock, - struct ww_acquire_ctx *ww_ctx, - struct ww_acquire_ctx *hold_ctx) -{ - struct task_struct *owner = __mutex_owner(lock); - - lockdep_assert_held(&lock->wait_lock); - - /* - * Possible through __ww_mutex_add_waiter() when we race with - * ww_mutex_set_context_fastpath(). In that case we'll get here again - * through __ww_mutex_check_waiters(). - */ - if (!hold_ctx) - return false; - - /* - * Can have !owner because of __mutex_unlock_slowpath(), but if owner, - * it cannot go away because we'll have FLAG_WAITERS set and hold - * wait_lock. - */ - if (!owner) - return false; - - if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) { - hold_ctx->wounded = 1; - - /* - * wake_up_process() paired with set_current_state() - * inserts sufficient barriers to make sure @owner either sees - * it's wounded in __ww_mutex_check_kill() or has a - * wakeup pending to re-read the wounded state. - */ - if (owner != current) - wake_up_process(owner); - - return true; - } - - return false; -} - -/* - * We just acquired @lock under @ww_ctx, if there are later contexts waiting - * behind us on the wait-list, check if they need to die, or wound us. - * - * See __ww_mutex_add_waiter() for the list-order construction; basically the - * list is ordered by stamp, smallest (oldest) first. - * - * This relies on never mixing wait-die/wound-wait on the same wait-list; - * which is currently ensured by that being a ww_class property. - * - * The current task must not be on the wait list. - */ -static void __sched -__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) -{ - struct mutex_waiter *cur; - - lockdep_assert_held(&lock->wait_lock); - - list_for_each_entry(cur, &lock->wait_list, list) { - if (!cur->ww_ctx) - continue; - - if (__ww_mutex_die(lock, cur, ww_ctx) || - __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx)) - break; - } -} - -/* - * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx - * and wake up any waiters so they can recheck. - */ -static __always_inline void -ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) -{ - ww_mutex_lock_acquired(lock, ctx); - - /* - * The lock->ctx update should be visible on all cores before - * the WAITERS check is done, otherwise contended waiters might be - * missed. The contended waiters will either see ww_ctx == NULL - * and keep spinning, or it will acquire wait_lock, add itself - * to waiter list and sleep. - */ - smp_mb(); /* See comments above and below. */ - - /* - * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS - * MB MB - * [R] MUTEX_FLAG_WAITERS [R] ww->ctx - * - * The memory barrier above pairs with the memory barrier in - * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx - * and/or !empty list. - */ - if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) - return; - - /* - * Uh oh, we raced in fastpath, check if any of the waiters need to - * die or wound us. - */ - raw_spin_lock(&lock->base.wait_lock); - __ww_mutex_check_waiters(&lock->base, ctx); - raw_spin_unlock(&lock->base.wait_lock); -} +#include "ww_mutex.h" #ifdef CONFIG_MUTEX_SPIN_ON_OWNER @@ -744,20 +536,6 @@ void __sched mutex_unlock(struct mutex *lock) } EXPORT_SYMBOL(mutex_unlock); -static void __ww_mutex_unlock(struct ww_mutex *lock) -{ - /* - * The unlocking fastpath is the 0->1 transition from 'locked' - * into 'unlocked' state: - */ - if (lock->ctx) { - MUTEX_WARN_ON(!lock->ctx->acquired); - if (lock->ctx->acquired > 0) - lock->ctx->acquired--; - lock->ctx = NULL; - } -} - /** * ww_mutex_unlock - release the w/w mutex * @lock: the mutex to be released @@ -776,154 +554,6 @@ void __sched ww_mutex_unlock(struct ww_mutex *lock) } EXPORT_SYMBOL(ww_mutex_unlock); - -static __always_inline int __sched -__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) -{ - if (ww_ctx->acquired > 0) { -#ifdef CONFIG_DEBUG_MUTEXES - struct ww_mutex *ww; - - ww = container_of(lock, struct ww_mutex, base); - DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); - ww_ctx->contending_lock = ww; -#endif - return -EDEADLK; - } - - return 0; -} - - -/* - * Check the wound condition for the current lock acquire. - * - * Wound-Wait: If we're wounded, kill ourself. - * - * Wait-Die: If we're trying to acquire a lock already held by an older - * context, kill ourselves. - * - * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to - * look at waiters before us in the wait-list. - */ -static inline int __sched -__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter, - struct ww_acquire_ctx *ctx) -{ - struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); - struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); - struct mutex_waiter *cur; - - if (ctx->acquired == 0) - return 0; - - if (!ctx->is_wait_die) { - if (ctx->wounded) - return __ww_mutex_kill(lock, ctx); - - return 0; - } - - if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) - return __ww_mutex_kill(lock, ctx); - - /* - * If there is a waiter in front of us that has a context, then its - * stamp is earlier than ours and we must kill ourself. - */ - cur = waiter; - list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { - if (!cur->ww_ctx) - continue; - - return __ww_mutex_kill(lock, ctx); - } - - return 0; -} - -/* - * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest - * first. Such that older contexts are preferred to acquire the lock over - * younger contexts. - * - * Waiters without context are interspersed in FIFO order. - * - * Furthermore, for Wait-Die kill ourself immediately when possible (there are - * older contexts already waiting) to avoid unnecessary waiting and for - * Wound-Wait ensure we wound the owning context when it is younger. - */ -static inline int __sched -__ww_mutex_add_waiter(struct mutex_waiter *waiter, - struct mutex *lock, - struct ww_acquire_ctx *ww_ctx) -{ - struct mutex_waiter *cur; - struct list_head *pos; - bool is_wait_die; - - if (!ww_ctx) { - __mutex_add_waiter(lock, waiter, &lock->wait_list); - return 0; - } - - is_wait_die = ww_ctx->is_wait_die; - - /* - * Add the waiter before the first waiter with a higher stamp. - * Waiters without a context are skipped to avoid starving - * them. Wait-Die waiters may die here. Wound-Wait waiters - * never die here, but they are sorted in stamp order and - * may wound the lock holder. - */ - pos = &lock->wait_list; - list_for_each_entry_reverse(cur, &lock->wait_list, list) { - if (!cur->ww_ctx) - continue; - - if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { - /* - * Wait-Die: if we find an older context waiting, there - * is no point in queueing behind it, as we'd have to - * die the moment it would acquire the lock. - */ - if (is_wait_die) { - int ret = __ww_mutex_kill(lock, ww_ctx); - - if (ret) - return ret; - } - - break; - } - - pos = &cur->list; - - /* Wait-Die: ensure younger waiters die. */ - __ww_mutex_die(lock, cur, ww_ctx); - } - - __mutex_add_waiter(lock, waiter, pos); - - /* - * Wound-Wait: if we're blocking on a mutex owned by a younger context, - * wound that such that we might proceed. - */ - if (!is_wait_die) { - struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); - - /* - * See ww_mutex_set_context_fastpath(). Orders setting - * MUTEX_FLAG_WAITERS vs the ww->ctx load, - * such that either we or the fastpath will wound @ww->ctx. - */ - smp_mb(); - __ww_mutex_wound(lock, ww_ctx, ww->ctx); - } - - return 0; -} - /* * Lock a mutex (possibly interruptible), slowpath: */ diff --git a/kernel/locking/ww_mutex.h b/kernel/locking/ww_mutex.h new file mode 100644 index 000000000000..dadc798dfdee --- /dev/null +++ b/kernel/locking/ww_mutex.h @@ -0,0 +1,369 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ + +/* + * Wait-Die: + * The newer transactions are killed when: + * It (the new transaction) makes a request for a lock being held + * by an older transaction. + * + * Wound-Wait: + * The newer transactions are wounded when: + * An older transaction makes a request for a lock being held by + * the newer transaction. + */ + +/* + * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired + * it. + */ +static __always_inline void +ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) +{ +#ifdef CONFIG_DEBUG_MUTEXES + /* + * If this WARN_ON triggers, you used ww_mutex_lock to acquire, + * but released with a normal mutex_unlock in this call. + * + * This should never happen, always use ww_mutex_unlock. + */ + DEBUG_LOCKS_WARN_ON(ww->ctx); + + /* + * Not quite done after calling ww_acquire_done() ? + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); + + if (ww_ctx->contending_lock) { + /* + * After -EDEADLK you tried to + * acquire a different ww_mutex? Bad! + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); + + /* + * You called ww_mutex_lock after receiving -EDEADLK, + * but 'forgot' to unlock everything else first? + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); + ww_ctx->contending_lock = NULL; + } + + /* + * Naughty, using a different class will lead to undefined behavior! + */ + DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); +#endif + ww_ctx->acquired++; + ww->ctx = ww_ctx; +} + +/* + * Determine if context @a is 'after' context @b. IOW, @a is a younger + * transaction than @b and depending on algorithm either needs to wait for + * @b or die. + */ +static inline bool __sched +__ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) +{ + + return (signed long)(a->stamp - b->stamp) > 0; +} + +/* + * Wait-Die; wake a younger waiter context (when locks held) such that it can + * die. + * + * Among waiters with context, only the first one can have other locks acquired + * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and + * __ww_mutex_check_kill() wake any but the earliest context. + */ +static bool __sched +__ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter, + struct ww_acquire_ctx *ww_ctx) +{ + if (!ww_ctx->is_wait_die) + return false; + + if (waiter->ww_ctx->acquired > 0 && + __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) { + debug_mutex_wake_waiter(lock, waiter); + wake_up_process(waiter->task); + } + + return true; +} + +/* + * Wound-Wait; wound a younger @hold_ctx if it holds the lock. + * + * Wound the lock holder if there are waiters with older transactions than + * the lock holders. Even if multiple waiters may wound the lock holder, + * it's sufficient that only one does. + */ +static bool __ww_mutex_wound(struct mutex *lock, + struct ww_acquire_ctx *ww_ctx, + struct ww_acquire_ctx *hold_ctx) +{ + struct task_struct *owner = __mutex_owner(lock); + + lockdep_assert_held(&lock->wait_lock); + + /* + * Possible through __ww_mutex_add_waiter() when we race with + * ww_mutex_set_context_fastpath(). In that case we'll get here again + * through __ww_mutex_check_waiters(). + */ + if (!hold_ctx) + return false; + + /* + * Can have !owner because of __mutex_unlock_slowpath(), but if owner, + * it cannot go away because we'll have FLAG_WAITERS set and hold + * wait_lock. + */ + if (!owner) + return false; + + if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) { + hold_ctx->wounded = 1; + + /* + * wake_up_process() paired with set_current_state() + * inserts sufficient barriers to make sure @owner either sees + * it's wounded in __ww_mutex_check_kill() or has a + * wakeup pending to re-read the wounded state. + */ + if (owner != current) + wake_up_process(owner); + + return true; + } + + return false; +} + +/* + * We just acquired @lock under @ww_ctx, if there are later contexts waiting + * behind us on the wait-list, check if they need to die, or wound us. + * + * See __ww_mutex_add_waiter() for the list-order construction; basically the + * list is ordered by stamp, smallest (oldest) first. + * + * This relies on never mixing wait-die/wound-wait on the same wait-list; + * which is currently ensured by that being a ww_class property. + * + * The current task must not be on the wait list. + */ +static void __sched +__ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) +{ + struct mutex_waiter *cur; + + lockdep_assert_held(&lock->wait_lock); + + list_for_each_entry(cur, &lock->wait_list, list) { + if (!cur->ww_ctx) + continue; + + if (__ww_mutex_die(lock, cur, ww_ctx) || + __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx)) + break; + } +} + +/* + * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx + * and wake up any waiters so they can recheck. + */ +static __always_inline void +ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ + ww_mutex_lock_acquired(lock, ctx); + + /* + * The lock->ctx update should be visible on all cores before + * the WAITERS check is done, otherwise contended waiters might be + * missed. The contended waiters will either see ww_ctx == NULL + * and keep spinning, or it will acquire wait_lock, add itself + * to waiter list and sleep. + */ + smp_mb(); /* See comments above and below. */ + + /* + * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS + * MB MB + * [R] MUTEX_FLAG_WAITERS [R] ww->ctx + * + * The memory barrier above pairs with the memory barrier in + * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx + * and/or !empty list. + */ + if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) + return; + + /* + * Uh oh, we raced in fastpath, check if any of the waiters need to + * die or wound us. + */ + raw_spin_lock(&lock->base.wait_lock); + __ww_mutex_check_waiters(&lock->base, ctx); + raw_spin_unlock(&lock->base.wait_lock); +} + +static __always_inline int __sched +__ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) +{ + if (ww_ctx->acquired > 0) { +#ifdef CONFIG_DEBUG_MUTEXES + struct ww_mutex *ww; + + ww = container_of(lock, struct ww_mutex, base); + DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); + ww_ctx->contending_lock = ww; +#endif + return -EDEADLK; + } + + return 0; +} + +/* + * Check the wound condition for the current lock acquire. + * + * Wound-Wait: If we're wounded, kill ourself. + * + * Wait-Die: If we're trying to acquire a lock already held by an older + * context, kill ourselves. + * + * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to + * look at waiters before us in the wait-list. + */ +static inline int __sched +__ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter, + struct ww_acquire_ctx *ctx) +{ + struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); + struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); + struct mutex_waiter *cur; + + if (ctx->acquired == 0) + return 0; + + if (!ctx->is_wait_die) { + if (ctx->wounded) + return __ww_mutex_kill(lock, ctx); + + return 0; + } + + if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) + return __ww_mutex_kill(lock, ctx); + + /* + * If there is a waiter in front of us that has a context, then its + * stamp is earlier than ours and we must kill ourself. + */ + cur = waiter; + list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { + if (!cur->ww_ctx) + continue; + + return __ww_mutex_kill(lock, ctx); + } + + return 0; +} + +/* + * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest + * first. Such that older contexts are preferred to acquire the lock over + * younger contexts. + * + * Waiters without context are interspersed in FIFO order. + * + * Furthermore, for Wait-Die kill ourself immediately when possible (there are + * older contexts already waiting) to avoid unnecessary waiting and for + * Wound-Wait ensure we wound the owning context when it is younger. + */ +static inline int __sched +__ww_mutex_add_waiter(struct mutex_waiter *waiter, + struct mutex *lock, + struct ww_acquire_ctx *ww_ctx) +{ + struct mutex_waiter *cur; + struct list_head *pos; + bool is_wait_die; + + if (!ww_ctx) { + __mutex_add_waiter(lock, waiter, &lock->wait_list); + return 0; + } + + is_wait_die = ww_ctx->is_wait_die; + + /* + * Add the waiter before the first waiter with a higher stamp. + * Waiters without a context are skipped to avoid starving + * them. Wait-Die waiters may die here. Wound-Wait waiters + * never die here, but they are sorted in stamp order and + * may wound the lock holder. + */ + pos = &lock->wait_list; + list_for_each_entry_reverse(cur, &lock->wait_list, list) { + if (!cur->ww_ctx) + continue; + + if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { + /* + * Wait-Die: if we find an older context waiting, there + * is no point in queueing behind it, as we'd have to + * die the moment it would acquire the lock. + */ + if (is_wait_die) { + int ret = __ww_mutex_kill(lock, ww_ctx); + + if (ret) + return ret; + } + + break; + } + + pos = &cur->list; + + /* Wait-Die: ensure younger waiters die. */ + __ww_mutex_die(lock, cur, ww_ctx); + } + + __mutex_add_waiter(lock, waiter, pos); + + /* + * Wound-Wait: if we're blocking on a mutex owned by a younger context, + * wound that such that we might proceed. + */ + if (!is_wait_die) { + struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); + + /* + * See ww_mutex_set_context_fastpath(). Orders setting + * MUTEX_FLAG_WAITERS vs the ww->ctx load, + * such that either we or the fastpath will wound @ww->ctx. + */ + smp_mb(); + __ww_mutex_wound(lock, ww_ctx, ww->ctx); + } + + return 0; +} + +static inline void __ww_mutex_unlock(struct ww_mutex *lock) +{ + if (lock->ctx) { +#ifdef CONFIG_DEBUG_MUTEXES + DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); +#endif + if (lock->ctx->acquired > 0) + lock->ctx->acquired--; + lock->ctx = NULL; + } +} |