diff options
-rw-r--r-- | drivers/net/dsa/bcm_sf2.c | 1 | ||||
-rw-r--r-- | drivers/net/dsa/bcm_sf2.h | 1 | ||||
-rw-r--r-- | drivers/net/dsa/bcm_sf2_cfp.c | 565 | ||||
-rw-r--r-- | drivers/net/dsa/bcm_sf2_regs.h | 7 |
4 files changed, 534 insertions, 40 deletions
diff --git a/drivers/net/dsa/bcm_sf2.c b/drivers/net/dsa/bcm_sf2.c index b43c063b9634..2574a52ee161 100644 --- a/drivers/net/dsa/bcm_sf2.c +++ b/drivers/net/dsa/bcm_sf2.c @@ -1067,6 +1067,7 @@ static int bcm_sf2_sw_probe(struct platform_device *pdev) * permanently used */ set_bit(0, priv->cfp.used); + set_bit(0, priv->cfp.unique); bcm_sf2_identify_ports(priv, dn->child); diff --git a/drivers/net/dsa/bcm_sf2.h b/drivers/net/dsa/bcm_sf2.h index 1922e027ff59..cc31e986e6e3 100644 --- a/drivers/net/dsa/bcm_sf2.h +++ b/drivers/net/dsa/bcm_sf2.h @@ -54,6 +54,7 @@ struct bcm_sf2_cfp_priv { /* Mutex protecting concurrent accesses to the CFP registers */ struct mutex lock; DECLARE_BITMAP(used, CFP_NUM_RULES); + DECLARE_BITMAP(unique, CFP_NUM_RULES); unsigned int rules_cnt; }; diff --git a/drivers/net/dsa/bcm_sf2_cfp.c b/drivers/net/dsa/bcm_sf2_cfp.c index 9c8299580795..0861f66ef739 100644 --- a/drivers/net/dsa/bcm_sf2_cfp.c +++ b/drivers/net/dsa/bcm_sf2_cfp.c @@ -57,6 +57,60 @@ static const struct cfp_udf_layout udf_tcpip4_layout = { }, }; +/* UDF slices layout for a TCPv6/UDPv6 specification */ +static const struct cfp_udf_layout udf_tcpip6_layout = { + .udfs = { + [0] = { + .slices = { + /* End of L2, byte offset 8, src IP[0:15] */ + CFG_UDF_EOL2 | 4, + /* End of L2, byte offset 10, src IP[16:31] */ + CFG_UDF_EOL2 | 5, + /* End of L2, byte offset 12, src IP[32:47] */ + CFG_UDF_EOL2 | 6, + /* End of L2, byte offset 14, src IP[48:63] */ + CFG_UDF_EOL2 | 7, + /* End of L2, byte offset 16, src IP[64:79] */ + CFG_UDF_EOL2 | 8, + /* End of L2, byte offset 18, src IP[80:95] */ + CFG_UDF_EOL2 | 9, + /* End of L2, byte offset 20, src IP[96:111] */ + CFG_UDF_EOL2 | 10, + /* End of L2, byte offset 22, src IP[112:127] */ + CFG_UDF_EOL2 | 11, + /* End of L3, byte offset 0, src port */ + CFG_UDF_EOL3 | 0, + }, + .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, + .base_offset = CORE_UDF_0_B_0_8_PORT_0, + }, + [3] = { + .slices = { + /* End of L2, byte offset 24, dst IP[0:15] */ + CFG_UDF_EOL2 | 12, + /* End of L2, byte offset 26, dst IP[16:31] */ + CFG_UDF_EOL2 | 13, + /* End of L2, byte offset 28, dst IP[32:47] */ + CFG_UDF_EOL2 | 14, + /* End of L2, byte offset 30, dst IP[48:63] */ + CFG_UDF_EOL2 | 15, + /* End of L2, byte offset 32, dst IP[64:79] */ + CFG_UDF_EOL2 | 16, + /* End of L2, byte offset 34, dst IP[80:95] */ + CFG_UDF_EOL2 | 17, + /* End of L2, byte offset 36, dst IP[96:111] */ + CFG_UDF_EOL2 | 18, + /* End of L2, byte offset 38, dst IP[112:127] */ + CFG_UDF_EOL2 | 19, + /* End of L3, byte offset 2, dst port */ + CFG_UDF_EOL3 | 1, + }, + .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, + .base_offset = CORE_UDF_0_D_0_11_PORT_0, + }, + }, +}; + static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) { unsigned int i, count = 0; @@ -153,7 +207,8 @@ static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, unsigned int rule_index, unsigned int port_num, - unsigned int queue_num) + unsigned int queue_num, + bool fwd_map_change) { int ret; u32 reg; @@ -161,14 +216,17 @@ static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, /* Replace ARL derived destination with DST_MAP derived, define * which port and queue this should be forwarded to. */ - reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) | - CHANGE_TC | queue_num << NEW_TC_SHIFT; + if (fwd_map_change) + reg = CHANGE_FWRD_MAP_IB_REP_ARL | + BIT(port_num + DST_MAP_IB_SHIFT) | + CHANGE_TC | queue_num << NEW_TC_SHIFT; + else + reg = 0; core_writel(priv, reg, CORE_ACT_POL_DATA0); /* Set classification ID that needs to be put in Broadcom tag */ - core_writel(priv, rule_index << CHAIN_ID_SHIFT, - CORE_ACT_POL_DATA1); + core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1); core_writel(priv, 0, CORE_ACT_POL_DATA2); @@ -337,7 +395,8 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, } /* Insert into Action and policer RAMs now */ - ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num, queue_num); + ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num, + queue_num, true); if (ret) return ret; @@ -348,17 +407,280 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, /* Flag the rule as being used and return it */ set_bit(rule_index, priv->cfp.used); + set_bit(rule_index, priv->cfp.unique); fs->location = rule_index; return 0; } +static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv, + const __be32 *ip6_addr, const __be16 port, + unsigned int slice_num) +{ + u32 reg, tmp, val; + + /* C-Tag [31:24] + * UDF_n_B8 [23:8] (port) + * UDF_n_B7 (upper) [7:0] (addr[15:8]) + */ + reg = be32_to_cpu(ip6_addr[3]); + val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff); + core_writel(priv, val, CORE_CFP_DATA_PORT(4)); + + /* UDF_n_B7 (lower) [31:24] (addr[7:0]) + * UDF_n_B6 [23:8] (addr[31:16]) + * UDF_n_B5 (upper) [7:0] (addr[47:40]) + */ + tmp = be32_to_cpu(ip6_addr[2]); + val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | + ((tmp >> 8) & 0xff); + core_writel(priv, val, CORE_CFP_DATA_PORT(3)); + + /* UDF_n_B5 (lower) [31:24] (addr[39:32]) + * UDF_n_B4 [23:8] (addr[63:48]) + * UDF_n_B3 (upper) [7:0] (addr[79:72]) + */ + reg = be32_to_cpu(ip6_addr[1]); + val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | + ((reg >> 8) & 0xff); + core_writel(priv, val, CORE_CFP_DATA_PORT(2)); + + /* UDF_n_B3 (lower) [31:24] (addr[71:64]) + * UDF_n_B2 [23:8] (addr[95:80]) + * UDF_n_B1 (upper) [7:0] (addr[111:104]) + */ + tmp = be32_to_cpu(ip6_addr[0]); + val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | + ((tmp >> 8) & 0xff); + core_writel(priv, val, CORE_CFP_DATA_PORT(1)); + + /* UDF_n_B1 (lower) [31:24] (addr[103:96]) + * UDF_n_B0 [23:8] (addr[127:112]) + * Reserved [7:4] + * Slice ID [3:2] + * Slice valid [1:0] + */ + reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | + SLICE_NUM(slice_num) | SLICE_VALID; + core_writel(priv, reg, CORE_CFP_DATA_PORT(0)); + + /* All other UDFs should be matched with the filter */ + core_writel(priv, 0x00ffffff, CORE_CFP_MASK_PORT(4)); + core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(3)); + core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2)); + core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1)); + core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0)); +} + +static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port, + unsigned int port_num, + unsigned int queue_num, + struct ethtool_rx_flow_spec *fs) +{ + unsigned int slice_num, rule_index[2]; + struct ethtool_tcpip6_spec *v6_spec; + const struct cfp_udf_layout *layout; + u8 ip_proto, ip_frag; + int ret = 0; + u8 num_udf; + u32 reg; + + switch (fs->flow_type & ~FLOW_EXT) { + case TCP_V6_FLOW: + ip_proto = IPPROTO_TCP; + v6_spec = &fs->h_u.tcp_ip6_spec; + break; + case UDP_V6_FLOW: + ip_proto = IPPROTO_UDP; + v6_spec = &fs->h_u.udp_ip6_spec; + break; + default: + return -EINVAL; + } + + ip_frag = be32_to_cpu(fs->m_ext.data[0]); + + layout = &udf_tcpip6_layout; + slice_num = bcm_sf2_get_slice_number(layout, 0); + if (slice_num == UDF_NUM_SLICES) + return -EINVAL; + + num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); + + /* Negotiate two indexes, one for the second half which we are chained + * from, which is what we will return to user-space, and a second one + * which is used to store its first half. That first half does not + * allow any choice of placement, so it just needs to find the next + * available bit. We return the second half as fs->location because + * that helps with the rule lookup later on since the second half is + * chained from its first half, we can easily identify IPv6 CFP rules + * by looking whether they carry a CHAIN_ID. + * + * We also want the second half to have a lower rule_index than its + * first half because the HW search is by incrementing addresses. + */ + if (fs->location == RX_CLS_LOC_ANY) + rule_index[0] = find_first_zero_bit(priv->cfp.used, + bcm_sf2_cfp_rule_size(priv)); + else + rule_index[0] = fs->location; + + /* Flag it as used (cleared on error path) such that we can immediately + * obtain a second one to chain from. + */ + set_bit(rule_index[0], priv->cfp.used); + + rule_index[1] = find_first_zero_bit(priv->cfp.used, + bcm_sf2_cfp_rule_size(priv)); + if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) { + ret = -ENOSPC; + goto out_err; + } + + /* Apply the UDF layout for this filter */ + bcm_sf2_cfp_udf_set(priv, layout, slice_num); + + /* Apply to all packets received through this port */ + core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); + + /* Source port map match */ + core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); + + /* S-Tag status [31:30] + * C-Tag status [29:28] + * L2 framing [27:26] + * L3 framing [25:24] + * IP ToS [23:16] + * IP proto [15:08] + * IP Fragm [7] + * Non 1st frag [6] + * IP Authen [5] + * TTL range [4:3] + * PPPoE session [2] + * Reserved [1] + * UDF_Valid[8] [0] + */ + reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT | + ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf); + core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); + + /* Mask with the specific layout for IPv6 packets including + * UDF_Valid[8] + */ + reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf); + core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); + + /* UDF_Valid[7:0] [31:24] + * S-Tag [23:8] + * C-Tag [7:0] + */ + core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5)); + + /* Mask all but valid UDFs */ + core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5)); + + /* Slice the IPv6 source address and port */ + bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc, slice_num); + + /* Insert into TCAM now because we need to insert a second rule */ + bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]); + + ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); + if (ret) { + pr_err("TCAM entry at addr %d failed\n", rule_index[0]); + goto out_err; + } + + /* Insert into Action and policer RAMs now */ + ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num, + queue_num, false); + if (ret) + goto out_err; + + /* Now deal with the second slice to chain this rule */ + slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1); + if (slice_num == UDF_NUM_SLICES) { + ret = -EINVAL; + goto out_err; + } + + num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); + + /* Apply the UDF layout for this filter */ + bcm_sf2_cfp_udf_set(priv, layout, slice_num); + + /* Chained rule, source port match is coming from the rule we are + * chained from. + */ + core_writel(priv, 0, CORE_CFP_DATA_PORT(7)); + core_writel(priv, 0, CORE_CFP_MASK_PORT(7)); + + /* + * CHAIN ID [31:24] chain to previous slice + * Reserved [23:20] + * UDF_Valid[11:8] [19:16] + * UDF_Valid[7:0] [15:8] + * UDF_n_D11 [7:0] + */ + reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 | + udf_lower_bits(num_udf) << 8; + core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); + + /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */ + reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 | + udf_lower_bits(num_udf) << 8; + core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); + + /* Don't care */ + core_writel(priv, 0, CORE_CFP_DATA_PORT(5)); + + /* Mask all */ + core_writel(priv, 0, CORE_CFP_MASK_PORT(5)); + + bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num); + + /* Insert into TCAM now */ + bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]); + + ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); + if (ret) { + pr_err("TCAM entry at addr %d failed\n", rule_index[1]); + goto out_err; + } + + /* Insert into Action and policer RAMs now, set chain ID to + * the one we are chained to + */ + ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num, + queue_num, true); + if (ret) + goto out_err; + + /* Turn on CFP for this rule now */ + reg = core_readl(priv, CORE_CFP_CTL_REG); + reg |= BIT(port); + core_writel(priv, reg, CORE_CFP_CTL_REG); + + /* Flag the second half rule as being used now, return it as the + * location, and flag it as unique while dumping rules + */ + set_bit(rule_index[1], priv->cfp.used); + set_bit(rule_index[1], priv->cfp.unique); + fs->location = rule_index[1]; + + return ret; + +out_err: + clear_bit(rule_index[0], priv->cfp.used); + return ret; +} + static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, struct ethtool_rx_flow_spec *fs) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int queue_num, port_num; - int ret; + int ret = -EINVAL; /* Check for unsupported extensions */ if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype || @@ -391,15 +713,26 @@ static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, if (port_num >= 7) port_num -= 1; - ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, queue_num, fs); - if (ret) - return ret; + switch (fs->flow_type & ~FLOW_EXT) { + case TCP_V4_FLOW: + case UDP_V4_FLOW: + ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, + queue_num, fs); + break; + case TCP_V6_FLOW: + case UDP_V6_FLOW: + ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num, + queue_num, fs); + break; + default: + break; + } - return 0; + return ret; } -static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, - u32 loc) +static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port, + u32 loc, u32 *next_loc) { int ret; u32 reg; @@ -415,6 +748,14 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, if (ret) return ret; + /* Check if this is possibly an IPv6 rule that would + * indicate we need to delete its companion rule + * as well + */ + reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); + if (next_loc) + *next_loc = (reg >> 24) & CHAIN_ID_MASK; + /* Clear its valid bits */ reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); reg &= ~SLICE_VALID; @@ -426,10 +767,28 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, return ret; clear_bit(loc, priv->cfp.used); + clear_bit(loc, priv->cfp.unique); return 0; } +static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, + u32 loc) +{ + u32 next_loc = 0; + int ret; + + ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc); + if (ret) + return ret; + + /* If this was an IPv6 rule, delete is companion rule too */ + if (next_loc) + ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL); + + return ret; +} + static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) { unsigned int i; @@ -444,12 +803,32 @@ static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) } static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port, - struct ethtool_tcpip4_spec *v4_spec, - struct ethtool_tcpip4_spec *v4_m_spec) + struct ethtool_rx_flow_spec *fs) { + struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL; u16 src_dst_port; u32 reg, ipv4; + reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); + + switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) { + case IPPROTO_TCP: + fs->flow_type = TCP_V4_FLOW; + v4_spec = &fs->h_u.tcp_ip4_spec; + v4_m_spec = &fs->m_u.tcp_ip4_spec; + break; + case IPPROTO_UDP: + fs->flow_type = UDP_V4_FLOW; + v4_spec = &fs->h_u.udp_ip4_spec; + v4_m_spec = &fs->m_u.udp_ip4_spec; + break; + default: + return -EINVAL; + } + + fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1); + v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK; + reg = core_readl(priv, CORE_CFP_DATA_PORT(3)); /* src port [15:8] */ src_dst_port = reg << 8; @@ -490,12 +869,128 @@ static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port, return 0; } +static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv, + __be32 *ip6_addr, __be16 *port, + __be32 *ip6_mask, __be16 *port_mask) +{ + u32 reg, tmp; + + /* C-Tag [31:24] + * UDF_n_B8 [23:8] (port) + * UDF_n_B7 (upper) [7:0] (addr[15:8]) + */ + reg = core_readl(priv, CORE_CFP_DATA_PORT(4)); + *port = cpu_to_be32(reg) >> 8; + *port_mask = cpu_to_be16(~0); + tmp = (u32)(reg & 0xff) << 8; + + /* UDF_n_B7 (lower) [31:24] (addr[7:0]) + * UDF_n_B6 [23:8] (addr[31:16]) + * UDF_n_B5 (upper) [7:0] (addr[47:40]) + */ + reg = core_readl(priv, CORE_CFP_DATA_PORT(3)); + tmp |= (reg >> 24) & 0xff; + tmp |= (u32)((reg >> 8) << 16); + ip6_mask[3] = cpu_to_be32(~0); + ip6_addr[3] = cpu_to_be32(tmp); + tmp = (u32)(reg & 0xff) << 8; + + /* UDF_n_B5 (lower) [31:24] (addr[39:32]) + * UDF_n_B4 [23:8] (addr[63:48]) + * UDF_n_B3 (upper) [7:0] (addr[79:72]) + */ + reg = core_readl(priv, CORE_CFP_DATA_PORT(2)); + tmp |= (reg >> 24) & 0xff; + tmp |= (u32)((reg >> 8) << 16); + ip6_mask[2] = cpu_to_be32(~0); + ip6_addr[2] = cpu_to_be32(tmp); + tmp = (u32)(reg & 0xff) << 8; + + /* UDF_n_B3 (lower) [31:24] (addr[71:64]) + * UDF_n_B2 [23:8] (addr[95:80]) + * UDF_n_B1 (upper) [7:0] (addr[111:104]) + */ + reg = core_readl(priv, CORE_CFP_DATA_PORT(1)); + tmp |= (reg >> 24) & 0xff; + tmp |= (u32)((reg >> 8) << 16); + ip6_mask[1] = cpu_to_be32(~0); + ip6_addr[1] = cpu_to_be32(tmp); + tmp = (u32)(reg & 0xff) << 8; + + /* UDF_n_B1 (lower) [31:24] (addr[103:96]) + * UDF_n_B0 [23:8] (addr[127:112]) + * Reserved [7:4] + * Slice ID [3:2] + * Slice valid [1:0] + */ + reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); + tmp |= (reg >> 24) & 0xff; + tmp |= (u32)((reg >> 8) << 16); + ip6_mask[0] = cpu_to_be32(~0); + ip6_addr[0] = cpu_to_be32(tmp); + + if (!(reg & SLICE_VALID)) + return -EINVAL; + + return 0; +} + +static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port, + struct ethtool_rx_flow_spec *fs, + u32 next_loc) +{ + struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL; + u32 reg; + int ret; + + /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine + * assuming tcp_ip6_spec here being an union. + */ + v6_spec = &fs->h_u.tcp_ip6_spec; + v6_m_spec = &fs->m_u.tcp_ip6_spec; + + /* Read the second half first */ + ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst, + v6_m_spec->ip6dst, &v6_m_spec->pdst); + if (ret) + return ret; + + /* Read last to avoid next entry clobbering the results during search + * operations. We would not have the port enabled for this rule, so + * don't bother checking it. + */ + (void)core_readl(priv, CORE_CFP_DATA_PORT(7)); + + /* The slice number is valid, so read the rule we are chained from now + * which is our first half. + */ + bcm_sf2_cfp_rule_addr_set(priv, next_loc); + ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); + if (ret) + return ret; + + reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); + + switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) { + case IPPROTO_TCP: + fs->flow_type = TCP_V6_FLOW; + break; + case IPPROTO_UDP: + fs->flow_type = UDP_V6_FLOW; + break; + default: + return -EINVAL; + } + + return bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc, + v6_m_spec->ip6src, &v6_m_spec->psrc); +} + static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, struct ethtool_rxnfc *nfc) { - struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec; + u32 reg, ipv4_or_chain_id; unsigned int queue_num; - u32 reg; int ret; bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location); @@ -523,29 +1018,19 @@ static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK; nfc->fs.ring_cookie += queue_num; - /* Extract the IP protocol */ + /* Extract the L3_FRAMING or CHAIN_ID */ reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); - switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) { - case IPPROTO_TCP: - nfc->fs.flow_type = TCP_V4_FLOW; - v4_spec = &nfc->fs.h_u.tcp_ip4_spec; - v4_m_spec = &nfc->fs.m_u.tcp_ip4_spec; - break; - case IPPROTO_UDP: - nfc->fs.flow_type = UDP_V4_FLOW; - v4_spec = &nfc->fs.h_u.udp_ip4_spec; - v4_m_spec = &nfc->fs.m_u.udp_ip4_spec; - break; - default: - return -EINVAL; - } - - nfc->fs.m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1); - if (v4_spec) { - v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK; - ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, v4_spec, v4_m_spec); - } + /* With IPv6 rules this would contain a non-zero chain ID since + * we reserve entry 0 and it cannot be used. So if we read 0 here + * this means an IPv4 rule. + */ + ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff; + if (ipv4_or_chain_id == 0) + ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs); + else + ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs, + ipv4_or_chain_id); if (ret) return ret; @@ -571,7 +1056,7 @@ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, { unsigned int index = 1, rules_cnt = 0; - for_each_set_bit_from(index, priv->cfp.used, priv->num_cfp_rules) { + for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) { rule_locs[rules_cnt] = index; rules_cnt++; } @@ -594,7 +1079,7 @@ int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, switch (nfc->cmd) { case ETHTOOL_GRXCLSRLCNT: /* Subtract the default, unusable rule */ - nfc->rule_cnt = bitmap_weight(priv->cfp.used, + nfc->rule_cnt = bitmap_weight(priv->cfp.unique, priv->num_cfp_rules) - 1; /* We support specifying rule locations */ nfc->data |= RX_CLS_LOC_SPECIAL; diff --git a/drivers/net/dsa/bcm_sf2_regs.h b/drivers/net/dsa/bcm_sf2_regs.h index 263e4c758795..93c600d1f732 100644 --- a/drivers/net/dsa/bcm_sf2_regs.h +++ b/drivers/net/dsa/bcm_sf2_regs.h @@ -313,6 +313,7 @@ enum bcm_sf2_reg_offs { #define SLICE_VALID 3 #define SLICE_NUM_SHIFT 2 #define SLICE_NUM(x) ((x) << SLICE_NUM_SHIFT) +#define SLICE_NUM_MASK 0xff #define CORE_CFP_MASK_PORT_0 0x280c0 @@ -408,6 +409,12 @@ enum bcm_sf2_reg_offs { #define CFG_UDF_EOL2 (2 << CFG_UDF_OFFSET_BASE_SHIFT) #define CFG_UDF_EOL3 (3 << CFG_UDF_OFFSET_BASE_SHIFT) +/* IPv6 slices */ +#define CORE_UDF_0_B_0_8_PORT_0 0x28500 + +/* IPv6 chained slices */ +#define CORE_UDF_0_D_0_11_PORT_0 0x28680 + /* Number of slices for IPv4, IPv6 and non-IP */ #define UDF_NUM_SLICES 4 #define UDFS_PER_SLICE 9 |