diff options
-rw-r--r-- | Documentation/admin-guide/media/index.rst | 5 | ||||
-rw-r--r-- | Documentation/core-api/gfp_mask-from-fs-io.rst | 20 | ||||
-rw-r--r-- | Documentation/doc-guide/kernel-doc.rst | 1 | ||||
-rw-r--r-- | Documentation/driver-api/pwrseq.rst | 8 | ||||
-rw-r--r-- | Documentation/filesystems/autofs.rst | 2 | ||||
-rw-r--r-- | Documentation/filesystems/dlmfs.rst | 2 | ||||
-rw-r--r-- | Documentation/filesystems/fsverity.rst | 2 | ||||
-rw-r--r-- | Documentation/filesystems/path-lookup.rst | 2 | ||||
-rw-r--r-- | Documentation/filesystems/path-lookup.txt | 2 | ||||
-rw-r--r-- | Documentation/filesystems/ramfs-rootfs-initramfs.rst | 2 | ||||
-rw-r--r-- | Documentation/kernel-hacking/hacking.rst | 2 | ||||
-rw-r--r-- | Documentation/process/debugging/driver_development_debugging_guide.rst | 223 | ||||
-rw-r--r-- | Documentation/process/debugging/index.rst | 78 | ||||
-rw-r--r-- | Documentation/process/debugging/media_specific_debugging_guide.rst | 180 | ||||
-rw-r--r-- | Documentation/process/debugging/userspace_debugging_guide.rst | 280 | ||||
-rw-r--r-- | Documentation/process/index.rst | 8 | ||||
-rw-r--r-- | Documentation/process/license-rules.rst | 18 |
17 files changed, 804 insertions, 31 deletions
diff --git a/Documentation/admin-guide/media/index.rst b/Documentation/admin-guide/media/index.rst index be7e0e4482ca..b11737ae6c04 100644 --- a/Documentation/admin-guide/media/index.rst +++ b/Documentation/admin-guide/media/index.rst @@ -20,6 +20,11 @@ Documentation/driver-api/media/index.rst - for driver development information and Kernel APIs used by media devices; +Documentation/process/debugging/media_specific_debugging_guide.rst + + - for advice about essential tools and techniques to debug drivers on this + subsystem + .. toctree:: :caption: Table of Contents :maxdepth: 2 diff --git a/Documentation/core-api/gfp_mask-from-fs-io.rst b/Documentation/core-api/gfp_mask-from-fs-io.rst index e7c32a8de126..858b2fbcb36c 100644 --- a/Documentation/core-api/gfp_mask-from-fs-io.rst +++ b/Documentation/core-api/gfp_mask-from-fs-io.rst @@ -55,14 +55,16 @@ scope. What about __vmalloc(GFP_NOFS) ============================== -vmalloc doesn't support GFP_NOFS semantic because there are hardcoded -GFP_KERNEL allocations deep inside the allocator which are quite non-trivial -to fix up. That means that calling ``vmalloc`` with GFP_NOFS/GFP_NOIO is -almost always a bug. The good news is that the NOFS/NOIO semantic can be -achieved by the scope API. +Since v5.17, and specifically after the commit 451769ebb7e79 ("mm/vmalloc: +alloc GFP_NO{FS,IO} for vmalloc"), GFP_NOFS/GFP_NOIO are now supported in +``[k]vmalloc`` by implicitly using scope API. + +In earlier kernels ``vmalloc`` didn't support GFP_NOFS semantic because there +were hardcoded GFP_KERNEL allocations deep inside the allocator. That means +that calling ``vmalloc`` with GFP_NOFS/GFP_NOIO was almost always a bug. In the ideal world, upper layers should already mark dangerous contexts -and so no special care is required and vmalloc should be called without -any problems. Sometimes if the context is not really clear or there are -layering violations then the recommended way around that is to wrap ``vmalloc`` -by the scope API with a comment explaining the problem. +and so no special care is required and ``vmalloc`` should be called without any +problems. Sometimes if the context is not really clear or there are layering +violations then the recommended way around that (on pre-v5.17 kernels) is to +wrap ``vmalloc`` by the scope API with a comment explaining the problem. diff --git a/Documentation/doc-guide/kernel-doc.rst b/Documentation/doc-guide/kernel-doc.rst index e6ffd59bb8f0..af9697e60165 100644 --- a/Documentation/doc-guide/kernel-doc.rst +++ b/Documentation/doc-guide/kernel-doc.rst @@ -533,6 +533,7 @@ identifiers: *[ function/type ...]* Include documentation for each *function* and *type* in *source*. If no *function* is specified, the documentation for all functions and types in the *source* will be included. + *type* can be a struct, union, enum, or typedef identifier. Examples:: diff --git a/Documentation/driver-api/pwrseq.rst b/Documentation/driver-api/pwrseq.rst index a644084ded17..ad18b2326b68 100644 --- a/Documentation/driver-api/pwrseq.rst +++ b/Documentation/driver-api/pwrseq.rst @@ -11,7 +11,7 @@ Introduction ============ This framework is designed to abstract complex power-up sequences that are -shared between multiple logical devices in the linux kernel. +shared between multiple logical devices in the Linux kernel. The intention is to allow consumers to obtain a power sequencing handle exposed by the power sequence provider and delegate the actual requesting and @@ -25,7 +25,7 @@ The power sequencing API uses a number of terms specific to the subsystem: Unit - A unit is a discreet chunk of a power sequence. For instance one unit may + A unit is a discrete chunk of a power sequence. For instance one unit may enable a set of regulators, another may enable a specific GPIO. Units can define dependencies in the form of other units that must be enabled before it itself can be. @@ -62,7 +62,7 @@ Provider interface The provider API is admittedly not nearly as straightforward as the one for consumers but it makes up for it in flexibility. -Each provider can logically split the power-up sequence into descrete chunks +Each provider can logically split the power-up sequence into discrete chunks (units) and define their dependencies. They can then expose named targets that consumers may use as the final point in the sequence that they wish to reach. @@ -72,7 +72,7 @@ register with the pwrseq subsystem by calling pwrseq_device_register(). Dynamic consumer matching ------------------------- -The main difference between pwrseq and other linux kernel providers is the +The main difference between pwrseq and other Linux kernel providers is the mechanism for dynamic matching of consumers and providers. Every power sequence provider driver must implement the `match()` callback and pass it to the pwrseq core when registering with the subsystems. diff --git a/Documentation/filesystems/autofs.rst b/Documentation/filesystems/autofs.rst index 1ac576458c69..5eb02394fcc3 100644 --- a/Documentation/filesystems/autofs.rst +++ b/Documentation/filesystems/autofs.rst @@ -442,7 +442,7 @@ which can be used to communicate directly with the autofs filesystem. It requires CAP_SYS_ADMIN for access. The 'ioctl's that can be used on this device are described in a separate -document `autofs-mount-control.txt`, and are summarised briefly here. +document `autofs-mount-control.rst`, and are summarised briefly here. Each ioctl is passed a pointer to an `autofs_dev_ioctl` structure:: struct autofs_dev_ioctl { diff --git a/Documentation/filesystems/dlmfs.rst b/Documentation/filesystems/dlmfs.rst index 7e2b1fd471d7..70d4e48242c3 100644 --- a/Documentation/filesystems/dlmfs.rst +++ b/Documentation/filesystems/dlmfs.rst @@ -36,7 +36,7 @@ None Usage ===== -If you're just interested in OCFS2, then please see ocfs2.txt. The +If you're just interested in OCFS2, then please see ocfs2.rst. The rest of this document will be geared towards those who want to use dlmfs for easy to setup and easy to use clustered locking in userspace. diff --git a/Documentation/filesystems/fsverity.rst b/Documentation/filesystems/fsverity.rst index 0e2fac7a16da..76e538217868 100644 --- a/Documentation/filesystems/fsverity.rst +++ b/Documentation/filesystems/fsverity.rst @@ -16,7 +16,7 @@ btrfs filesystems. Like fscrypt, not too much filesystem-specific code is needed to support fs-verity. fs-verity is similar to `dm-verity -<https://www.kernel.org/doc/Documentation/device-mapper/verity.txt>`_ +<https://www.kernel.org/doc/Documentation/admin-guide/device-mapper/verity.rst>`_ but works on files rather than block devices. On regular files on filesystems supporting fs-verity, userspace can execute an ioctl that causes the filesystem to build a Merkle tree for the file and persist diff --git a/Documentation/filesystems/path-lookup.rst b/Documentation/filesystems/path-lookup.rst index 2b2df6aa5432..9ced1135608e 100644 --- a/Documentation/filesystems/path-lookup.rst +++ b/Documentation/filesystems/path-lookup.rst @@ -531,7 +531,7 @@ this retry process in the next article. Automount points are locations in the filesystem where an attempt to lookup a name can trigger changes to how that lookup should be handled, in particular by mounting a filesystem there. These are -covered in greater detail in autofs.txt in the Linux documentation +covered in greater detail in autofs.rst in the Linux documentation tree, but a few notes specifically related to path lookup are in order here. diff --git a/Documentation/filesystems/path-lookup.txt b/Documentation/filesystems/path-lookup.txt index 1aa7ce099f6f..d2cf2852e1f8 100644 --- a/Documentation/filesystems/path-lookup.txt +++ b/Documentation/filesystems/path-lookup.txt @@ -379,4 +379,4 @@ Papers and other documentation on dcache locking 2. http://lse.sourceforge.net/locking/dcache/dcache.html -3. path-lookup.md in this directory. +3. path-lookup.rst in this directory. diff --git a/Documentation/filesystems/ramfs-rootfs-initramfs.rst b/Documentation/filesystems/ramfs-rootfs-initramfs.rst index 447f767c6462..fa4f81099cb4 100644 --- a/Documentation/filesystems/ramfs-rootfs-initramfs.rst +++ b/Documentation/filesystems/ramfs-rootfs-initramfs.rst @@ -315,7 +315,7 @@ the above threads) is: 2) The cpio archive format chosen by the kernel is simpler and cleaner (and thus easier to create and parse) than any of the (literally dozens of) various tar archive formats. The complete initramfs archive format is - explained in buffer-format.txt, created in usr/gen_init_cpio.c, and + explained in buffer-format.rst, created in usr/gen_init_cpio.c, and extracted in init/initramfs.c. All three together come to less than 26k total of human-readable text. diff --git a/Documentation/kernel-hacking/hacking.rst b/Documentation/kernel-hacking/hacking.rst index 1717348a4404..0042776a9e17 100644 --- a/Documentation/kernel-hacking/hacking.rst +++ b/Documentation/kernel-hacking/hacking.rst @@ -587,7 +587,7 @@ Defined in ``include/linux/export.h`` Similar to :c:func:`EXPORT_SYMBOL()` except that the symbols exported by :c:func:`EXPORT_SYMBOL_GPL()` can only be seen by -modules with a :c:func:`MODULE_LICENSE()` that specifies a GPL +modules with a :c:func:`MODULE_LICENSE()` that specifies a GPLv2 compatible license. It implies that the function is considered an internal implementation issue, and not really an interface. Some maintainers and developers may however require EXPORT_SYMBOL_GPL() diff --git a/Documentation/process/debugging/driver_development_debugging_guide.rst b/Documentation/process/debugging/driver_development_debugging_guide.rst new file mode 100644 index 000000000000..aef204094205 --- /dev/null +++ b/Documentation/process/debugging/driver_development_debugging_guide.rst @@ -0,0 +1,223 @@ +.. SPDX-License-Identifier: GPL-2.0 + +======================================== +Debugging advice for driver development +======================================== + +This document serves as a general starting point and lookup for debugging +device drivers. +While this guide focuses on debugging that requires re-compiling the +module/kernel, the :doc:`userspace debugging guide +</process/debugging/userspace_debugging_guide>` will guide +you through tools like dynamic debug, ftrace and other tools useful for +debugging issues and behavior. +For general debugging advice, see the :doc:`general advice document +</process/debugging/index>`. + +.. contents:: + :depth: 3 + +The following sections show you the available tools. + +printk() & friends +------------------ + +These are derivatives of printf() with varying destinations and support for +being dynamically turned on or off, or lack thereof. + +Simple printk() +~~~~~~~~~~~~~~~ + +The classic, can be used to great effect for quick and dirty development +of new modules or to extract arbitrary necessary data for troubleshooting. + +Prerequisite: ``CONFIG_PRINTK`` (usually enabled by default) + +**Pros**: + +- No need to learn anything, simple to use +- Easy to modify exactly to your needs (formatting of the data (See: + :doc:`/core-api/printk-formats`), visibility in the log) +- Can cause delays in the execution of the code (beneficial to confirm whether + timing is a factor) + +**Cons**: + +- Requires rebuilding the kernel/module +- Can cause delays in the execution of the code (which can cause issues to be + not reproducible) + +For the full documentation see :doc:`/core-api/printk-basics` + +Trace_printk +~~~~~~~~~~~~ + +Prerequisite: ``CONFIG_DYNAMIC_FTRACE`` & ``#include <linux/ftrace.h>`` + +It is a tiny bit less comfortable to use than printk(), because you will have +to read the messages from the trace file (See: :ref:`read_ftrace_log` +instead of from the kernel log, but very useful when printk() adds unwanted +delays into the code execution, causing issues to be flaky or hidden.) + +If the processing of this still causes timing issues then you can try +trace_puts(). + +For the full Documentation see trace_printk() + +dev_dbg +~~~~~~~ + +Print statement, which can be targeted by +:ref:`process/debugging/userspace_debugging_guide:dynamic debug` that contains +additional information about the device used within the context. + +**When is it appropriate to leave a debug print in the code?** + +Permanent debug statements have to be useful for a developer to troubleshoot +driver misbehavior. Judging that is a bit more of an art than a science, but +some guidelines are in the :ref:`Coding style guidelines +<process/coding-style:13) printing kernel messages>`. In almost all cases the +debug statements shouldn't be upstreamed, as a working driver is supposed to be +silent. + +Custom printk +~~~~~~~~~~~~~ + +Example:: + + #define core_dbg(fmt, arg...) do { \ + if (core_debug) \ + printk(KERN_DEBUG pr_fmt("core: " fmt), ## arg); \ + } while (0) + +**When should you do this?** + +It is better to just use a pr_debug(), which can later be turned on/off with +dynamic debug. Additionally, a lot of drivers activate these prints via a +variable like ``core_debug`` set by a module parameter. However, Module +parameters `are not recommended anymore +<https://lore.kernel.org/all/2024032757-surcharge-grime-d3dd@gregkh>`_. + +Ftrace +------ + +Creating a custom Ftrace tracepoint +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +A tracepoint adds a hook into your code that will be called and logged when the +tracepoint is enabled. This can be used, for example, to trace hitting a +conditional branch or to dump the internal state at specific points of the code +flow during a debugging session. + +Here is a basic description of :ref:`how to implement new tracepoints +<trace/tracepoints:usage>`. + +For the full event tracing documentation see :doc:`/trace/events` + +For the full Ftrace documentation see :doc:`/trace/ftrace` + +DebugFS +------- + +Prerequisite: ``CONFIG_DEBUG_FS` & `#include <linux/debugfs.h>`` + +DebugFS differs from the other approaches of debugging, as it doesn't write +messages to the kernel log nor add traces to the code. Instead it allows the +developer to handle a set of files. +With these files you can either store values of variables or make +register/memory dumps or you can make these files writable and modify +values/settings in the driver. + +Possible use-cases among others: + +- Store register values +- Keep track of variables +- Store errors +- Store settings +- Toggle a setting like debug on/off +- Error injection + +This is especially useful, when the size of a data dump would be hard to digest +as part of the general kernel log (for example when dumping raw bitstream data) +or when you are not interested in all the values all the time, but with the +possibility to inspect them. + +The general idea is: + +- Create a directory during probe (``struct dentry *parent = + debugfs_create_dir("my_driver", NULL);``) +- Create a file (``debugfs_create_u32("my_value", 444, parent, &my_variable);``) + + - In this example the file is found in + ``/sys/kernel/debug/my_driver/my_value`` (with read permissions for + user/group/all) + - any read of the file will return the current contents of the variable + ``my_variable`` + +- Clean up the directory when removing the device + (``debugfs_remove_recursive(parent);``) + +For the full documentation see :doc:`/filesystems/debugfs`. + +KASAN, UBSAN, lockdep and other error checkers +---------------------------------------------- + +KASAN (Kernel Address Sanitizer) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Prerequisite: ``CONFIG_KASAN`` + +KASAN is a dynamic memory error detector that helps to find use-after-free and +out-of-bounds bugs. It uses compile-time instrumentation to check every memory +access. + +For the full documentation see :doc:`/dev-tools/kasan`. + +UBSAN (Undefined Behavior Sanitizer) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Prerequisite: ``CONFIG_UBSAN`` + +UBSAN relies on compiler instrumentation and runtime checks to detect undefined +behavior. It is designed to find a variety of issues, including signed integer +overflow, array index out of bounds, and more. + +For the full documentation see :doc:`/dev-tools/ubsan` + +lockdep (Lock Dependency Validator) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Prerequisite: ``CONFIG_DEBUG_LOCKDEP`` + +lockdep is a runtime lock dependency validator that detects potential deadlocks +and other locking-related issues in the kernel. +It tracks lock acquisitions and releases, building a dependency graph that is +analyzed for potential deadlocks. +lockdep is especially useful for validating the correctness of lock ordering in +the kernel. + +PSI (Pressure stall information tracking) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Prerequisite: ``CONFIG_PSI`` + +PSI is a measurement tool to identify excessive overcommits on hardware +resources, that can cause performance disruptions or even OOM kills. + +device coredump +--------------- + +Prerequisite: ``#include <linux/devcoredump.h>`` + +Provides the infrastructure for a driver to provide arbitrary data to userland. +It is most often used in conjunction with udev or similar userland application +to listen for kernel uevents, which indicate that the dump is ready. Udev has +rules to copy that file somewhere for long-term storage and analysis, as by +default, the data for the dump is automatically cleaned up after 5 minutes. +That data is analyzed with driver-specific tools or GDB. + +You can find an example implementation at: +`drivers/media/platform/qcom/venus/core.c +<https://elixir.bootlin.com/linux/v6.11.6/source/drivers/media/platform/qcom/venus/core.c#L30>`__ + +**Copyright** ©2024 : Collabora diff --git a/Documentation/process/debugging/index.rst b/Documentation/process/debugging/index.rst new file mode 100644 index 000000000000..f6e4a00dfee3 --- /dev/null +++ b/Documentation/process/debugging/index.rst @@ -0,0 +1,78 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============================================ +Debugging advice for Linux Kernel developers +============================================ + +general guides +-------------- + +.. toctree:: + :maxdepth: 1 + + driver_development_debugging_guide + userspace_debugging_guide + +.. only:: subproject and html + +subsystem specific guides +------------------------- + +.. toctree:: + :maxdepth: 1 + + media_specific_debugging_guide + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` + +General debugging advice +======================== + +Depending on the issue, a different set of tools is available to track down the +problem or even to realize whether there is one in the first place. + +As a first step you have to figure out what kind of issue you want to debug. +Depending on the answer, your methodology and choice of tools may vary. + +Do I need to debug with limited access? +--------------------------------------- + +Do you have limited access to the machine or are you unable to stop the running +execution? + +In this case your debugging capability depends on built-in debugging support of +provided distribution kernel. +The :doc:`/process/debugging/userspace_debugging_guide` provides a brief +overview over a range of possible debugging tools in that situation. You can +check the capability of your kernel, in most cases, by looking into config file +within the /boot directory. + +Do I have root access to the system? +------------------------------------ + +Are you easily able to replace the module in question or to install a new +kernel? + +In that case your range of available tools is a lot bigger, you can find the +tools in the :doc:`/process/debugging/driver_development_debugging_guide`. + +Is timing a factor? +------------------- + +It is important to understand if the problem you want to debug manifests itself +consistently (i.e. given a set of inputs you always get the same, incorrect +output), or inconsistently. If it manifests itself inconsistently, some timing +factor might be at play. If inserting delays into the code does change the +behavior, then quite likely timing is a factor. + +When timing does alter the outcome of the code execution using a simple +printk() for debugging purposes may not work, a similar alternative is to use +trace_printk() , which logs the debug messages to the trace file instead of the +kernel log. + +**Copyright** ©2024 : Collabora diff --git a/Documentation/process/debugging/media_specific_debugging_guide.rst b/Documentation/process/debugging/media_specific_debugging_guide.rst new file mode 100644 index 000000000000..c5a93bafaf67 --- /dev/null +++ b/Documentation/process/debugging/media_specific_debugging_guide.rst @@ -0,0 +1,180 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============================================ +Debugging and tracing in the media subsystem +============================================ + +This document serves as a starting point and lookup for debugging device +drivers in the media subsystem and to debug these drivers from userspace. + +.. contents:: + :depth: 3 + +General debugging advice +------------------------ + +For general advice see the :doc:`general advice document +</process/debugging/index>`. + +The following sections show you some of the available tools. + +dev_debug module parameter +-------------------------- + +Every video device provides a ``dev_debug`` parameter, which allows to get +further insights into the IOCTLs in the background.:: + + # cat /sys/class/video4linux/video3/name + rkvdec + # echo 0xff > /sys/class/video4linux/video3/dev_debug + # dmesg -wH + [...] videodev: v4l2_open: video3: open (0) + [ +0.000036] video3: VIDIOC_QUERYCAP: driver=rkvdec, card=rkvdec, + bus=platform:rkvdec, version=0x00060900, capabilities=0x84204000, + device_caps=0x04204000 + +For the full documentation see :ref:`driver-api/media/v4l2-dev:video device +debugging` + +dev_dbg() / v4l2_dbg() +---------------------- + +Two debug print statements, which are specific for devices and for the v4l2 +subsystem, avoid adding these to your final submission unless they have +long-term value for investigations. + +For a general overview please see the +:ref:`process/debugging/driver_development_debugging_guide:printk() & friends` +guide. + +- Difference between both? + + - v4l2_dbg() utilizes v4l2_printk() under the hood, which further uses + printk() directly, thus it cannot be targeted by dynamic debug + - dev_dbg() can be targeted by dynamic debug + - v4l2_dbg() has a more specific prefix format for the media subsystem, while + dev_dbg only highlights the driver name and the location of the log + +Dynamic debug +------------- + +A method to trim down the debug output to your needs. + +For general advice see the +:ref:`process/debugging/userspace_debugging_guide:dynamic debug` guide. + +Here is one example, that enables all available pr_debug()'s within the file:: + + $ alias ddcmd='echo $* > /proc/dynamic_debug/control' + $ ddcmd '-p; file v4l2-h264.c +p' + $ grep =p /proc/dynamic_debug/control + drivers/media/v4l2-core/v4l2-h264.c:372 [v4l2_h264]print_ref_list_b =p + "ref_pic_list_b%u (cur_poc %u%c) %s" + drivers/media/v4l2-core/v4l2-h264.c:333 [v4l2_h264]print_ref_list_p =p + "ref_pic_list_p (cur_poc %u%c) %s\n" + +Ftrace +------ + +An internal kernel tracer that can trace static predefined events, function +calls, etc. Very useful for debugging problems without changing the kernel and +understanding the behavior of subsystems. + +For general advice see the +:ref:`process/debugging/userspace_debugging_guide:ftrace` guide. + +DebugFS +------- + +This tool allows you to dump or modify internal values of your driver to files +in a custom filesystem. + +For general advice see the +:ref:`process/debugging/driver_development_debugging_guide:debugfs` guide. + +Perf & alternatives +------------------- + +Tools to measure the various stats on a running system to diagnose issues. + +For general advice see the +:ref:`process/debugging/userspace_debugging_guide:perf & alternatives` guide. + +Example for media devices: + +Gather statistics data for a decoding job: (This example is on a RK3399 SoC +with the rkvdec codec driver using the `fluster test suite +<https://github.com/fluendo/fluster>`__):: + + perf stat -d python3 fluster.py run -d GStreamer-H.264-V4L2SL-Gst1.0 -ts + JVT-AVC_V1 -tv AUD_MW_E -j1 + ... + Performance counter stats for 'python3 fluster.py run -d + GStreamer-H.264-V4L2SL-Gst1.0 -ts JVT-AVC_V1 -tv AUD_MW_E -j1 -v': + + 7794.23 msec task-clock:u # 0.697 CPUs utilized + 0 context-switches:u # 0.000 /sec + 0 cpu-migrations:u # 0.000 /sec + 11901 page-faults:u # 1.527 K/sec + 882671556 cycles:u # 0.113 GHz (95.79%) + 711708695 instructions:u # 0.81 insn per cycle (95.79%) + 10581935 branches:u # 1.358 M/sec (15.13%) + 6871144 branch-misses:u # 64.93% of all branches (95.79%) + 281716547 L1-dcache-loads:u # 36.144 M/sec (95.79%) + 9019581 L1-dcache-load-misses:u # 3.20% of all L1-dcache accesses (95.79%) + <not supported> LLC-loads:u + <not supported> LLC-load-misses:u + + 11.180830431 seconds time elapsed + + 1.502318000 seconds user + 6.377221000 seconds sys + +The availability of events and metrics depends on the system you are running. + +Error checking & panic analysis +------------------------------- + +Various Kernel configuration options to enhance error detection of the Linux +Kernel with the cost of lowering performance. + +For general advice see the +:ref:`process/debugging/driver_development_debugging_guide:kasan, ubsan, +lockdep and other error checkers` guide. + +Driver verification with v4l2-compliance +---------------------------------------- + +To verify, that a driver adheres to the v4l2 API, the tool v4l2-compliance is +used, which is part of the `v4l_utils +<https://git.linuxtv.org/v4l-utils.git>`__, a suite of userspace tools to work +with the media subsystem. + +To see the detailed media topology (and check it) use:: + + v4l2-compliance -M /dev/mediaX --verbose + +You can also run a full compliance check for all devices referenced in the +media topology with:: + + v4l2-compliance -m /dev/mediaX + +Debugging problems with receiving video +--------------------------------------- + +Implementing vidioc_log_status in the driver: this can log the current status +to the kernel log. It's called by v4l2-ctl --log-status. Very useful for +debugging problems with receiving video (TV/S-Video/HDMI/etc) since the video +signal is external (so unpredictable). Less useful with camera sensor inputs +since you have control over what the camera sensor does. + +Usually you can just assign the default:: + + .vidioc_log_status = v4l2_ctrl_log_status, + +But you can also create your own callback, to create a custom status log. + +You can find an example in the cobalt driver +(`drivers/media/pci/cobalt/cobalt-v4l2.c <https://elixir.bootlin.com/linux/v6.11.6/source/drivers/media/pci/cobalt/cobalt-v4l2.c#L567>`__). + +**Copyright** ©2024 : Collabora diff --git a/Documentation/process/debugging/userspace_debugging_guide.rst b/Documentation/process/debugging/userspace_debugging_guide.rst new file mode 100644 index 000000000000..db7396261e07 --- /dev/null +++ b/Documentation/process/debugging/userspace_debugging_guide.rst @@ -0,0 +1,280 @@ +.. SPDX-License-Identifier: GPL-2.0 + +========================== +Userspace debugging advice +========================== + +This document provides a brief overview of common tools to debug the Linux +Kernel from userspace. +For debugging advice aimed at driver developers go :doc:`here +</process/debugging/driver_development_debugging_guide>`. +For general debugging advice, see :doc:`general advice document +</process/debugging/index>`. + +.. contents:: + :depth: 3 + +The following sections show you the available tools. + +Dynamic debug +------------- + +Mechanism to filter what ends up in the kernel log by dis-/en-abling log +messages. + +Prerequisite: ``CONFIG_DYNAMIC_DEBUG`` + +Dynamic debug is only able to target: + +- pr_debug() +- dev_dbg() +- print_hex_dump_debug() +- print_hex_dump_bytes() + +Therefore the usability of this tool is, as of now, quite limited as there is +no uniform rule for adding debug prints to the codebase, resulting in a variety +of ways these prints are implemented. + +Also, note that most debug statements are implemented as a variation of +dprintk(), which have to be activated via a parameter in respective module, +dynamic debug is unable to do that step for you. + +Here is one example, that enables all available pr_debug()'s within the file:: + + $ alias ddcmd='echo $* > /proc/dynamic_debug/control' + $ ddcmd '-p; file v4l2-h264.c +p' + $ grep =p /proc/dynamic_debug/control + drivers/media/v4l2-core/v4l2-h264.c:372 [v4l2_h264]print_ref_list_b =p + "ref_pic_list_b%u (cur_poc %u%c) %s" + drivers/media/v4l2-core/v4l2-h264.c:333 [v4l2_h264]print_ref_list_p =p + "ref_pic_list_p (cur_poc %u%c) %s\n" + +**When should you use this over Ftrace ?** + +- When the code contains one of the valid print statements (see above) or when + you have added multiple pr_debug() statements during development +- When timing is not an issue, meaning if multiple pr_debug() statements in + the code won't cause delays +- When you care more about receiving specific log messages than tracing the + pattern of how a function is called + +For the full documentation see :doc:`/admin-guide/dynamic-debug-howto` + +Ftrace +------ + +Prerequisite: ``CONFIG_DYNAMIC_FTRACE`` + +This tool uses the tracefs file system for the control files and output files. +That file system will be mounted as a ``tracing`` directory, which can be found +in either ``/sys/kernel/`` or ``/sys/debug/kernel/``. + +Some of the most important operations for debugging are: + +- You can perform a function trace by adding a function name to the + ``set_ftrace_filter`` file (which accepts any function name found within the + ``available_filter_functions`` file) or you can specifically disable certain + functions by adding their names to the ``set_ftrace_notrace`` file (more info + at: :ref:`trace/ftrace:dynamic ftrace`). +- In order to find out where calls originate from you can activate the + ``func_stack_trace`` option under ``options/func_stack_trace``. +- Tracing the children of a function call and showing the return values are + possible by adding the desired function in the ``set_graph_function`` file + (requires config ``FUNCTION_GRAPH_RETVAL``); more info at + :ref:`trace/ftrace:dynamic ftrace with the function graph tracer`. + +For the full Ftrace documentation see :doc:`/trace/ftrace` + +Or you could also trace for specific events by :ref:`using event tracing +<trace/events:2. using event tracing>`, which can be defined as described here: +:ref:`Creating a custom Ftrace tracepoint +<process/debugging/driver_development_debugging_guide:ftrace>`. + +For the full Ftrace event tracing documentation see :doc:`/trace/events` + +.. _read_ftrace_log: + +Reading the ftrace log +~~~~~~~~~~~~~~~~~~~~~~ + +The ``trace`` file can be read just like any other file (``cat``, ``tail``, +``head``, ``vim``, etc.), the size of the file is limited by the +``buffer_size_kb`` (``echo 1000 > buffer_size_kb``). The +:ref:`trace/ftrace:trace_pipe` will behave similarly to the ``trace`` file, but +whenever you read from the file the content is consumed. + +Kernelshark +~~~~~~~~~~~ + +A GUI interface to visualize the traces as a graph and list view from the +output of the `trace-cmd +<https://git.kernel.org/pub/scm/utils/trace-cmd/trace-cmd.git/>`__ application. + +For the full documentation see `<https://kernelshark.org/Documentation.html>`__ + +Perf & alternatives +------------------- + +The tools mentioned above provide ways to inspect kernel code, results, +variable values, etc. Sometimes you have to find out first where to look and +for those cases, a box of performance tracking tools can help you to frame the +issue. + +Why should you do a performance analysis? +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +A performance analysis is a good first step when among other reasons: + +- you cannot define the issue +- you do not know where it occurs +- the running system should not be interrupted or it is a remote system, where + you cannot install a new module/kernel + +How to do a simple analysis with linux tools? +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +For the start of a performance analysis, you can start with the usual tools +like: + +- ``top`` / ``htop`` / ``atop`` (*get an overview of the system load, see + spikes on specific processes*) +- ``mpstat -P ALL`` (*look at the load distribution among CPUs*) +- ``iostat -x`` (*observe input and output devices utilization and performance*) +- ``vmstat`` (*overview of memory usage on the system*) +- ``pidstat`` (*similar to* ``vmstat`` *but per process, to dial it down to the + target*) +- ``strace -tp $PID`` (*once you know the process, you can figure out how it + communicates with the Kernel*) + +These should help to narrow down the areas to look at sufficiently. + +Diving deeper with perf +~~~~~~~~~~~~~~~~~~~~~~~ + +The **perf** tool provides a series of metrics and events to further dial down +on issues. + +Prerequisite: build or install perf on your system + +Gather statistics data for finding all files starting with ``gcc`` in ``/usr``:: + + # perf stat -d find /usr -name 'gcc*' | wc -l + + Performance counter stats for 'find /usr -name gcc*': + + 1277.81 msec task-clock # 0.997 CPUs utilized + 9 context-switches # 7.043 /sec + 1 cpu-migrations # 0.783 /sec + 704 page-faults # 550.943 /sec + 766548897 cycles # 0.600 GHz (97.15%) + 798285467 instructions # 1.04 insn per cycle (97.15%) + 57582731 branches # 45.064 M/sec (2.85%) + 3842573 branch-misses # 6.67% of all branches (97.15%) + 281616097 L1-dcache-loads # 220.390 M/sec (97.15%) + 4220975 L1-dcache-load-misses # 1.50% of all L1-dcache accesses (97.15%) + <not supported> LLC-loads + <not supported> LLC-load-misses + + 1.281746009 seconds time elapsed + + 0.508796000 seconds user + 0.773209000 seconds sys + + + 52 + +The availability of events and metrics depends on the system you are running. + +For the full documentation see +`<https://perf.wiki.kernel.org/index.php/Main_Page>`__ + +Perfetto +~~~~~~~~ + +A set of tools to measure and analyze how well applications and systems perform. +You can use it to: + +* identify bottlenecks +* optimize code +* make software run faster and more efficiently. + +**What is the difference between perfetto and perf?** + +* perf is tool as part of and specialized for the Linux Kernel and has CLI user + interface. +* perfetto cross-platform performance analysis stack, has extended + functionality into userspace and provides a WEB user interface. + +For the full documentation see `<https://perfetto.dev/docs/>`__ + +Kernel panic analysis tools +--------------------------- + + To capture the crash dump please use ``Kdump`` & ``Kexec``. Below you can find + some advice for analysing the data. + + For the full documentation see the :doc:`/admin-guide/kdump/kdump` + + In order to find the corresponding line in the code you can use `faddr2line + <https://elixir.bootlin.com/linux/v6.11.6/source/scripts/faddr2line>`__; note + that you need to enable ``CONFIG_DEBUG_INFO`` for that to work. + + An alternative to using ``faddr2line`` is the use of ``objdump`` (and its + derivatives for the different platforms like ``aarch64-linux-gnu-objdump``). + Take this line as an example: + + ``[ +0.000240] rkvdec_device_run+0x50/0x138 [rockchip_vdec]``. + + We can find the corresponding line of code by executing:: + + aarch64-linux-gnu-objdump -dS drivers/staging/media/rkvdec/rockchip-vdec.ko | grep rkvdec_device_run\>: -A 40 + 0000000000000ac8 <rkvdec_device_run>: + ac8: d503201f nop + acc: d503201f nop + { + ad0: d503233f paciasp + ad4: a9bd7bfd stp x29, x30, [sp, #-48]! + ad8: 910003fd mov x29, sp + adc: a90153f3 stp x19, x20, [sp, #16] + ae0: a9025bf5 stp x21, x22, [sp, #32] + const struct rkvdec_coded_fmt_desc *desc = ctx->coded_fmt_desc; + ae4: f9411814 ldr x20, [x0, #560] + struct rkvdec_dev *rkvdec = ctx->dev; + ae8: f9418015 ldr x21, [x0, #768] + if (WARN_ON(!desc)) + aec: b4000654 cbz x20, bb4 <rkvdec_device_run+0xec> + ret = pm_runtime_resume_and_get(rkvdec->dev); + af0: f943d2b6 ldr x22, [x21, #1952] + ret = __pm_runtime_resume(dev, RPM_GET_PUT); + af4: aa0003f3 mov x19, x0 + af8: 52800081 mov w1, #0x4 // #4 + afc: aa1603e0 mov x0, x22 + b00: 94000000 bl 0 <__pm_runtime_resume> + if (ret < 0) { + b04: 37f80340 tbnz w0, #31, b6c <rkvdec_device_run+0xa4> + dev_warn(rkvdec->dev, "Not good\n"); + b08: f943d2a0 ldr x0, [x21, #1952] + b0c: 90000001 adrp x1, 0 <rkvdec_try_ctrl-0x8> + b10: 91000021 add x1, x1, #0x0 + b14: 94000000 bl 0 <_dev_warn> + *bad = 1; + b18: d2800001 mov x1, #0x0 // #0 + ... + + Meaning, in this line from the crash dump:: + + [ +0.000240] rkvdec_device_run+0x50/0x138 [rockchip_vdec] + + I can take the ``0x50`` as offset, which I have to add to the base address + of the corresponding function, which I find in this line:: + + 0000000000000ac8 <rkvdec_device_run>: + + The result of ``0xac8 + 0x50 = 0xb18`` + And when I search for that address within the function I get the + following line:: + + *bad = 1; + b18: d2800001 mov x1, #0x0 + +**Copyright** ©2024 : Collabora diff --git a/Documentation/process/index.rst b/Documentation/process/index.rst index 6455eba3ef0c..aa12f2660194 100644 --- a/Documentation/process/index.rst +++ b/Documentation/process/index.rst @@ -72,13 +72,15 @@ beyond). Dealing with bugs ----------------- -Bugs are a fact of life; it is important that we handle them properly. -The documents below describe our policies around the handling of a couple -of special classes of bugs: regressions and security problems. +Bugs are a fact of life; it is important that we handle them properly. The +documents below provide general advice about debugging and describe our +policies around the handling of a couple of special classes of bugs: +regressions and security problems. .. toctree:: :maxdepth: 1 + debugging/index handling-regressions security-bugs cve diff --git a/Documentation/process/license-rules.rst b/Documentation/process/license-rules.rst index 2ef44ada3f11..59a7832df7d0 100644 --- a/Documentation/process/license-rules.rst +++ b/Documentation/process/license-rules.rst @@ -471,14 +471,16 @@ _`MODULE_LICENSE` source files. "Proprietary" The module is under a proprietary license. - This string is solely for proprietary third - party modules and cannot be used for modules - which have their source code in the kernel - tree. Modules tagged that way are tainting - the kernel with the 'P' flag when loaded and - the kernel module loader refuses to link such - modules against symbols which are exported - with EXPORT_SYMBOL_GPL(). + "Proprietary" is to be understood only as + "The license is not compatible to GPLv2". + This string is solely for non-GPL2 compatible + third party modules and cannot be used for + modules which have their source code in the + kernel tree. Modules tagged that way are + tainting the kernel with the 'P' flag when + loaded and the kernel module loader refuses + to link such modules against symbols which + are exported with EXPORT_SYMBOL_GPL(). ============================= ============================================= |