diff options
Diffstat (limited to 'Documentation/arch/x86/cpuinfo.rst')
-rw-r--r-- | Documentation/arch/x86/cpuinfo.rst | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/Documentation/arch/x86/cpuinfo.rst b/Documentation/arch/x86/cpuinfo.rst new file mode 100644 index 000000000000..08246e8ac835 --- /dev/null +++ b/Documentation/arch/x86/cpuinfo.rst @@ -0,0 +1,154 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================= +x86 Feature Flags +================= + +Introduction +============ + +On x86, flags appearing in /proc/cpuinfo have an X86_FEATURE definition +in arch/x86/include/asm/cpufeatures.h. If the kernel cares about a feature +or KVM want to expose the feature to a KVM guest, it can and should have +an X86_FEATURE_* defined. These flags represent hardware features as +well as software features. + +If users want to know if a feature is available on a given system, they +try to find the flag in /proc/cpuinfo. If a given flag is present, it +means that the kernel supports it and is currently making it available. +If such flag represents a hardware feature, it also means that the +hardware supports it. + +If the expected flag does not appear in /proc/cpuinfo, things are murkier. +Users need to find out the reason why the flag is missing and find the way +how to enable it, which is not always easy. There are several factors that +can explain missing flags: the expected feature failed to enable, the feature +is missing in hardware, platform firmware did not enable it, the feature is +disabled at build or run time, an old kernel is in use, or the kernel does +not support the feature and thus has not enabled it. In general, /proc/cpuinfo +shows features which the kernel supports. For a full list of CPUID flags +which the CPU supports, use tools/arch/x86/kcpuid. + +How are feature flags created? +============================== + +a: Feature flags can be derived from the contents of CPUID leaves. +------------------------------------------------------------------ +These feature definitions are organized mirroring the layout of CPUID +leaves and grouped in words with offsets as mapped in enum cpuid_leafs +in cpufeatures.h (see arch/x86/include/asm/cpufeatures.h for details). +If a feature is defined with a X86_FEATURE_<name> definition in +cpufeatures.h, and if it is detected at run time, the flags will be +displayed accordingly in /proc/cpuinfo. For example, the flag "avx2" +comes from X86_FEATURE_AVX2 in cpufeatures.h. + +b: Flags can be from scattered CPUID-based features. +---------------------------------------------------- +Hardware features enumerated in sparsely populated CPUID leaves get +software-defined values. Still, CPUID needs to be queried to determine +if a given feature is present. This is done in init_scattered_cpuid_features(). +For instance, X86_FEATURE_CQM_LLC is defined as 11*32 + 0 and its presence is +checked at runtime in the respective CPUID leaf [EAX=f, ECX=0] bit EDX[1]. + +The intent of scattering CPUID leaves is to not bloat struct +cpuinfo_x86.x86_capability[] unnecessarily. For instance, the CPUID leaf +[EAX=7, ECX=0] has 30 features and is dense, but the CPUID leaf [EAX=7, EAX=1] +has only one feature and would waste 31 bits of space in the x86_capability[] +array. Since there is a struct cpuinfo_x86 for each possible CPU, the wasted +memory is not trivial. + +c: Flags can be created synthetically under certain conditions for hardware features. +------------------------------------------------------------------------------------- +Examples of conditions include whether certain features are present in +MSR_IA32_CORE_CAPS or specific CPU models are identified. If the needed +conditions are met, the features are enabled by the set_cpu_cap or +setup_force_cpu_cap macros. For example, if bit 5 is set in MSR_IA32_CORE_CAPS, +the feature X86_FEATURE_SPLIT_LOCK_DETECT will be enabled and +"split_lock_detect" will be displayed. The flag "ring3mwait" will be +displayed only when running on INTEL_FAM6_XEON_PHI_[KNL|KNM] processors. + +d: Flags can represent purely software features. +------------------------------------------------ +These flags do not represent hardware features. Instead, they represent a +software feature implemented in the kernel. For example, Kernel Page Table +Isolation is purely software feature and its feature flag X86_FEATURE_PTI is +also defined in cpufeatures.h. + +Naming of Flags +=============== + +The script arch/x86/kernel/cpu/mkcapflags.sh processes the +#define X86_FEATURE_<name> from cpufeatures.h and generates the +x86_cap/bug_flags[] arrays in kernel/cpu/capflags.c. The names in the +resulting x86_cap/bug_flags[] are used to populate /proc/cpuinfo. The naming +of flags in the x86_cap/bug_flags[] are as follows: + +a: The name of the flag is from the string in X86_FEATURE_<name> by default. +---------------------------------------------------------------------------- +By default, the flag <name> in /proc/cpuinfo is extracted from the respective +X86_FEATURE_<name> in cpufeatures.h. For example, the flag "avx2" is from +X86_FEATURE_AVX2. + +b: The naming can be overridden. +-------------------------------- +If the comment on the line for the #define X86_FEATURE_* starts with a +double-quote character (""), the string inside the double-quote characters +will be the name of the flags. For example, the flag "sse4_1" comes from +the comment "sse4_1" following the X86_FEATURE_XMM4_1 definition. + +There are situations in which overriding the displayed name of the flag is +needed. For instance, /proc/cpuinfo is a userspace interface and must remain +constant. If, for some reason, the naming of X86_FEATURE_<name> changes, one +shall override the new naming with the name already used in /proc/cpuinfo. + +c: The naming override can be "", which means it will not appear in /proc/cpuinfo. +---------------------------------------------------------------------------------- +The feature shall be omitted from /proc/cpuinfo if it does not make sense for +the feature to be exposed to userspace. For example, X86_FEATURE_ALWAYS is +defined in cpufeatures.h but that flag is an internal kernel feature used +in the alternative runtime patching functionality. So, its name is overridden +with "". Its flag will not appear in /proc/cpuinfo. + +Flags are missing when one or more of these happen +================================================== + +a: The hardware does not enumerate support for it. +-------------------------------------------------- +For example, when a new kernel is running on old hardware or the feature is +not enabled by boot firmware. Even if the hardware is new, there might be a +problem enabling the feature at run time, the flag will not be displayed. + +b: The kernel does not know about the flag. +------------------------------------------- +For example, when an old kernel is running on new hardware. + +c: The kernel disabled support for it at compile-time. +------------------------------------------------------ +For example, if 5-level-paging is not enabled when building (i.e., +CONFIG_X86_5LEVEL is not selected) the flag "la57" will not show up [#f1]_. +Even though the feature will still be detected via CPUID, the kernel disables +it by clearing via setup_clear_cpu_cap(X86_FEATURE_LA57). + +d: The feature is disabled at boot-time. +---------------------------------------- +A feature can be disabled either using a command-line parameter or because +it failed to be enabled. The command-line parameter clearcpuid= can be used +to disable features using the feature number as defined in +/arch/x86/include/asm/cpufeatures.h. For instance, User Mode Instruction +Protection can be disabled using clearcpuid=514. The number 514 is calculated +from #define X86_FEATURE_UMIP (16*32 + 2). + +In addition, there exists a variety of custom command-line parameters that +disable specific features. The list of parameters includes, but is not limited +to, nofsgsbase, nosgx, noxsave, etc. 5-level paging can also be disabled using +"no5lvl". + +e: The feature was known to be non-functional. +---------------------------------------------- +The feature was known to be non-functional because a dependency was +missing at runtime. For example, AVX flags will not show up if XSAVE feature +is disabled since they depend on XSAVE feature. Another example would be broken +CPUs and them missing microcode patches. Due to that, the kernel decides not to +enable a feature. + +.. [#f1] 5-level paging uses linear address of 57 bits. |