diff options
Diffstat (limited to 'Documentation/arm64')
-rw-r--r-- | Documentation/arm64/cpu-feature-registers.txt | 18 | ||||
-rw-r--r-- | Documentation/arm64/elf_hwcaps.txt | 160 | ||||
-rw-r--r-- | Documentation/arm64/memory.txt | 10 | ||||
-rw-r--r-- | Documentation/arm64/sve.txt | 508 |
4 files changed, 689 insertions, 7 deletions
diff --git a/Documentation/arm64/cpu-feature-registers.txt b/Documentation/arm64/cpu-feature-registers.txt index dad411d635d8..bd9b3faab2c4 100644 --- a/Documentation/arm64/cpu-feature-registers.txt +++ b/Documentation/arm64/cpu-feature-registers.txt @@ -110,10 +110,20 @@ infrastructure: x--------------------------------------------------x | Name | bits | visible | |--------------------------------------------------| - | RES0 | [63-32] | n | + | RES0 | [63-48] | n | + |--------------------------------------------------| + | DP | [47-44] | y | + |--------------------------------------------------| + | SM4 | [43-40] | y | + |--------------------------------------------------| + | SM3 | [39-36] | y | + |--------------------------------------------------| + | SHA3 | [35-32] | y | |--------------------------------------------------| | RDM | [31-28] | y | |--------------------------------------------------| + | RES0 | [27-24] | n | + |--------------------------------------------------| | ATOMICS | [23-20] | y | |--------------------------------------------------| | CRC32 | [19-16] | y | @@ -132,7 +142,11 @@ infrastructure: x--------------------------------------------------x | Name | bits | visible | |--------------------------------------------------| - | RES0 | [63-28] | n | + | RES0 | [63-36] | n | + |--------------------------------------------------| + | SVE | [35-32] | y | + |--------------------------------------------------| + | RES0 | [31-28] | n | |--------------------------------------------------| | GIC | [27-24] | n | |--------------------------------------------------| diff --git a/Documentation/arm64/elf_hwcaps.txt b/Documentation/arm64/elf_hwcaps.txt new file mode 100644 index 000000000000..89edba12a9e0 --- /dev/null +++ b/Documentation/arm64/elf_hwcaps.txt @@ -0,0 +1,160 @@ +ARM64 ELF hwcaps +================ + +This document describes the usage and semantics of the arm64 ELF hwcaps. + + +1. Introduction +--------------- + +Some hardware or software features are only available on some CPU +implementations, and/or with certain kernel configurations, but have no +architected discovery mechanism available to userspace code at EL0. The +kernel exposes the presence of these features to userspace through a set +of flags called hwcaps, exposed in the auxilliary vector. + +Userspace software can test for features by acquiring the AT_HWCAP entry +of the auxilliary vector, and testing whether the relevant flags are +set, e.g. + +bool floating_point_is_present(void) +{ + unsigned long hwcaps = getauxval(AT_HWCAP); + if (hwcaps & HWCAP_FP) + return true; + + return false; +} + +Where software relies on a feature described by a hwcap, it should check +the relevant hwcap flag to verify that the feature is present before +attempting to make use of the feature. + +Features cannot be probed reliably through other means. When a feature +is not available, attempting to use it may result in unpredictable +behaviour, and is not guaranteed to result in any reliable indication +that the feature is unavailable, such as a SIGILL. + + +2. Interpretation of hwcaps +--------------------------- + +The majority of hwcaps are intended to indicate the presence of features +which are described by architected ID registers inaccessible to +userspace code at EL0. These hwcaps are defined in terms of ID register +fields, and should be interpreted with reference to the definition of +these fields in the ARM Architecture Reference Manual (ARM ARM). + +Such hwcaps are described below in the form: + + Functionality implied by idreg.field == val. + +Such hwcaps indicate the availability of functionality that the ARM ARM +defines as being present when idreg.field has value val, but do not +indicate that idreg.field is precisely equal to val, nor do they +indicate the absence of functionality implied by other values of +idreg.field. + +Other hwcaps may indicate the presence of features which cannot be +described by ID registers alone. These may be described without +reference to ID registers, and may refer to other documentation. + + +3. The hwcaps exposed in AT_HWCAP +--------------------------------- + +HWCAP_FP + + Functionality implied by ID_AA64PFR0_EL1.FP == 0b0000. + +HWCAP_ASIMD + + Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0000. + +HWCAP_EVTSTRM + + The generic timer is configured to generate events at a frequency of + approximately 100KHz. + +HWCAP_AES + + Functionality implied by ID_AA64ISAR1_EL1.AES == 0b0001. + +HWCAP_PMULL + + Functionality implied by ID_AA64ISAR1_EL1.AES == 0b0010. + +HWCAP_SHA1 + + Functionality implied by ID_AA64ISAR0_EL1.SHA1 == 0b0001. + +HWCAP_SHA2 + + Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0001. + +HWCAP_CRC32 + + Functionality implied by ID_AA64ISAR0_EL1.CRC32 == 0b0001. + +HWCAP_ATOMICS + + Functionality implied by ID_AA64ISAR0_EL1.Atomic == 0b0010. + +HWCAP_FPHP + + Functionality implied by ID_AA64PFR0_EL1.FP == 0b0001. + +HWCAP_ASIMDHP + + Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0001. + +HWCAP_CPUID + + EL0 access to certain ID registers is available, to the extent + described by Documentation/arm64/cpu-feature-registers.txt. + + These ID registers may imply the availability of features. + +HWCAP_ASIMDRDM + + Functionality implied by ID_AA64ISAR0_EL1.RDM == 0b0001. + +HWCAP_JSCVT + + Functionality implied by ID_AA64ISAR1_EL1.JSCVT == 0b0001. + +HWCAP_FCMA + + Functionality implied by ID_AA64ISAR1_EL1.FCMA == 0b0001. + +HWCAP_LRCPC + + Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0001. + +HWCAP_DCPOP + + Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0001. + +HWCAP_SHA3 + + Functionality implied by ID_AA64ISAR0_EL1.SHA3 == 0b0001. + +HWCAP_SM3 + + Functionality implied by ID_AA64ISAR0_EL1.SM3 == 0b0001. + +HWCAP_SM4 + + Functionality implied by ID_AA64ISAR0_EL1.SM4 == 0b0001. + +HWCAP_ASIMDDP + + Functionality implied by ID_AA64ISAR0_EL1.DP == 0b0001. + +HWCAP_SHA512 + + Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0002. + +HWCAP_SVE + + Functionality implied by ID_AA64PFR0_EL1.SVE == 0b0001. diff --git a/Documentation/arm64/memory.txt b/Documentation/arm64/memory.txt index d7273a5f6456..671bc0639262 100644 --- a/Documentation/arm64/memory.txt +++ b/Documentation/arm64/memory.txt @@ -86,9 +86,9 @@ Translation table lookup with 64KB pages: +-------------------------------------------------> [63] TTBR0/1 -When using KVM, the hypervisor maps kernel pages in EL2, at a fixed -offset from the kernel VA (top 24bits of the kernel VA set to zero): +When using KVM without the Virtualization Host Extensions, the hypervisor +maps kernel pages in EL2 at a fixed offset from the kernel VA. See the +kern_hyp_va macro for more details. -Start End Size Use ------------------------------------------------------------------------ -0000004000000000 0000007fffffffff 256GB kernel objects mapped in HYP +When using KVM with the Virtualization Host Extensions, no additional +mappings are created, since the host kernel runs directly in EL2. diff --git a/Documentation/arm64/sve.txt b/Documentation/arm64/sve.txt new file mode 100644 index 000000000000..f128f736b4a5 --- /dev/null +++ b/Documentation/arm64/sve.txt @@ -0,0 +1,508 @@ + Scalable Vector Extension support for AArch64 Linux + =================================================== + +Author: Dave Martin <Dave.Martin@arm.com> +Date: 4 August 2017 + +This document outlines briefly the interface provided to userspace by Linux in +order to support use of the ARM Scalable Vector Extension (SVE). + +This is an outline of the most important features and issues only and not +intended to be exhaustive. + +This document does not aim to describe the SVE architecture or programmer's +model. To aid understanding, a minimal description of relevant programmer's +model features for SVE is included in Appendix A. + + +1. General +----------- + +* SVE registers Z0..Z31, P0..P15 and FFR and the current vector length VL, are + tracked per-thread. + +* The presence of SVE is reported to userspace via HWCAP_SVE in the aux vector + AT_HWCAP entry. Presence of this flag implies the presence of the SVE + instructions and registers, and the Linux-specific system interfaces + described in this document. SVE is reported in /proc/cpuinfo as "sve". + +* Support for the execution of SVE instructions in userspace can also be + detected by reading the CPU ID register ID_AA64PFR0_EL1 using an MRS + instruction, and checking that the value of the SVE field is nonzero. [3] + + It does not guarantee the presence of the system interfaces described in the + following sections: software that needs to verify that those interfaces are + present must check for HWCAP_SVE instead. + +* Debuggers should restrict themselves to interacting with the target via the + NT_ARM_SVE regset. The recommended way of detecting support for this regset + is to connect to a target process first and then attempt a + ptrace(PTRACE_GETREGSET, pid, NT_ARM_SVE, &iov). + + +2. Vector length terminology +----------------------------- + +The size of an SVE vector (Z) register is referred to as the "vector length". + +To avoid confusion about the units used to express vector length, the kernel +adopts the following conventions: + +* Vector length (VL) = size of a Z-register in bytes + +* Vector quadwords (VQ) = size of a Z-register in units of 128 bits + +(So, VL = 16 * VQ.) + +The VQ convention is used where the underlying granularity is important, such +as in data structure definitions. In most other situations, the VL convention +is used. This is consistent with the meaning of the "VL" pseudo-register in +the SVE instruction set architecture. + + +3. System call behaviour +------------------------- + +* On syscall, V0..V31 are preserved (as without SVE). Thus, bits [127:0] of + Z0..Z31 are preserved. All other bits of Z0..Z31, and all of P0..P15 and FFR + become unspecified on return from a syscall. + +* The SVE registers are not used to pass arguments to or receive results from + any syscall. + +* In practice the affected registers/bits will be preserved or will be replaced + with zeros on return from a syscall, but userspace should not make + assumptions about this. The kernel behaviour may vary on a case-by-case + basis. + +* All other SVE state of a thread, including the currently configured vector + length, the state of the PR_SVE_VL_INHERIT flag, and the deferred vector + length (if any), is preserved across all syscalls, subject to the specific + exceptions for execve() described in section 6. + + In particular, on return from a fork() or clone(), the parent and new child + process or thread share identical SVE configuration, matching that of the + parent before the call. + + +4. Signal handling +------------------- + +* A new signal frame record sve_context encodes the SVE registers on signal + delivery. [1] + +* This record is supplementary to fpsimd_context. The FPSR and FPCR registers + are only present in fpsimd_context. For convenience, the content of V0..V31 + is duplicated between sve_context and fpsimd_context. + +* The signal frame record for SVE always contains basic metadata, in particular + the thread's vector length (in sve_context.vl). + +* The SVE registers may or may not be included in the record, depending on + whether the registers are live for the thread. The registers are present if + and only if: + sve_context.head.size >= SVE_SIG_CONTEXT_SIZE(sve_vq_from_vl(sve_context.vl)). + +* If the registers are present, the remainder of the record has a vl-dependent + size and layout. Macros SVE_SIG_* are defined [1] to facilitate access to + the members. + +* If the SVE context is too big to fit in sigcontext.__reserved[], then extra + space is allocated on the stack, an extra_context record is written in + __reserved[] referencing this space. sve_context is then written in the + extra space. Refer to [1] for further details about this mechanism. + + +5. Signal return +----------------- + +When returning from a signal handler: + +* If there is no sve_context record in the signal frame, or if the record is + present but contains no register data as desribed in the previous section, + then the SVE registers/bits become non-live and take unspecified values. + +* If sve_context is present in the signal frame and contains full register + data, the SVE registers become live and are populated with the specified + data. However, for backward compatibility reasons, bits [127:0] of Z0..Z31 + are always restored from the corresponding members of fpsimd_context.vregs[] + and not from sve_context. The remaining bits are restored from sve_context. + +* Inclusion of fpsimd_context in the signal frame remains mandatory, + irrespective of whether sve_context is present or not. + +* The vector length cannot be changed via signal return. If sve_context.vl in + the signal frame does not match the current vector length, the signal return + attempt is treated as illegal, resulting in a forced SIGSEGV. + + +6. prctl extensions +-------------------- + +Some new prctl() calls are added to allow programs to manage the SVE vector +length: + +prctl(PR_SVE_SET_VL, unsigned long arg) + + Sets the vector length of the calling thread and related flags, where + arg == vl | flags. Other threads of the calling process are unaffected. + + vl is the desired vector length, where sve_vl_valid(vl) must be true. + + flags: + + PR_SVE_SET_VL_INHERIT + + Inherit the current vector length across execve(). Otherwise, the + vector length is reset to the system default at execve(). (See + Section 9.) + + PR_SVE_SET_VL_ONEXEC + + Defer the requested vector length change until the next execve() + performed by this thread. + + The effect is equivalent to implicit exceution of the following + call immediately after the next execve() (if any) by the thread: + + prctl(PR_SVE_SET_VL, arg & ~PR_SVE_SET_VL_ONEXEC) + + This allows launching of a new program with a different vector + length, while avoiding runtime side effects in the caller. + + + Without PR_SVE_SET_VL_ONEXEC, the requested change takes effect + immediately. + + + Return value: a nonnegative on success, or a negative value on error: + EINVAL: SVE not supported, invalid vector length requested, or + invalid flags. + + + On success: + + * Either the calling thread's vector length or the deferred vector length + to be applied at the next execve() by the thread (dependent on whether + PR_SVE_SET_VL_ONEXEC is present in arg), is set to the largest value + supported by the system that is less than or equal to vl. If vl == + SVE_VL_MAX, the value set will be the largest value supported by the + system. + + * Any previously outstanding deferred vector length change in the calling + thread is cancelled. + + * The returned value describes the resulting configuration, encoded as for + PR_SVE_GET_VL. The vector length reported in this value is the new + current vector length for this thread if PR_SVE_SET_VL_ONEXEC was not + present in arg; otherwise, the reported vector length is the deferred + vector length that will be applied at the next execve() by the calling + thread. + + * Changing the vector length causes all of P0..P15, FFR and all bits of + Z0..V31 except for Z0 bits [127:0] .. Z31 bits [127:0] to become + unspecified. Calling PR_SVE_SET_VL with vl equal to the thread's current + vector length, or calling PR_SVE_SET_VL with the PR_SVE_SET_VL_ONEXEC + flag, does not constitute a change to the vector length for this purpose. + + +prctl(PR_SVE_GET_VL) + + Gets the vector length of the calling thread. + + The following flag may be OR-ed into the result: + + PR_SVE_SET_VL_INHERIT + + Vector length will be inherited across execve(). + + There is no way to determine whether there is an outstanding deferred + vector length change (which would only normally be the case between a + fork() or vfork() and the corresponding execve() in typical use). + + To extract the vector length from the result, and it with + PR_SVE_VL_LEN_MASK. + + Return value: a nonnegative value on success, or a negative value on error: + EINVAL: SVE not supported. + + +7. ptrace extensions +--------------------- + +* A new regset NT_ARM_SVE is defined for use with PTRACE_GETREGSET and + PTRACE_SETREGSET. + + Refer to [2] for definitions. + +The regset data starts with struct user_sve_header, containing: + + size + + Size of the complete regset, in bytes. + This depends on vl and possibly on other things in the future. + + If a call to PTRACE_GETREGSET requests less data than the value of + size, the caller can allocate a larger buffer and retry in order to + read the complete regset. + + max_size + + Maximum size in bytes that the regset can grow to for the target + thread. The regset won't grow bigger than this even if the target + thread changes its vector length etc. + + vl + + Target thread's current vector length, in bytes. + + max_vl + + Maximum possible vector length for the target thread. + + flags + + either + + SVE_PT_REGS_FPSIMD + + SVE registers are not live (GETREGSET) or are to be made + non-live (SETREGSET). + + The payload is of type struct user_fpsimd_state, with the same + meaning as for NT_PRFPREG, starting at offset + SVE_PT_FPSIMD_OFFSET from the start of user_sve_header. + + Extra data might be appended in the future: the size of the + payload should be obtained using SVE_PT_FPSIMD_SIZE(vq, flags). + + vq should be obtained using sve_vq_from_vl(vl). + + or + + SVE_PT_REGS_SVE + + SVE registers are live (GETREGSET) or are to be made live + (SETREGSET). + + The payload contains the SVE register data, starting at offset + SVE_PT_SVE_OFFSET from the start of user_sve_header, and with + size SVE_PT_SVE_SIZE(vq, flags); + + ... OR-ed with zero or more of the following flags, which have the same + meaning and behaviour as the corresponding PR_SET_VL_* flags: + + SVE_PT_VL_INHERIT + + SVE_PT_VL_ONEXEC (SETREGSET only). + +* The effects of changing the vector length and/or flags are equivalent to + those documented for PR_SVE_SET_VL. + + The caller must make a further GETREGSET call if it needs to know what VL is + actually set by SETREGSET, unless is it known in advance that the requested + VL is supported. + +* In the SVE_PT_REGS_SVE case, the size and layout of the payload depends on + the header fields. The SVE_PT_SVE_*() macros are provided to facilitate + access to the members. + +* In either case, for SETREGSET it is permissible to omit the payload, in which + case only the vector length and flags are changed (along with any + consequences of those changes). + +* For SETREGSET, if an SVE_PT_REGS_SVE payload is present and the + requested VL is not supported, the effect will be the same as if the + payload were omitted, except that an EIO error is reported. No + attempt is made to translate the payload data to the correct layout + for the vector length actually set. The thread's FPSIMD state is + preserved, but the remaining bits of the SVE registers become + unspecified. It is up to the caller to translate the payload layout + for the actual VL and retry. + +* The effect of writing a partial, incomplete payload is unspecified. + + +8. ELF coredump extensions +--------------------------- + +* A NT_ARM_SVE note will be added to each coredump for each thread of the + dumped process. The contents will be equivalent to the data that would have + been read if a PTRACE_GETREGSET of NT_ARM_SVE were executed for each thread + when the coredump was generated. + + +9. System runtime configuration +-------------------------------- + +* To mitigate the ABI impact of expansion of the signal frame, a policy + mechanism is provided for administrators, distro maintainers and developers + to set the default vector length for userspace processes: + +/proc/sys/abi/sve_default_vector_length + + Writing the text representation of an integer to this file sets the system + default vector length to the specified value, unless the value is greater + than the maximum vector length supported by the system in which case the + default vector length is set to that maximum. + + The result can be determined by reopening the file and reading its + contents. + + At boot, the default vector length is initially set to 64 or the maximum + supported vector length, whichever is smaller. This determines the initial + vector length of the init process (PID 1). + + Reading this file returns the current system default vector length. + +* At every execve() call, the new vector length of the new process is set to + the system default vector length, unless + + * PR_SVE_SET_VL_INHERIT (or equivalently SVE_PT_VL_INHERIT) is set for the + calling thread, or + + * a deferred vector length change is pending, established via the + PR_SVE_SET_VL_ONEXEC flag (or SVE_PT_VL_ONEXEC). + +* Modifying the system default vector length does not affect the vector length + of any existing process or thread that does not make an execve() call. + + +Appendix A. SVE programmer's model (informative) +================================================= + +This section provides a minimal description of the additions made by SVE to the +ARMv8-A programmer's model that are relevant to this document. + +Note: This section is for information only and not intended to be complete or +to replace any architectural specification. + +A.1. Registers +--------------- + +In A64 state, SVE adds the following: + +* 32 8VL-bit vector registers Z0..Z31 + For each Zn, Zn bits [127:0] alias the ARMv8-A vector register Vn. + + A register write using a Vn register name zeros all bits of the corresponding + Zn except for bits [127:0]. + +* 16 VL-bit predicate registers P0..P15 + +* 1 VL-bit special-purpose predicate register FFR (the "first-fault register") + +* a VL "pseudo-register" that determines the size of each vector register + + The SVE instruction set architecture provides no way to write VL directly. + Instead, it can be modified only by EL1 and above, by writing appropriate + system registers. + +* The value of VL can be configured at runtime by EL1 and above: + 16 <= VL <= VLmax, where VL must be a multiple of 16. + +* The maximum vector length is determined by the hardware: + 16 <= VLmax <= 256. + + (The SVE architecture specifies 256, but permits future architecture + revisions to raise this limit.) + +* FPSR and FPCR are retained from ARMv8-A, and interact with SVE floating-point + operations in a similar way to the way in which they interact with ARMv8 + floating-point operations. + + 8VL-1 128 0 bit index + +---- //// -----------------+ + Z0 | : V0 | + : : + Z7 | : V7 | + Z8 | : * V8 | + : : : + Z15 | : *V15 | + Z16 | : V16 | + : : + Z31 | : V31 | + +---- //// -----------------+ + 31 0 + VL-1 0 +-------+ + +---- //// --+ FPSR | | + P0 | | +-------+ + : | | *FPCR | | + P15 | | +-------+ + +---- //// --+ + FFR | | +-----+ + +---- //// --+ VL | | + +-----+ + +(*) callee-save: + This only applies to bits [63:0] of Z-/V-registers. + FPCR contains callee-save and caller-save bits. See [4] for details. + + +A.2. Procedure call standard +----------------------------- + +The ARMv8-A base procedure call standard is extended as follows with respect to +the additional SVE register state: + +* All SVE register bits that are not shared with FP/SIMD are caller-save. + +* Z8 bits [63:0] .. Z15 bits [63:0] are callee-save. + + This follows from the way these bits are mapped to V8..V15, which are caller- + save in the base procedure call standard. + + +Appendix B. ARMv8-A FP/SIMD programmer's model +=============================================== + +Note: This section is for information only and not intended to be complete or +to replace any architectural specification. + +Refer to [4] for for more information. + +ARMv8-A defines the following floating-point / SIMD register state: + +* 32 128-bit vector registers V0..V31 +* 2 32-bit status/control registers FPSR, FPCR + + 127 0 bit index + +---------------+ + V0 | | + : : : + V7 | | + * V8 | | + : : : : + *V15 | | + V16 | | + : : : + V31 | | + +---------------+ + + 31 0 + +-------+ + FPSR | | + +-------+ + *FPCR | | + +-------+ + +(*) callee-save: + This only applies to bits [63:0] of V-registers. + FPCR contains a mixture of callee-save and caller-save bits. + + +References +========== + +[1] arch/arm64/include/uapi/asm/sigcontext.h + AArch64 Linux signal ABI definitions + +[2] arch/arm64/include/uapi/asm/ptrace.h + AArch64 Linux ptrace ABI definitions + +[3] linux/Documentation/arm64/cpu-feature-registers.txt + +[4] ARM IHI0055C + http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055c/IHI0055C_beta_aapcs64.pdf + http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html + Procedure Call Standard for the ARM 64-bit Architecture (AArch64) |