summaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree/bindings/leds/leds-bcm6328.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings/leds/leds-bcm6328.txt')
-rw-r--r--Documentation/devicetree/bindings/leds/leds-bcm6328.txt319
1 files changed, 0 insertions, 319 deletions
diff --git a/Documentation/devicetree/bindings/leds/leds-bcm6328.txt b/Documentation/devicetree/bindings/leds/leds-bcm6328.txt
deleted file mode 100644
index a555d94084b7..000000000000
--- a/Documentation/devicetree/bindings/leds/leds-bcm6328.txt
+++ /dev/null
@@ -1,319 +0,0 @@
-LEDs connected to Broadcom BCM6328 controller
-
-This controller is present on BCM6318, BCM6328, BCM6362 and BCM63268.
-In these SoCs it's possible to control LEDs both as GPIOs or by hardware.
-However, on some devices there are Serial LEDs (LEDs connected to a 74x164
-controller), which can either be controlled by software (exporting the 74x164
-as spi-gpio. See Documentation/devicetree/bindings/gpio/fairchild,74hc595.yaml),
-or by hardware using this driver.
-Some of these Serial LEDs are hardware controlled (e.g. ethernet LEDs) and
-exporting the 74x164 as spi-gpio prevents those LEDs to be hardware
-controlled, so the only chance to keep them working is by using this driver.
-
-BCM6328 LED controller has a HWDIS register, which controls whether a LED
-should be controlled by a hardware signal instead of the MODE register value,
-with 0 meaning hardware control enabled and 1 hardware control disabled. This
-is usually 1:1 for hardware to LED signals, but through the activity/link
-registers you have some limited control over rerouting the LEDs (as
-explained later in brcm,link-signal-sources). Even if a LED is hardware
-controlled you are still able to make it blink or light it up if it isn't,
-but you can't turn it off if the hardware decides to light it up. For this
-reason, hardware controlled LEDs aren't registered as LED class devices.
-
-Required properties:
- - compatible : should be "brcm,bcm6328-leds".
- - #address-cells : must be 1.
- - #size-cells : must be 0.
- - reg : BCM6328 LED controller address and size.
-
-Optional properties:
- - brcm,serial-leds : Boolean, enables Serial LEDs.
- Default : false
- - brcm,serial-mux : Boolean, enables Serial LEDs multiplexing.
- Default : false
- - brcm,serial-clk-low : Boolean, makes clock signal active low.
- Default : false
- - brcm,serial-dat-low : Boolean, makes data signal active low.
- Default : false
- - brcm,serial-shift-inv : Boolean, inverts Serial LEDs shift direction.
- Default : false
-
-Each LED is represented as a sub-node of the brcm,bcm6328-leds device.
-
-LED sub-node required properties:
- - reg : LED pin number (only LEDs 0 to 23 are valid).
-
-LED sub-node optional properties:
- a) Optional properties for sub-nodes related to software controlled LEDs:
- - label : see Documentation/devicetree/bindings/leds/common.txt
- - active-low : Boolean, makes LED active low.
- Default : false
- - default-state : see
- Documentation/devicetree/bindings/leds/common.txt
- - linux,default-trigger : see
- Documentation/devicetree/bindings/leds/common.txt
-
- b) Optional properties for sub-nodes related to hardware controlled LEDs:
- - brcm,hardware-controlled : Boolean, makes this LED hardware controlled.
- Default : false
- - brcm,link-signal-sources : An array of hardware link
- signal sources. Up to four link hardware signals can get muxed into
- these LEDs. Only valid for LEDs 0 to 7, where LED signals 0 to 3 may
- be muxed to LEDs 0 to 3, and signals 4 to 7 may be muxed to LEDs
- 4 to 7. A signal can be muxed to more than one LED, and one LED can
- have more than one source signal.
- - brcm,activity-signal-sources : An array of hardware activity
- signal sources. Up to four activity hardware signals can get muxed into
- these LEDs. Only valid for LEDs 0 to 7, where LED signals 0 to 3 may
- be muxed to LEDs 0 to 3, and signals 4 to 7 may be muxed to LEDs
- 4 to 7. A signal can be muxed to more than one LED, and one LED can
- have more than one source signal.
-
-Examples:
-Scenario 1 : BCM6328 with 4 EPHY LEDs
- leds0: led-controller@10000800 {
- compatible = "brcm,bcm6328-leds";
- #address-cells = <1>;
- #size-cells = <0>;
- reg = <0x10000800 0x24>;
-
- alarm_red@2 {
- reg = <2>;
- active-low;
- label = "red:alarm";
- };
- inet_green@3 {
- reg = <3>;
- active-low;
- label = "green:inet";
- };
- power_green@4 {
- reg = <4>;
- active-low;
- label = "green:power";
- default-state = "on";
- };
- ephy0_spd@17 {
- reg = <17>;
- brcm,hardware-controlled;
- };
- ephy1_spd@18 {
- reg = <18>;
- brcm,hardware-controlled;
- };
- ephy2_spd@19 {
- reg = <19>;
- brcm,hardware-controlled;
- };
- ephy3_spd@20 {
- reg = <20>;
- brcm,hardware-controlled;
- };
- };
-
-Scenario 2 : BCM63268 with Serial/GPHY0 LEDs
- leds0: led-controller@10001900 {
- compatible = "brcm,bcm6328-leds";
- #address-cells = <1>;
- #size-cells = <0>;
- reg = <0x10001900 0x24>;
- brcm,serial-leds;
- brcm,serial-dat-low;
- brcm,serial-shift-inv;
-
- gphy0_spd0@0 {
- reg = <0>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <0>;
- };
- gphy0_spd1@1 {
- reg = <1>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <1>;
- };
- inet_red@2 {
- reg = <2>;
- active-low;
- label = "red:inet";
- };
- dsl_green@3 {
- reg = <3>;
- active-low;
- label = "green:dsl";
- };
- usb_green@4 {
- reg = <4>;
- active-low;
- label = "green:usb";
- };
- wps_green@7 {
- reg = <7>;
- active-low;
- label = "green:wps";
- };
- inet_green@8 {
- reg = <8>;
- active-low;
- label = "green:inet";
- };
- ephy0_act@9 {
- reg = <9>;
- brcm,hardware-controlled;
- };
- ephy1_act@10 {
- reg = <10>;
- brcm,hardware-controlled;
- };
- ephy2_act@11 {
- reg = <11>;
- brcm,hardware-controlled;
- };
- gphy0_act@12 {
- reg = <12>;
- brcm,hardware-controlled;
- };
- ephy0_spd@13 {
- reg = <13>;
- brcm,hardware-controlled;
- };
- ephy1_spd@14 {
- reg = <14>;
- brcm,hardware-controlled;
- };
- ephy2_spd@15 {
- reg = <15>;
- brcm,hardware-controlled;
- };
- power_green@20 {
- reg = <20>;
- active-low;
- label = "green:power";
- default-state = "on";
- };
- };
-
-Scenario 3 : BCM6362 with 1 LED for each EPHY
- leds0: led-controller@10001900 {
- compatible = "brcm,bcm6328-leds";
- #address-cells = <1>;
- #size-cells = <0>;
- reg = <0x10001900 0x24>;
-
- usb@0 {
- reg = <0>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <0>;
- brcm,activity-signal-sources = <0>;
- /* USB link/activity routed to USB LED */
- };
- inet@1 {
- reg = <1>;
- brcm,hardware-controlled;
- brcm,activity-signal-sources = <1>;
- /* INET activity routed to INET LED */
- };
- ephy0@4 {
- reg = <4>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <4>;
- /* EPHY0 link routed to EPHY0 LED */
- };
- ephy1@5 {
- reg = <5>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <5>;
- /* EPHY1 link routed to EPHY1 LED */
- };
- ephy2@6 {
- reg = <6>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <6>;
- /* EPHY2 link routed to EPHY2 LED */
- };
- ephy3@7 {
- reg = <7>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <7>;
- /* EPHY3 link routed to EPHY3 LED */
- };
- power_green@20 {
- reg = <20>;
- active-low;
- label = "green:power";
- default-state = "on";
- };
- };
-
-Scenario 4 : BCM6362 with 1 LED for all EPHYs
- leds0: led-controller@10001900 {
- compatible = "brcm,bcm6328-leds";
- #address-cells = <1>;
- #size-cells = <0>;
- reg = <0x10001900 0x24>;
-
- usb@0 {
- reg = <0>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <0 1>;
- brcm,activity-signal-sources = <0 1>;
- /* USB/INET link/activity routed to USB LED */
- };
- ephy@4 {
- reg = <4>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <4 5 6 7>;
- /* EPHY0/1/2/3 link routed to EPHY0 LED */
- };
- power_green@20 {
- reg = <20>;
- active-low;
- label = "green:power";
- default-state = "on";
- };
- };
-
-Scenario 5 : BCM6362 with EPHY LEDs swapped
- leds0: led-controller@10001900 {
- compatible = "brcm,bcm6328-leds";
- #address-cells = <1>;
- #size-cells = <0>;
- reg = <0x10001900 0x24>;
-
- usb@0 {
- reg = <0>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <0>;
- brcm,activity-signal-sources = <0 1>;
- /* USB link/act and INET act routed to USB LED */
- };
- ephy0@4 {
- reg = <4>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <7>;
- /* EPHY3 link routed to EPHY0 LED */
- };
- ephy1@5 {
- reg = <5>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <6>;
- /* EPHY2 link routed to EPHY1 LED */
- };
- ephy2@6 {
- reg = <6>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <5>;
- /* EPHY1 link routed to EPHY2 LED */
- };
- ephy3@7 {
- reg = <7>;
- brcm,hardware-controlled;
- brcm,link-signal-sources = <4>;
- /* EPHY0 link routed to EPHY3 LED */
- };
- power_green@20 {
- reg = <20>;
- active-low;
- label = "green:power";
- default-state = "on";
- };
- };