summaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree/bindings
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings')
-rw-r--r--Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt50
-rw-r--r--Documentation/devicetree/bindings/arm/pmu.txt3
-rw-r--r--Documentation/devicetree/bindings/ata/ahci-platform.txt4
-rw-r--r--Documentation/devicetree/bindings/hwmon/ltc2978.txt1
-rw-r--r--Documentation/devicetree/bindings/leds/common.txt3
-rw-r--r--Documentation/devicetree/bindings/leds/leds-gpio.txt2
-rw-r--r--Documentation/devicetree/bindings/net/cpsw.txt6
-rw-r--r--Documentation/devicetree/bindings/numa.txt275
-rw-r--r--Documentation/devicetree/bindings/regmap/regmap.txt59
-rw-r--r--Documentation/devicetree/bindings/regulator/max8973-regulator.txt7
-rw-r--r--Documentation/devicetree/bindings/regulator/pv88080.txt49
-rw-r--r--Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt37
-rw-r--r--Documentation/devicetree/bindings/regulator/regulator-max77620.txt22
-rw-r--r--Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt10
-rw-r--r--Documentation/devicetree/bindings/regulator/twl-regulator.txt6
15 files changed, 485 insertions, 49 deletions
diff --git a/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt b/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt
index 885f93d14ef9..5a6b16070a33 100644
--- a/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt
+++ b/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt
@@ -3,6 +3,7 @@ This driver uses the EDAC framework to implement the SOCFPGA ECC Manager.
The ECC Manager counts and corrects single bit errors and counts/handles
double bit errors which are uncorrectable.
+Cyclone5 and Arria5 ECC Manager
Required Properties:
- compatible : Should be "altr,socfpga-ecc-manager"
- #address-cells: must be 1
@@ -47,3 +48,52 @@ Example:
interrupts = <0 178 1>, <0 179 1>;
};
};
+
+Arria10 SoCFPGA ECC Manager
+The Arria10 SoC ECC Manager handles the IRQs for each peripheral
+in a shared register instead of individual IRQs like the Cyclone5
+and Arria5. Therefore the device tree is different as well.
+
+Required Properties:
+- compatible : Should be "altr,socfpga-a10-ecc-manager"
+- altr,sysgr-syscon : phandle to Arria10 System Manager Block
+ containing the ECC manager registers.
+- #address-cells: must be 1
+- #size-cells: must be 1
+- interrupts : Should be single bit error interrupt, then double bit error
+ interrupt. Note the rising edge type.
+- ranges : standard definition, should translate from local addresses
+
+Subcomponents:
+
+L2 Cache ECC
+Required Properties:
+- compatible : Should be "altr,socfpga-a10-l2-ecc"
+- reg : Address and size for ECC error interrupt clear registers.
+
+On-Chip RAM ECC
+Required Properties:
+- compatible : Should be "altr,socfpga-a10-ocram-ecc"
+- reg : Address and size for ECC block registers.
+
+Example:
+
+ eccmgr: eccmgr@ffd06000 {
+ compatible = "altr,socfpga-a10-ecc-manager";
+ altr,sysmgr-syscon = <&sysmgr>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ interrupts = <0 2 IRQ_TYPE_LEVEL_HIGH>,
+ <0 0 IRQ_TYPE_LEVEL_HIGH>;
+ ranges;
+
+ l2-ecc@ffd06010 {
+ compatible = "altr,socfpga-a10-l2-ecc";
+ reg = <0xffd06010 0x4>;
+ };
+
+ ocram-ecc@ff8c3000 {
+ compatible = "altr,socfpga-a10-ocram-ecc";
+ reg = <0xff8c3000 0x90>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/arm/pmu.txt b/Documentation/devicetree/bindings/arm/pmu.txt
index 6eb73be9433e..74d5417d0410 100644
--- a/Documentation/devicetree/bindings/arm/pmu.txt
+++ b/Documentation/devicetree/bindings/arm/pmu.txt
@@ -22,10 +22,11 @@ Required properties:
"arm,arm11mpcore-pmu"
"arm,arm1176-pmu"
"arm,arm1136-pmu"
+ "brcm,vulcan-pmu"
+ "cavium,thunder-pmu"
"qcom,scorpion-pmu"
"qcom,scorpion-mp-pmu"
"qcom,krait-pmu"
- "cavium,thunder-pmu"
- interrupts : 1 combined interrupt or 1 per core. If the interrupt is a per-cpu
interrupt (PPI) then 1 interrupt should be specified.
diff --git a/Documentation/devicetree/bindings/ata/ahci-platform.txt b/Documentation/devicetree/bindings/ata/ahci-platform.txt
index 30df832a6f2f..87adfb227ca9 100644
--- a/Documentation/devicetree/bindings/ata/ahci-platform.txt
+++ b/Documentation/devicetree/bindings/ata/ahci-platform.txt
@@ -32,6 +32,10 @@ Optional properties:
- target-supply : regulator for SATA target power
- phys : reference to the SATA PHY node
- phy-names : must be "sata-phy"
+- ports-implemented : Mask that indicates which ports that the HBA supports
+ are available for software to use. Useful if PORTS_IMPL
+ is not programmed by the BIOS, which is true with
+ some embedded SOC's.
Required properties when using sub-nodes:
- #address-cells : number of cells to encode an address
diff --git a/Documentation/devicetree/bindings/hwmon/ltc2978.txt b/Documentation/devicetree/bindings/hwmon/ltc2978.txt
index a7afbf60bb9c..bf2a47bbdc58 100644
--- a/Documentation/devicetree/bindings/hwmon/ltc2978.txt
+++ b/Documentation/devicetree/bindings/hwmon/ltc2978.txt
@@ -13,6 +13,7 @@ Required properties:
* "lltc,ltc3886"
* "lltc,ltc3887"
* "lltc,ltm2987"
+ * "lltc,ltm4675"
* "lltc,ltm4676"
- reg: I2C slave address
diff --git a/Documentation/devicetree/bindings/leds/common.txt b/Documentation/devicetree/bindings/leds/common.txt
index 68419843e32f..af10678ea2f6 100644
--- a/Documentation/devicetree/bindings/leds/common.txt
+++ b/Documentation/devicetree/bindings/leds/common.txt
@@ -37,6 +37,9 @@ Optional properties for child nodes:
property is mandatory for the LEDs in the non-flash modes
(e.g. torch or indicator).
+- panic-indicator : This property specifies that the LED should be used,
+ if at all possible, as a panic indicator.
+
Required properties for flash LED child nodes:
- flash-max-microamp : Maximum flash LED supply current in microamperes.
- flash-max-timeout-us : Maximum timeout in microseconds after which the flash
diff --git a/Documentation/devicetree/bindings/leds/leds-gpio.txt b/Documentation/devicetree/bindings/leds/leds-gpio.txt
index fea1ebfe24a9..cbbeb1850910 100644
--- a/Documentation/devicetree/bindings/leds/leds-gpio.txt
+++ b/Documentation/devicetree/bindings/leds/leds-gpio.txt
@@ -23,6 +23,8 @@ LED sub-node properties:
property is not present.
- retain-state-suspended: (optional) The suspend state can be retained.Such
as charge-led gpio.
+- panic-indicator : (optional)
+ see Documentation/devicetree/bindings/leds/common.txt
Examples:
diff --git a/Documentation/devicetree/bindings/net/cpsw.txt b/Documentation/devicetree/bindings/net/cpsw.txt
index 28a4781ab6d7..0ae06491b430 100644
--- a/Documentation/devicetree/bindings/net/cpsw.txt
+++ b/Documentation/devicetree/bindings/net/cpsw.txt
@@ -45,13 +45,13 @@ Required properties:
Optional properties:
- dual_emac_res_vlan : Specifies VID to be used to segregate the ports
- mac-address : See ethernet.txt file in the same directory
-- phy_id : Specifies slave phy id
+- phy_id : Specifies slave phy id (deprecated, use phy-handle)
- phy-handle : See ethernet.txt file in the same directory
Slave sub-nodes:
- fixed-link : See fixed-link.txt file in the same directory
- Either the property phy_id, or the sub-node
- fixed-link can be specified
+
+Note: Exactly one of phy_id, phy-handle, or fixed-link must be specified.
Note: "ti,hwmods" field is used to fetch the base address and irq
resources from TI, omap hwmod data base during device registration.
diff --git a/Documentation/devicetree/bindings/numa.txt b/Documentation/devicetree/bindings/numa.txt
new file mode 100644
index 000000000000..21b35053ca5a
--- /dev/null
+++ b/Documentation/devicetree/bindings/numa.txt
@@ -0,0 +1,275 @@
+==============================================================================
+NUMA binding description.
+==============================================================================
+
+==============================================================================
+1 - Introduction
+==============================================================================
+
+Systems employing a Non Uniform Memory Access (NUMA) architecture contain
+collections of hardware resources including processors, memory, and I/O buses,
+that comprise what is commonly known as a NUMA node.
+Processor accesses to memory within the local NUMA node is generally faster
+than processor accesses to memory outside of the local NUMA node.
+DT defines interfaces that allow the platform to convey NUMA node
+topology information to OS.
+
+==============================================================================
+2 - numa-node-id
+==============================================================================
+
+For the purpose of identification, each NUMA node is associated with a unique
+token known as a node id. For the purpose of this binding
+a node id is a 32-bit integer.
+
+A device node is associated with a NUMA node by the presence of a
+numa-node-id property which contains the node id of the device.
+
+Example:
+ /* numa node 0 */
+ numa-node-id = <0>;
+
+ /* numa node 1 */
+ numa-node-id = <1>;
+
+==============================================================================
+3 - distance-map
+==============================================================================
+
+The optional device tree node distance-map describes the relative
+distance (memory latency) between all numa nodes.
+
+- compatible : Should at least contain "numa-distance-map-v1".
+
+- distance-matrix
+ This property defines a matrix to describe the relative distances
+ between all numa nodes.
+ It is represented as a list of node pairs and their relative distance.
+
+ Note:
+ 1. Each entry represents distance from first node to second node.
+ The distances are equal in either direction.
+ 2. The distance from a node to self (local distance) is represented
+ with value 10 and all internode distance should be represented with
+ a value greater than 10.
+ 3. distance-matrix should have entries in lexicographical ascending
+ order of nodes.
+ 4. There must be only one device node distance-map which must
+ reside in the root node.
+ 5. If the distance-map node is not present, a default
+ distance-matrix is used.
+
+Example:
+ 4 nodes connected in mesh/ring topology as below,
+
+ 0_______20______1
+ | |
+ | |
+ 20 20
+ | |
+ | |
+ |_______________|
+ 3 20 2
+
+ if relative distance for each hop is 20,
+ then internode distance would be,
+ 0 -> 1 = 20
+ 1 -> 2 = 20
+ 2 -> 3 = 20
+ 3 -> 0 = 20
+ 0 -> 2 = 40
+ 1 -> 3 = 40
+
+ and dt presentation for this distance matrix is,
+
+ distance-map {
+ compatible = "numa-distance-map-v1";
+ distance-matrix = <0 0 10>,
+ <0 1 20>,
+ <0 2 40>,
+ <0 3 20>,
+ <1 0 20>,
+ <1 1 10>,
+ <1 2 20>,
+ <1 3 40>,
+ <2 0 40>,
+ <2 1 20>,
+ <2 2 10>,
+ <2 3 20>,
+ <3 0 20>,
+ <3 1 40>,
+ <3 2 20>,
+ <3 3 10>;
+ };
+
+==============================================================================
+4 - Example dts
+==============================================================================
+
+Dual socket system consists of 2 boards connected through ccn bus and
+each board having one socket/soc of 8 cpus, memory and pci bus.
+
+ memory@c00000 {
+ device_type = "memory";
+ reg = <0x0 0xc00000 0x0 0x80000000>;
+ /* node 0 */
+ numa-node-id = <0>;
+ };
+
+ memory@10000000000 {
+ device_type = "memory";
+ reg = <0x100 0x0 0x0 0x80000000>;
+ /* node 1 */
+ numa-node-id = <1>;
+ };
+
+ cpus {
+ #address-cells = <2>;
+ #size-cells = <0>;
+
+ cpu@0 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x0>;
+ enable-method = "psci";
+ /* node 0 */
+ numa-node-id = <0>;
+ };
+ cpu@1 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x1>;
+ enable-method = "psci";
+ numa-node-id = <0>;
+ };
+ cpu@2 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x2>;
+ enable-method = "psci";
+ numa-node-id = <0>;
+ };
+ cpu@3 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x3>;
+ enable-method = "psci";
+ numa-node-id = <0>;
+ };
+ cpu@4 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x4>;
+ enable-method = "psci";
+ numa-node-id = <0>;
+ };
+ cpu@5 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x5>;
+ enable-method = "psci";
+ numa-node-id = <0>;
+ };
+ cpu@6 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x6>;
+ enable-method = "psci";
+ numa-node-id = <0>;
+ };
+ cpu@7 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x7>;
+ enable-method = "psci";
+ numa-node-id = <0>;
+ };
+ cpu@8 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x8>;
+ enable-method = "psci";
+ /* node 1 */
+ numa-node-id = <1>;
+ };
+ cpu@9 {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0x9>;
+ enable-method = "psci";
+ numa-node-id = <1>;
+ };
+ cpu@a {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0xa>;
+ enable-method = "psci";
+ numa-node-id = <1>;
+ };
+ cpu@b {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0xb>;
+ enable-method = "psci";
+ numa-node-id = <1>;
+ };
+ cpu@c {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0xc>;
+ enable-method = "psci";
+ numa-node-id = <1>;
+ };
+ cpu@d {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0xd>;
+ enable-method = "psci";
+ numa-node-id = <1>;
+ };
+ cpu@e {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0xe>;
+ enable-method = "psci";
+ numa-node-id = <1>;
+ };
+ cpu@f {
+ device_type = "cpu";
+ compatible = "arm,armv8";
+ reg = <0x0 0xf>;
+ enable-method = "psci";
+ numa-node-id = <1>;
+ };
+ };
+
+ pcie0: pcie0@848000000000 {
+ compatible = "arm,armv8";
+ device_type = "pci";
+ bus-range = <0 255>;
+ #size-cells = <2>;
+ #address-cells = <3>;
+ reg = <0x8480 0x00000000 0 0x10000000>; /* Configuration space */
+ ranges = <0x03000000 0x8010 0x00000000 0x8010 0x00000000 0x70 0x00000000>;
+ /* node 0 */
+ numa-node-id = <0>;
+ };
+
+ pcie1: pcie1@948000000000 {
+ compatible = "arm,armv8";
+ device_type = "pci";
+ bus-range = <0 255>;
+ #size-cells = <2>;
+ #address-cells = <3>;
+ reg = <0x9480 0x00000000 0 0x10000000>; /* Configuration space */
+ ranges = <0x03000000 0x9010 0x00000000 0x9010 0x00000000 0x70 0x00000000>;
+ /* node 1 */
+ numa-node-id = <1>;
+ };
+
+ distance-map {
+ compatible = "numa-distance-map-v1";
+ distance-matrix = <0 0 10>,
+ <0 1 20>,
+ <1 1 10>;
+ };
diff --git a/Documentation/devicetree/bindings/regmap/regmap.txt b/Documentation/devicetree/bindings/regmap/regmap.txt
index e98a9652ccc8..0127be360fe8 100644
--- a/Documentation/devicetree/bindings/regmap/regmap.txt
+++ b/Documentation/devicetree/bindings/regmap/regmap.txt
@@ -1,50 +1,29 @@
-Device-Tree binding for regmap
-
-The endianness mode of CPU & Device scenarios:
-Index Device Endianness properties
----------------------------------------------------
-1 BE 'big-endian'
-2 LE 'little-endian'
-3 Native 'native-endian'
-
-For one device driver, which will run in different scenarios above
-on different SoCs using the devicetree, we need one way to simplify
-this.
+Devicetree binding for regmap
Optional properties:
-- {big,little,native}-endian: these are boolean properties, if absent
- then the implementation will choose a default based on the device
- being controlled. These properties are for register values and all
- the buffers only. Native endian means that the CPU and device have
- the same endianness.
-Examples:
-Scenario 1 : CPU in LE mode & device in LE mode.
-dev: dev@40031000 {
- compatible = "name";
- reg = <0x40031000 0x1000>;
- ...
-};
+ little-endian,
+ big-endian,
+ native-endian: See common-properties.txt for a definition
-Scenario 2 : CPU in LE mode & device in BE mode.
-dev: dev@40031000 {
- compatible = "name";
- reg = <0x40031000 0x1000>;
- ...
- big-endian;
-};
+Note:
+Regmap defaults to little-endian register access on MMIO based
+devices, this is by far the most common setting. On CPU
+architectures that typically run big-endian operating systems
+(e.g. PowerPC), registers can be defined as big-endian and must
+be marked that way in the devicetree.
-Scenario 3 : CPU in BE mode & device in BE mode.
-dev: dev@40031000 {
- compatible = "name";
- reg = <0x40031000 0x1000>;
- ...
-};
+On SoCs that can be operated in both big-endian and little-endian
+modes, with a single hardware switch controlling both the endianess
+of the CPU and a byteswap for MMIO registers (e.g. many Broadcom MIPS
+chips), "native-endian" is used to allow using the same device tree
+blob in both cases.
-Scenario 4 : CPU in BE mode & device in LE mode.
+Examples:
+Scenario 1 : a register set in big-endian mode.
dev: dev@40031000 {
- compatible = "name";
+ compatible = "syscon";
reg = <0x40031000 0x1000>;
+ big-endian;
...
- little-endian;
};
diff --git a/Documentation/devicetree/bindings/regulator/max8973-regulator.txt b/Documentation/devicetree/bindings/regulator/max8973-regulator.txt
index f80ea2fe27e6..c2c68fcc1b41 100644
--- a/Documentation/devicetree/bindings/regulator/max8973-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/max8973-regulator.txt
@@ -32,6 +32,13 @@ Optional properties:
Enhanced transient response (ETR) will affect the configuration of CKADV.
+-junction-warn-millicelsius: u32, junction warning temperature threshold
+ in millicelsius. If die temperature crosses this level then
+ device generates the warning interrupts.
+
+Please note that thermal functionality is only supported on MAX77621. The
+supported threshold warning temperature for MAX77621 are 120 degC and 140 degC.
+
Example:
max8973@1b {
diff --git a/Documentation/devicetree/bindings/regulator/pv88080.txt b/Documentation/devicetree/bindings/regulator/pv88080.txt
new file mode 100644
index 000000000000..38a614210dcb
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/pv88080.txt
@@ -0,0 +1,49 @@
+* Powerventure Semiconductor PV88080 Voltage Regulator
+
+Required properties:
+- compatible: "pvs,pv88080".
+- reg: I2C slave address, usually 0x49.
+- interrupts: the interrupt outputs of the controller
+- regulators: A node that houses a sub-node for each regulator within the
+ device. Each sub-node is identified using the node's name, with valid
+ values listed below. The content of each sub-node is defined by the
+ standard binding for regulators; see regulator.txt.
+ BUCK1, BUCK2, and BUCK3.
+
+Optional properties:
+- Any optional property defined in regulator.txt
+
+Example
+
+ pmic: pv88080@49 {
+ compatible = "pvs,pv88080";
+ reg = <0x49>;
+ interrupt-parent = <&gpio>;
+ interrupts = <24 24>;
+
+ regulators {
+ BUCK1 {
+ regulator-name = "buck1";
+ regulator-min-microvolt = < 600000>;
+ regulator-max-microvolt = <1393750>;
+ regulator-min-microamp = < 220000>;
+ regulator-max-microamp = <7040000>;
+ };
+
+ BUCK2 {
+ regulator-name = "buck2";
+ regulator-min-microvolt = < 600000>;
+ regulator-max-microvolt = <1393750>;
+ regulator-min-microamp = <1496000>;
+ regulator-max-microamp = <4189000>;
+ };
+
+ BUCK3 {
+ regulator-name = "buck3";
+ regulator-min-microvolt = <1400000>;
+ regulator-max-microvolt = <2193750>;
+ regulator-min-microamp = <1496000>;
+ regulator-max-microamp = <4189000>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
index d00bfd8624a5..46c6f3ed1a1c 100644
--- a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
@@ -7,6 +7,7 @@ Qualcomm SPMI Regulators
"qcom,pm8841-regulators"
"qcom,pm8916-regulators"
"qcom,pm8941-regulators"
+ "qcom,pm8994-regulators"
- interrupts:
Usage: optional
@@ -68,6 +69,37 @@ Qualcomm SPMI Regulators
Definition: Reference to regulator supplying the input pin, as
described in the data sheet.
+- vdd_s1-supply:
+- vdd_s2-supply:
+- vdd_s3-supply:
+- vdd_s4-supply:
+- vdd_s5-supply:
+- vdd_s6-supply:
+- vdd_s7-supply:
+- vdd_s8-supply:
+- vdd_s9-supply:
+- vdd_s10-supply:
+- vdd_s11-supply:
+- vdd_s12-supply:
+- vdd_l1-supply:
+- vdd_l2_l26_l28-supply:
+- vdd_l3_l11-supply:
+- vdd_l4_l27_l31-supply:
+- vdd_l5_l7-supply:
+- vdd_l6_l12_l32-supply:
+- vdd_l8_l16_l30-supply:
+- vdd_l9_l10_l18_l22-supply:
+- vdd_l13_l19_l23_l24-supply:
+- vdd_l14_l15-supply:
+- vdd_l17_l29-supply:
+- vdd_l20_l21-supply:
+- vdd_l25-supply:
+- vdd_lvs_1_2-supply:
+ Usage: optional (pm8994 only)
+ Value type: <phandle>
+ Definition: Reference to regulator supplying the input pin, as
+ described in the data sheet.
+
The regulator node houses sub-nodes for each regulator within the device. Each
sub-node is identified using the node's name, with valid values listed for each
@@ -85,6 +117,11 @@ pm8941:
l15, l16, l17, l18, l19, l20, l21, l22, l23, l24, lvs1, lvs2, lvs3,
mvs1, mvs2
+pm8994:
+ s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, l1, l2, l3, l4, l5,
+ l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l20,
+ l21, l22, l23, l24, l25, l26, l27, l28, l29, l30, l31, l32, lvs1, lvs2
+
The content of each sub-node is defined by the standard binding for regulators -
see regulator.txt - with additional custom properties described below:
diff --git a/Documentation/devicetree/bindings/regulator/regulator-max77620.txt b/Documentation/devicetree/bindings/regulator/regulator-max77620.txt
index b3c8ca672024..1c4bfe786736 100644
--- a/Documentation/devicetree/bindings/regulator/regulator-max77620.txt
+++ b/Documentation/devicetree/bindings/regulator/regulator-max77620.txt
@@ -94,6 +94,28 @@ Following are additional properties:
This is applicable if suspend state
FPS source is selected as FPS0, FPS1 or
FPS2.
+- maxim,ramp-rate-setting: integer, ramp rate(uV/us) setting to be
+ configured to the device.
+ The platform may have different ramp
+ rate than advertised ramp rate if it has
+ design variation from Maxim's
+ recommended. On this case, platform
+ specific ramp rate is used for ramp time
+ calculation and this property is used
+ for device register configurations.
+ The measured ramp rate of platform is
+ provided by the regulator-ramp-delay
+ as described in <devicetree/bindings/
+ regulator/regulator.txt>.
+ Maxim Max77620 supports following ramp
+ delay:
+ SD: 13.75mV/us, 27.5mV/us, 55mV/us
+ LDOs: 5mV/us, 100mV/us
+
+Note: If the measured ramp delay is same as advertised ramp delay then it is not
+required to provide the ramp delay with property "maxim,ramp-rate-setting". The
+ramp rate can be provided by the regulator-ramp-delay which will be used for
+ramp time calculation for voltage change as well as for device configuration.
Example:
--------
diff --git a/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt b/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt
index c58db75f959e..c3f6546ebac7 100644
--- a/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt
@@ -14,8 +14,8 @@ Required Properties:
- "setup-address" - contains setup register address of ABB module (ti,abb-v3)
- "int-address" - contains address of interrupt register for ABB module
(also see Optional properties)
-- #address-cell: should be 0
-- #size-cell: should be 0
+- #address-cells: should be 0
+- #size-cells: should be 0
- clocks: should point to the clock node used by ABB module
- ti,settling-time: Settling time in uSecs from SoC documentation for ABB module
to settle down(target time for SR2_WTCNT_VALUE).
@@ -69,7 +69,7 @@ Example #1: Simplest configuration (no efuse data, hard coded ABB table):
abb_x: regulator-abb-x {
compatible = "ti,abb-v1";
regulator-name = "abb_x";
- #address-cell = <0>;
+ #address-cells = <0>;
#size-cells = <0>;
reg = <0x483072f0 0x8>, <0x48306818 0x4>;
reg-names = "base-address", "int-address";
@@ -89,7 +89,7 @@ Example #2: Efuse bits contain ABB mode setting (no LDO override capability)
abb_y: regulator-abb-y {
compatible = "ti,abb-v2";
regulator-name = "abb_y";
- #address-cell = <0>;
+ #address-cells = <0>;
#size-cells = <0>;
reg = <0x4a307bd0 0x8>, <0x4a306014 0x4>, <0x4A002268 0x8>;
reg-names = "base-address", "int-address", "efuse-address";
@@ -110,7 +110,7 @@ Example #3: Efuse bits contain ABB mode setting and LDO override capability
abb_z: regulator-abb-z {
compatible = "ti,abb-v2";
regulator-name = "abb_z";
- #address-cell = <0>;
+ #address-cells = <0>;
#size-cells = <0>;
reg = <0x4ae07ce4 0x8>, <0x4ae06010 0x4>,
<0x4a002194 0x8>, <0x4ae0C314 0x4>;
diff --git a/Documentation/devicetree/bindings/regulator/twl-regulator.txt b/Documentation/devicetree/bindings/regulator/twl-regulator.txt
index 75b0c1669504..74a91c4f8530 100644
--- a/Documentation/devicetree/bindings/regulator/twl-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/twl-regulator.txt
@@ -57,6 +57,12 @@ For twl4030 regulators/LDOs
Optional properties:
- Any optional property defined in bindings/regulator/regulator.txt
+For twl4030 regulators/LDOs:
+ - regulator-initial-mode:
+ - 0x08 - Sleep mode, the nominal output voltage is maintained with low power
+ consumption with low load current capability.
+ - 0x0e - Active mode, the regulator can deliver its nominal output voltage
+ with full-load current capability.
Example: