diff options
Diffstat (limited to 'Documentation/driver-api/virtio/virtio.rst')
-rw-r--r-- | Documentation/driver-api/virtio/virtio.rst | 145 |
1 files changed, 145 insertions, 0 deletions
diff --git a/Documentation/driver-api/virtio/virtio.rst b/Documentation/driver-api/virtio/virtio.rst new file mode 100644 index 000000000000..7947b4ca690e --- /dev/null +++ b/Documentation/driver-api/virtio/virtio.rst @@ -0,0 +1,145 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. _virtio: + +=============== +Virtio on Linux +=============== + +Introduction +============ + +Virtio is an open standard that defines a protocol for communication +between drivers and devices of different types, see Chapter 5 ("Device +Types") of the virtio spec (`[1]`_). Originally developed as a standard +for paravirtualized devices implemented by a hypervisor, it can be used +to interface any compliant device (real or emulated) with a driver. + +For illustrative purposes, this document will focus on the common case +of a Linux kernel running in a virtual machine and using paravirtualized +devices provided by the hypervisor, which exposes them as virtio devices +via standard mechanisms such as PCI. + + +Device - Driver communication: virtqueues +========================================= + +Although the virtio devices are really an abstraction layer in the +hypervisor, they're exposed to the guest as if they are physical devices +using a specific transport method -- PCI, MMIO or CCW -- that is +orthogonal to the device itself. The virtio spec defines these transport +methods in detail, including device discovery, capabilities and +interrupt handling. + +The communication between the driver in the guest OS and the device in +the hypervisor is done through shared memory (that's what makes virtio +devices so efficient) using specialized data structures called +virtqueues, which are actually ring buffers [#f1]_ of buffer descriptors +similar to the ones used in a network device: + +.. kernel-doc:: include/uapi/linux/virtio_ring.h + :identifiers: struct vring_desc + +All the buffers the descriptors point to are allocated by the guest and +used by the host either for reading or for writing but not for both. + +Refer to Chapter 2.5 ("Virtqueues") of the virtio spec (`[1]`_) for the +reference definitions of virtqueues and "Virtqueues and virtio ring: How +the data travels" blog post (`[2]`_) for an illustrated overview of how +the host device and the guest driver communicate. + +The :c:type:`vring_virtqueue` struct models a virtqueue, including the +ring buffers and management data. Embedded in this struct is the +:c:type:`virtqueue` struct, which is the data structure that's +ultimately used by virtio drivers: + +.. kernel-doc:: include/linux/virtio.h + :identifiers: struct virtqueue + +The callback function pointed by this struct is triggered when the +device has consumed the buffers provided by the driver. More +specifically, the trigger will be an interrupt issued by the hypervisor +(see vring_interrupt()). Interrupt request handlers are registered for +a virtqueue during the virtqueue setup process (transport-specific). + +.. kernel-doc:: drivers/virtio/virtio_ring.c + :identifiers: vring_interrupt + + +Device discovery and probing +============================ + +In the kernel, the virtio core contains the virtio bus driver and +transport-specific drivers like `virtio-pci` and `virtio-mmio`. Then +there are individual virtio drivers for specific device types that are +registered to the virtio bus driver. + +How a virtio device is found and configured by the kernel depends on how +the hypervisor defines it. Taking the `QEMU virtio-console +<https://gitlab.com/qemu-project/qemu/-/blob/master/hw/char/virtio-console.c>`__ +device as an example. When using PCI as a transport method, the device +will present itself on the PCI bus with vendor 0x1af4 (Red Hat, Inc.) +and device id 0x1003 (virtio console), as defined in the spec, so the +kernel will detect it as it would do with any other PCI device. + +During the PCI enumeration process, if a device is found to match the +virtio-pci driver (according to the virtio-pci device table, any PCI +device with vendor id = 0x1af4):: + + /* Qumranet donated their vendor ID for devices 0x1000 thru 0x10FF. */ + static const struct pci_device_id virtio_pci_id_table[] = { + { PCI_DEVICE(PCI_VENDOR_ID_REDHAT_QUMRANET, PCI_ANY_ID) }, + { 0 } + }; + +then the virtio-pci driver is probed and, if the probing goes well, the +device is registered to the virtio bus:: + + static int virtio_pci_probe(struct pci_dev *pci_dev, + const struct pci_device_id *id) + { + ... + + if (force_legacy) { + rc = virtio_pci_legacy_probe(vp_dev); + /* Also try modern mode if we can't map BAR0 (no IO space). */ + if (rc == -ENODEV || rc == -ENOMEM) + rc = virtio_pci_modern_probe(vp_dev); + if (rc) + goto err_probe; + } else { + rc = virtio_pci_modern_probe(vp_dev); + if (rc == -ENODEV) + rc = virtio_pci_legacy_probe(vp_dev); + if (rc) + goto err_probe; + } + + ... + + rc = register_virtio_device(&vp_dev->vdev); + +When the device is registered to the virtio bus the kernel will look +for a driver in the bus that can handle the device and call that +driver's ``probe`` method. + +At this point, the virtqueues will be allocated and configured by +calling the appropriate ``virtio_find`` helper function, such as +virtio_find_single_vq() or virtio_find_vqs(), which will end up calling +a transport-specific ``find_vqs`` method. + + +References +========== + +_`[1]` Virtio Spec v1.2: +https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html + +.. Check for later versions of the spec as well. + +_`[2]` Virtqueues and virtio ring: How the data travels +https://www.redhat.com/en/blog/virtqueues-and-virtio-ring-how-data-travels + +.. rubric:: Footnotes + +.. [#f1] that's why they may be also referred to as virtrings. |