diff options
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r-- | Documentation/driver-api/basics.rst | 21 | ||||
-rw-r--r-- | Documentation/driver-api/dmaengine/provider.rst | 38 | ||||
-rw-r--r-- | Documentation/driver-api/firmware/built-in-fw.rst | 7 | ||||
-rw-r--r-- | Documentation/driver-api/firmware/fallback-mechanisms.rst | 2 | ||||
-rw-r--r-- | Documentation/driver-api/iio/hw-consumer.rst | 51 | ||||
-rw-r--r-- | Documentation/driver-api/iio/index.rst | 1 | ||||
-rw-r--r-- | Documentation/driver-api/pm/devices.rst | 54 | ||||
-rw-r--r-- | Documentation/driver-api/scsi.rst | 10 | ||||
-rw-r--r-- | Documentation/driver-api/usb/usb3-debug-port.rst | 52 | ||||
-rw-r--r-- | Documentation/driver-api/usb/writing_usb_driver.rst | 2 |
10 files changed, 192 insertions, 46 deletions
diff --git a/Documentation/driver-api/basics.rst b/Documentation/driver-api/basics.rst index 73fa7d42bbba..826e85d50a16 100644 --- a/Documentation/driver-api/basics.rst +++ b/Documentation/driver-api/basics.rst @@ -13,12 +13,6 @@ Driver device table .. kernel-doc:: include/linux/mod_devicetable.h :internal: -Atomic and pointer manipulation -------------------------------- - -.. kernel-doc:: arch/x86/include/asm/atomic.h - :internal: - Delaying, scheduling, and timer routines ---------------------------------------- @@ -85,6 +79,21 @@ Internal Functions .. kernel-doc:: kernel/kthread.c :export: +Reference counting +------------------ + +.. kernel-doc:: include/linux/refcount.h + :internal: + +.. kernel-doc:: lib/refcount.c + :export: + +Atomics +------- + +.. kernel-doc:: arch/x86/include/asm/atomic.h + :internal: + Kernel objects manipulation --------------------------- diff --git a/Documentation/driver-api/dmaengine/provider.rst b/Documentation/driver-api/dmaengine/provider.rst index 814acb4d2294..dfc4486b5743 100644 --- a/Documentation/driver-api/dmaengine/provider.rst +++ b/Documentation/driver-api/dmaengine/provider.rst @@ -111,40 +111,36 @@ The first thing you need to do in your driver is to allocate this structure. Any of the usual memory allocators will do, but you'll also need to initialize a few fields in there: -- channels: should be initialized as a list using the +- ``channels``: should be initialized as a list using the INIT_LIST_HEAD macro for example -- src_addr_widths: +- ``src_addr_widths``: should contain a bitmask of the supported source transfer width -- dst_addr_widths: +- ``dst_addr_widths``: should contain a bitmask of the supported destination transfer width -- directions: +- ``directions``: should contain a bitmask of the supported slave directions (i.e. excluding mem2mem transfers) -- residue_granularity: +- ``residue_granularity``: + granularity of the transfer residue reported to dma_set_residue. + This can be either: - - Granularity of the transfer residue reported to dma_set_residue. - This can be either: + - Descriptor: + your device doesn't support any kind of residue + reporting. The framework will only know that a particular + transaction descriptor is done. - - Descriptor + - Segment: + your device is able to report which chunks have been transferred - - Your device doesn't support any kind of residue - reporting. The framework will only know that a particular - transaction descriptor is done. + - Burst: + your device is able to report which burst have been transferred - - Segment - - - Your device is able to report which chunks have been transferred - - - Burst - - - Your device is able to report which burst have been transferred - - - dev: should hold the pointer to the ``struct device`` associated - to your current driver instance. +- ``dev``: should hold the pointer to the ``struct device`` associated + to your current driver instance. Supported transaction types --------------------------- diff --git a/Documentation/driver-api/firmware/built-in-fw.rst b/Documentation/driver-api/firmware/built-in-fw.rst index 7300e66857f8..396cdf591ac5 100644 --- a/Documentation/driver-api/firmware/built-in-fw.rst +++ b/Documentation/driver-api/firmware/built-in-fw.rst @@ -11,13 +11,8 @@ options: * CONFIG_EXTRA_FIRMWARE * CONFIG_EXTRA_FIRMWARE_DIR -This should not be confused with CONFIG_FIRMWARE_IN_KERNEL, this is for drivers -which enables firmware to be built as part of the kernel build process. This -option, CONFIG_FIRMWARE_IN_KERNEL, will build all firmware for all drivers -enabled which ship its firmware inside the Linux kernel source tree. - There are a few reasons why you might want to consider building your firmware -into the kernel with CONFIG_EXTRA_FIRMWARE though: +into the kernel with CONFIG_EXTRA_FIRMWARE: * Speed * Firmware is needed for accessing the boot device, and the user doesn't diff --git a/Documentation/driver-api/firmware/fallback-mechanisms.rst b/Documentation/driver-api/firmware/fallback-mechanisms.rst index d19354794e67..4055ac76b288 100644 --- a/Documentation/driver-api/firmware/fallback-mechanisms.rst +++ b/Documentation/driver-api/firmware/fallback-mechanisms.rst @@ -71,7 +71,7 @@ via fw_create_instance(). This call creates a new struct device named after the firmware requested, and establishes it in the device hierarchy by associating the device used to make the request as the device's parent. The sysfs directory's file attributes are defined and controlled through -the new device's class (firmare_class) and group (fw_dev_attr_groups). +the new device's class (firmware_class) and group (fw_dev_attr_groups). This is actually where the original firmware_class.c file name comes from, as originally the only firmware loading mechanism available was the mechanism we now use as a fallback mechanism. diff --git a/Documentation/driver-api/iio/hw-consumer.rst b/Documentation/driver-api/iio/hw-consumer.rst new file mode 100644 index 000000000000..8facce6a6733 --- /dev/null +++ b/Documentation/driver-api/iio/hw-consumer.rst @@ -0,0 +1,51 @@ +=========== +HW consumer +=========== +An IIO device can be directly connected to another device in hardware. in this +case the buffers between IIO provider and IIO consumer are handled by hardware. +The Industrial I/O HW consumer offers a way to bond these IIO devices without +software buffer for data. The implementation can be found under +:file:`drivers/iio/buffer/hw-consumer.c` + + +* struct :c:type:`iio_hw_consumer` — Hardware consumer structure +* :c:func:`iio_hw_consumer_alloc` — Allocate IIO hardware consumer +* :c:func:`iio_hw_consumer_free` — Free IIO hardware consumer +* :c:func:`iio_hw_consumer_enable` — Enable IIO hardware consumer +* :c:func:`iio_hw_consumer_disable` — Disable IIO hardware consumer + + +HW consumer setup +================= + +As standard IIO device the implementation is based on IIO provider/consumer. +A typical IIO HW consumer setup looks like this:: + + static struct iio_hw_consumer *hwc; + + static const struct iio_info adc_info = { + .read_raw = adc_read_raw, + }; + + static int adc_read_raw(struct iio_dev *indio_dev, + struct iio_chan_spec const *chan, int *val, + int *val2, long mask) + { + ret = iio_hw_consumer_enable(hwc); + + /* Acquire data */ + + ret = iio_hw_consumer_disable(hwc); + } + + static int adc_probe(struct platform_device *pdev) + { + hwc = devm_iio_hw_consumer_alloc(&iio->dev); + } + +More details +============ +.. kernel-doc:: include/linux/iio/hw-consumer.h +.. kernel-doc:: drivers/iio/buffer/industrialio-hw-consumer.c + :export: + diff --git a/Documentation/driver-api/iio/index.rst b/Documentation/driver-api/iio/index.rst index e5c3922d1b6f..7fba341bd8b2 100644 --- a/Documentation/driver-api/iio/index.rst +++ b/Documentation/driver-api/iio/index.rst @@ -15,3 +15,4 @@ Contents: buffers triggers triggered-buffers + hw-consumer diff --git a/Documentation/driver-api/pm/devices.rst b/Documentation/driver-api/pm/devices.rst index 53c1b0b06da5..1128705a5731 100644 --- a/Documentation/driver-api/pm/devices.rst +++ b/Documentation/driver-api/pm/devices.rst @@ -777,17 +777,51 @@ The driver can indicate that by setting ``DPM_FLAG_SMART_SUSPEND`` in runtime suspend at the beginning of the ``suspend_late`` phase of system-wide suspend (or in the ``poweroff_late`` phase of hibernation), when runtime PM has been disabled for it, under the assumption that its state should not change -after that point until the system-wide transition is over. If that happens, the -driver's system-wide resume callbacks, if present, may still be invoked during -the subsequent system-wide resume transition and the device's runtime power -management status may be set to "active" before enabling runtime PM for it, -so the driver must be prepared to cope with the invocation of its system-wide -resume callbacks back-to-back with its ``->runtime_suspend`` one (without the -intervening ``->runtime_resume`` and so on) and the final state of the device -must reflect the "active" status for runtime PM in that case. +after that point until the system-wide transition is over (the PM core itself +does that for devices whose "noirq", "late" and "early" system-wide PM callbacks +are executed directly by it). If that happens, the driver's system-wide resume +callbacks, if present, may still be invoked during the subsequent system-wide +resume transition and the device's runtime power management status may be set +to "active" before enabling runtime PM for it, so the driver must be prepared to +cope with the invocation of its system-wide resume callbacks back-to-back with +its ``->runtime_suspend`` one (without the intervening ``->runtime_resume`` and +so on) and the final state of the device must reflect the "active" runtime PM +status in that case. During system-wide resume from a sleep state it's easiest to put devices into the full-power state, as explained in :file:`Documentation/power/runtime_pm.txt`. -Refer to that document for more information regarding this particular issue as +[Refer to that document for more information regarding this particular issue as well as for information on the device runtime power management framework in -general. +general.] + +However, it often is desirable to leave devices in suspend after system +transitions to the working state, especially if those devices had been in +runtime suspend before the preceding system-wide suspend (or analogous) +transition. Device drivers can use the ``DPM_FLAG_LEAVE_SUSPENDED`` flag to +indicate to the PM core (and middle-layer code) that they prefer the specific +devices handled by them to be left suspended and they have no problems with +skipping their system-wide resume callbacks for this reason. Whether or not the +devices will actually be left in suspend may depend on their state before the +given system suspend-resume cycle and on the type of the system transition under +way. In particular, devices are not left suspended if that transition is a +restore from hibernation, as device states are not guaranteed to be reflected +by the information stored in the hibernation image in that case. + +The middle-layer code involved in the handling of the device is expected to +indicate to the PM core if the device may be left in suspend by setting its +:c:member:`power.may_skip_resume` status bit which is checked by the PM core +during the "noirq" phase of the preceding system-wide suspend (or analogous) +transition. The middle layer is then responsible for handling the device as +appropriate in its "noirq" resume callback, which is executed regardless of +whether or not the device is left suspended, but the other resume callbacks +(except for ``->complete``) will be skipped automatically by the PM core if the +device really can be left in suspend. + +For devices whose "noirq", "late" and "early" driver callbacks are invoked +directly by the PM core, all of the system-wide resume callbacks are skipped if +``DPM_FLAG_LEAVE_SUSPENDED`` is set and the device is in runtime suspend during +the ``suspend_noirq`` (or analogous) phase or the transition under way is a +proper system suspend (rather than anything related to hibernation) and the +device's wakeup settings are suitable for runtime PM (that is, it cannot +generate wakeup signals at all or it is allowed to wake up the system from +sleep). diff --git a/Documentation/driver-api/scsi.rst b/Documentation/driver-api/scsi.rst index 9ae03171daca..3ae337929721 100644 --- a/Documentation/driver-api/scsi.rst +++ b/Documentation/driver-api/scsi.rst @@ -224,6 +224,14 @@ mid to lowlevel SCSI driver interface .. kernel-doc:: drivers/scsi/hosts.c :export: +drivers/scsi/scsi_common.c +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +general support functions + +.. kernel-doc:: drivers/scsi/scsi_common.c + :export: + Transport classes ----------------- @@ -332,5 +340,5 @@ todo ~~~~ Parallel (fast/wide/ultra) SCSI, USB, SATA, SAS, Fibre Channel, -FireWire, ATAPI devices, Infiniband, I20, iSCSI, Parallel ports, +FireWire, ATAPI devices, Infiniband, I2O, iSCSI, Parallel ports, netlink... diff --git a/Documentation/driver-api/usb/usb3-debug-port.rst b/Documentation/driver-api/usb/usb3-debug-port.rst index feb1a36a65b7..b9fd131f4723 100644 --- a/Documentation/driver-api/usb/usb3-debug-port.rst +++ b/Documentation/driver-api/usb/usb3-debug-port.rst @@ -98,3 +98,55 @@ you to check the sanity of the setup. cat /dev/ttyUSB0 done ===== end of bash scripts =============== + +Serial TTY +========== + +The DbC support has been added to the xHCI driver. You can get a +debug device provided by the DbC at runtime. + +In order to use this, you need to make sure your kernel has been +configured to support USB_XHCI_DBGCAP. A sysfs attribute under +the xHCI device node is used to enable or disable DbC. By default, +DbC is disabled:: + + root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc + disabled + +Enable DbC with the following command:: + + root@target:/sys/bus/pci/devices/0000:00:14.0# echo enable > dbc + +You can check the DbC state at anytime:: + + root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc + enabled + +Connect the debug target to the debug host with a USB 3.0 super- +speed A-to-A debugging cable. You can see /dev/ttyDBC0 created +on the debug target. You will see below kernel message lines:: + + root@target: tail -f /var/log/kern.log + [ 182.730103] xhci_hcd 0000:00:14.0: DbC connected + [ 191.169420] xhci_hcd 0000:00:14.0: DbC configured + [ 191.169597] xhci_hcd 0000:00:14.0: DbC now attached to /dev/ttyDBC0 + +Accordingly, the DbC state has been brought up to:: + + root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc + configured + +On the debug host, you will see the debug device has been enumerated. +You will see below kernel message lines:: + + root@host: tail -f /var/log/kern.log + [ 79.454780] usb 2-2.1: new SuperSpeed USB device number 3 using xhci_hcd + [ 79.475003] usb 2-2.1: LPM exit latency is zeroed, disabling LPM. + [ 79.475389] usb 2-2.1: New USB device found, idVendor=1d6b, idProduct=0010 + [ 79.475390] usb 2-2.1: New USB device strings: Mfr=1, Product=2, SerialNumber=3 + [ 79.475391] usb 2-2.1: Product: Linux USB Debug Target + [ 79.475392] usb 2-2.1: Manufacturer: Linux Foundation + [ 79.475393] usb 2-2.1: SerialNumber: 0001 + +The debug device works now. You can use any communication or debugging +program to talk between the host and the target. diff --git a/Documentation/driver-api/usb/writing_usb_driver.rst b/Documentation/driver-api/usb/writing_usb_driver.rst index 69f077dcdb78..4fe1c06b6a13 100644 --- a/Documentation/driver-api/usb/writing_usb_driver.rst +++ b/Documentation/driver-api/usb/writing_usb_driver.rst @@ -321,6 +321,6 @@ linux-usb-devel Mailing List Archives: http://marc.theaimsgroup.com/?l=linux-usb-devel Programming Guide for Linux USB Device Drivers: -http://usb.cs.tum.edu/usbdoc +http://lmu.web.psi.ch/docu/manuals/software_manuals/linux_sl/usb_linux_programming_guide.pdf USB Home Page: http://www.usb.org |