summaryrefslogtreecommitdiffstats
path: root/Documentation/driver-api
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r--Documentation/driver-api/device-io.rst356
-rw-r--r--Documentation/driver-api/driver-model/devres.rst4
-rw-r--r--Documentation/driver-api/iio/buffers.rst15
-rw-r--r--Documentation/driver-api/serial/cyclades_z.rst11
-rw-r--r--Documentation/driver-api/serial/index.rst1
-rw-r--r--Documentation/driver-api/serial/rocket.rst185
-rw-r--r--Documentation/driver-api/surface_aggregator/client.rst4
-rw-r--r--Documentation/driver-api/surface_aggregator/clients/dtx.rst718
-rw-r--r--Documentation/driver-api/surface_aggregator/clients/index.rst1
-rw-r--r--Documentation/driver-api/usb/usb.rst15
-rw-r--r--Documentation/driver-api/xilinx/eemi.rst31
11 files changed, 1098 insertions, 243 deletions
diff --git a/Documentation/driver-api/device-io.rst b/Documentation/driver-api/device-io.rst
index 764963876d08..e9f04b1815d1 100644
--- a/Documentation/driver-api/device-io.rst
+++ b/Documentation/driver-api/device-io.rst
@@ -146,6 +146,362 @@ There are also equivalents to memcpy. The ins() and
outs() functions copy bytes, words or longs to the given
port.
+__iomem pointer tokens
+======================
+
+The data type for an MMIO address is an ``__iomem`` qualified pointer, such as
+``void __iomem *reg``. On most architectures it is a regular pointer that
+points to a virtual memory address and can be offset or dereferenced, but in
+portable code, it must only be passed from and to functions that explicitly
+operated on an ``__iomem`` token, in particular the ioremap() and
+readl()/writel() functions. The 'sparse' semantic code checker can be used to
+verify that this is done correctly.
+
+While on most architectures, ioremap() creates a page table entry for an
+uncached virtual address pointing to the physical MMIO address, some
+architectures require special instructions for MMIO, and the ``__iomem`` pointer
+just encodes the physical address or an offsettable cookie that is interpreted
+by readl()/writel().
+
+Differences between I/O access functions
+========================================
+
+readq(), readl(), readw(), readb(), writeq(), writel(), writew(), writeb()
+
+ These are the most generic accessors, providing serialization against other
+ MMIO accesses and DMA accesses as well as fixed endianness for accessing
+ little-endian PCI devices and on-chip peripherals. Portable device drivers
+ should generally use these for any access to ``__iomem`` pointers.
+
+ Note that posted writes are not strictly ordered against a spinlock, see
+ Documentation/driver-api/io_ordering.rst.
+
+readq_relaxed(), readl_relaxed(), readw_relaxed(), readb_relaxed(),
+writeq_relaxed(), writel_relaxed(), writew_relaxed(), writeb_relaxed()
+
+ On architectures that require an expensive barrier for serializing against
+ DMA, these "relaxed" versions of the MMIO accessors only serialize against
+ each other, but contain a less expensive barrier operation. A device driver
+ might use these in a particularly performance sensitive fast path, with a
+ comment that explains why the usage in a specific location is safe without
+ the extra barriers.
+
+ See memory-barriers.txt for a more detailed discussion on the precise ordering
+ guarantees of the non-relaxed and relaxed versions.
+
+ioread64(), ioread32(), ioread16(), ioread8(),
+iowrite64(), iowrite32(), iowrite16(), iowrite8()
+
+ These are an alternative to the normal readl()/writel() functions, with almost
+ identical behavior, but they can also operate on ``__iomem`` tokens returned
+ for mapping PCI I/O space with pci_iomap() or ioport_map(). On architectures
+ that require special instructions for I/O port access, this adds a small
+ overhead for an indirect function call implemented in lib/iomap.c, while on
+ other architectures, these are simply aliases.
+
+ioread64be(), ioread32be(), ioread16be()
+iowrite64be(), iowrite32be(), iowrite16be()
+
+ These behave in the same way as the ioread32()/iowrite32() family, but with
+ reversed byte order, for accessing devices with big-endian MMIO registers.
+ Device drivers that can operate on either big-endian or little-endian
+ registers may have to implement a custom wrapper function that picks one or
+ the other depending on which device was found.
+
+ Note: On some architectures, the normal readl()/writel() functions
+ traditionally assume that devices are the same endianness as the CPU, while
+ using a hardware byte-reverse on the PCI bus when running a big-endian kernel.
+ Drivers that use readl()/writel() this way are generally not portable, but
+ tend to be limited to a particular SoC.
+
+hi_lo_readq(), lo_hi_readq(), hi_lo_readq_relaxed(), lo_hi_readq_relaxed(),
+ioread64_lo_hi(), ioread64_hi_lo(), ioread64be_lo_hi(), ioread64be_hi_lo(),
+hi_lo_writeq(), lo_hi_writeq(), hi_lo_writeq_relaxed(), lo_hi_writeq_relaxed(),
+iowrite64_lo_hi(), iowrite64_hi_lo(), iowrite64be_lo_hi(), iowrite64be_hi_lo()
+
+ Some device drivers have 64-bit registers that cannot be accessed atomically
+ on 32-bit architectures but allow two consecutive 32-bit accesses instead.
+ Since it depends on the particular device which of the two halves has to be
+ accessed first, a helper is provided for each combination of 64-bit accessors
+ with either low/high or high/low word ordering. A device driver must include
+ either <linux/io-64-nonatomic-lo-hi.h> or <linux/io-64-nonatomic-hi-lo.h> to
+ get the function definitions along with helpers that redirect the normal
+ readq()/writeq() to them on architectures that do not provide 64-bit access
+ natively.
+
+__raw_readq(), __raw_readl(), __raw_readw(), __raw_readb(),
+__raw_writeq(), __raw_writel(), __raw_writew(), __raw_writeb()
+
+ These are low-level MMIO accessors without barriers or byteorder changes and
+ architecture specific behavior. Accesses are usually atomic in the sense that
+ a four-byte __raw_readl() does not get split into individual byte loads, but
+ multiple consecutive accesses can be combined on the bus. In portable code, it
+ is only safe to use these to access memory behind a device bus but not MMIO
+ registers, as there are no ordering guarantees with regard to other MMIO
+ accesses or even spinlocks. The byte order is generally the same as for normal
+ memory, so unlike the other functions, these can be used to copy data between
+ kernel memory and device memory.
+
+inl(), inw(), inb(), outl(), outw(), outb()
+
+ PCI I/O port resources traditionally require separate helpers as they are
+ implemented using special instructions on the x86 architecture. On most other
+ architectures, these are mapped to readl()/writel() style accessors
+ internally, usually pointing to a fixed area in virtual memory. Instead of an
+ ``__iomem`` pointer, the address is a 32-bit integer token to identify a port
+ number. PCI requires I/O port access to be non-posted, meaning that an outb()
+ must complete before the following code executes, while a normal writeb() may
+ still be in progress. On architectures that correctly implement this, I/O port
+ access is therefore ordered against spinlocks. Many non-x86 PCI host bridge
+ implementations and CPU architectures however fail to implement non-posted I/O
+ space on PCI, so they can end up being posted on such hardware.
+
+ In some architectures, the I/O port number space has a 1:1 mapping to
+ ``__iomem`` pointers, but this is not recommended and device drivers should
+ not rely on that for portability. Similarly, an I/O port number as described
+ in a PCI base address register may not correspond to the port number as seen
+ by a device driver. Portable drivers need to read the port number for the
+ resource provided by the kernel.
+
+ There are no direct 64-bit I/O port accessors, but pci_iomap() in combination
+ with ioread64/iowrite64 can be used instead.
+
+inl_p(), inw_p(), inb_p(), outl_p(), outw_p(), outb_p()
+
+ On ISA devices that require specific timing, the _p versions of the I/O
+ accessors add a small delay. On architectures that do not have ISA buses,
+ these are aliases to the normal inb/outb helpers.
+
+readsq, readsl, readsw, readsb
+writesq, writesl, writesw, writesb
+ioread64_rep, ioread32_rep, ioread16_rep, ioread8_rep
+iowrite64_rep, iowrite32_rep, iowrite16_rep, iowrite8_rep
+insl, insw, insb, outsl, outsw, outsb
+
+ These are helpers that access the same address multiple times, usually to copy
+ data between kernel memory byte stream and a FIFO buffer. Unlike the normal
+ MMIO accessors, these do not perform a byteswap on big-endian kernels, so the
+ first byte in the FIFO register corresponds to the first byte in the memory
+ buffer regardless of the architecture.
+
+Device memory mapping modes
+===========================
+
+Some architectures support multiple modes for mapping device memory.
+ioremap_*() variants provide a common abstraction around these
+architecture-specific modes, with a shared set of semantics.
+
+ioremap() is the most common mapping type, and is applicable to typical device
+memory (e.g. I/O registers). Other modes can offer weaker or stronger
+guarantees, if supported by the architecture. From most to least common, they
+are as follows:
+
+ioremap()
+---------
+
+The default mode, suitable for most memory-mapped devices, e.g. control
+registers. Memory mapped using ioremap() has the following characteristics:
+
+* Uncached - CPU-side caches are bypassed, and all reads and writes are handled
+ directly by the device
+* No speculative operations - the CPU may not issue a read or write to this
+ memory, unless the instruction that does so has been reached in committed
+ program flow.
+* No reordering - The CPU may not reorder accesses to this memory mapping with
+ respect to each other. On some architectures, this relies on barriers in
+ readl_relaxed()/writel_relaxed().
+* No repetition - The CPU may not issue multiple reads or writes for a single
+ program instruction.
+* No write-combining - Each I/O operation results in one discrete read or write
+ being issued to the device, and multiple writes are not combined into larger
+ writes. This may or may not be enforced when using __raw I/O accessors or
+ pointer dereferences.
+* Non-executable - The CPU is not allowed to speculate instruction execution
+ from this memory (it probably goes without saying, but you're also not
+ allowed to jump into device memory).
+
+On many platforms and buses (e.g. PCI), writes issued through ioremap()
+mappings are posted, which means that the CPU does not wait for the write to
+actually reach the target device before retiring the write instruction.
+
+On many platforms, I/O accesses must be aligned with respect to the access
+size; failure to do so will result in an exception or unpredictable results.
+
+ioremap_wc()
+------------
+
+Maps I/O memory as normal memory with write combining. Unlike ioremap(),
+
+* The CPU may speculatively issue reads from the device that the program
+ didn't actually execute, and may choose to basically read whatever it wants.
+* The CPU may reorder operations as long as the result is consistent from the
+ program's point of view.
+* The CPU may write to the same location multiple times, even when the program
+ issued a single write.
+* The CPU may combine several writes into a single larger write.
+
+This mode is typically used for video framebuffers, where it can increase
+performance of writes. It can also be used for other blocks of memory in
+devices (e.g. buffers or shared memory), but care must be taken as accesses are
+not guaranteed to be ordered with respect to normal ioremap() MMIO register
+accesses without explicit barriers.
+
+On a PCI bus, it is usually safe to use ioremap_wc() on MMIO areas marked as
+``IORESOURCE_PREFETCH``, but it may not be used on those without the flag.
+For on-chip devices, there is no corresponding flag, but a driver can use
+ioremap_wc() on a device that is known to be safe.
+
+ioremap_wt()
+------------
+
+Maps I/O memory as normal memory with write-through caching. Like ioremap_wc(),
+but also,
+
+* The CPU may cache writes issued to and reads from the device, and serve reads
+ from that cache.
+
+This mode is sometimes used for video framebuffers, where drivers still expect
+writes to reach the device in a timely manner (and not be stuck in the CPU
+cache), but reads may be served from the cache for efficiency. However, it is
+rarely useful these days, as framebuffer drivers usually perform writes only,
+for which ioremap_wc() is more efficient (as it doesn't needlessly trash the
+cache). Most drivers should not use this.
+
+ioremap_np()
+------------
+
+Like ioremap(), but explicitly requests non-posted write semantics. On some
+architectures and buses, ioremap() mappings have posted write semantics, which
+means that writes can appear to "complete" from the point of view of the
+CPU before the written data actually arrives at the target device. Writes are
+still ordered with respect to other writes and reads from the same device, but
+due to the posted write semantics, this is not the case with respect to other
+devices. ioremap_np() explicitly requests non-posted semantics, which means
+that the write instruction will not appear to complete until the device has
+received (and to some platform-specific extent acknowledged) the written data.
+
+This mapping mode primarily exists to cater for platforms with bus fabrics that
+require this particular mapping mode to work correctly. These platforms set the
+``IORESOURCE_MEM_NONPOSTED`` flag for a resource that requires ioremap_np()
+semantics and portable drivers should use an abstraction that automatically
+selects it where appropriate (see the `Higher-level ioremap abstractions`_
+section below).
+
+The bare ioremap_np() is only available on some architectures; on others, it
+always returns NULL. Drivers should not normally use it, unless they are
+platform-specific or they derive benefit from non-posted writes where
+supported, and can fall back to ioremap() otherwise. The normal approach to
+ensure posted write completion is to do a dummy read after a write as
+explained in `Accessing the device`_, which works with ioremap() on all
+platforms.
+
+ioremap_np() should never be used for PCI drivers. PCI memory space writes are
+always posted, even on architectures that otherwise implement ioremap_np().
+Using ioremap_np() for PCI BARs will at best result in posted write semantics,
+and at worst result in complete breakage.
+
+Note that non-posted write semantics are orthogonal to CPU-side ordering
+guarantees. A CPU may still choose to issue other reads or writes before a
+non-posted write instruction retires. See the previous section on MMIO access
+functions for details on the CPU side of things.
+
+ioremap_uc()
+------------
+
+ioremap_uc() behaves like ioremap() except that on the x86 architecture without
+'PAT' mode, it marks memory as uncached even when the MTRR has designated
+it as cacheable, see Documentation/x86/pat.rst.
+
+Portable drivers should avoid the use of ioremap_uc().
+
+ioremap_cache()
+---------------
+
+ioremap_cache() effectively maps I/O memory as normal RAM. CPU write-back
+caches can be used, and the CPU is free to treat the device as if it were a
+block of RAM. This should never be used for device memory which has side
+effects of any kind, or which does not return the data previously written on
+read.
+
+It should also not be used for actual RAM, as the returned pointer is an
+``__iomem`` token. memremap() can be used for mapping normal RAM that is outside
+of the linear kernel memory area to a regular pointer.
+
+Portable drivers should avoid the use of ioremap_cache().
+
+Architecture example
+--------------------
+
+Here is how the above modes map to memory attribute settings on the ARM64
+architecture:
+
++------------------------+--------------------------------------------+
+| API | Memory region type and cacheability |
++------------------------+--------------------------------------------+
+| ioremap_np() | Device-nGnRnE |
++------------------------+--------------------------------------------+
+| ioremap() | Device-nGnRE |
++------------------------+--------------------------------------------+
+| ioremap_uc() | (not implemented) |
++------------------------+--------------------------------------------+
+| ioremap_wc() | Normal-Non Cacheable |
++------------------------+--------------------------------------------+
+| ioremap_wt() | (not implemented; fallback to ioremap) |
++------------------------+--------------------------------------------+
+| ioremap_cache() | Normal-Write-Back Cacheable |
++------------------------+--------------------------------------------+
+
+Higher-level ioremap abstractions
+=================================
+
+Instead of using the above raw ioremap() modes, drivers are encouraged to use
+higher-level APIs. These APIs may implement platform-specific logic to
+automatically choose an appropriate ioremap mode on any given bus, allowing for
+a platform-agnostic driver to work on those platforms without any special
+cases. At the time of this writing, the following ioremap() wrappers have such
+logic:
+
+devm_ioremap_resource()
+
+ Can automatically select ioremap_np() over ioremap() according to platform
+ requirements, if the ``IORESOURCE_MEM_NONPOSTED`` flag is set on the struct
+ resource. Uses devres to automatically unmap the resource when the driver
+ probe() function fails or a device in unbound from its driver.
+
+ Documented in Documentation/driver-api/driver-model/devres.rst.
+
+of_address_to_resource()
+
+ Automatically sets the ``IORESOURCE_MEM_NONPOSTED`` flag for platforms that
+ require non-posted writes for certain buses (see the nonposted-mmio and
+ posted-mmio device tree properties).
+
+of_iomap()
+
+ Maps the resource described in a ``reg`` property in the device tree, doing
+ all required translations. Automatically selects ioremap_np() according to
+ platform requirements, as above.
+
+pci_ioremap_bar(), pci_ioremap_wc_bar()
+
+ Maps the resource described in a PCI base address without having to extract
+ the physical address first.
+
+pci_iomap(), pci_iomap_wc()
+
+ Like pci_ioremap_bar()/pci_ioremap_bar(), but also works on I/O space when
+ used together with ioread32()/iowrite32() and similar accessors
+
+pcim_iomap()
+
+ Like pci_iomap(), but uses devres to automatically unmap the resource when
+ the driver probe() function fails or a device in unbound from its driver
+
+ Documented in Documentation/driver-api/driver-model/devres.rst.
+
+Not using these wrappers may make drivers unusable on certain platforms with
+stricter rules for mapping I/O memory.
+
Public Functions Provided
=========================
diff --git a/Documentation/driver-api/driver-model/devres.rst b/Documentation/driver-api/driver-model/devres.rst
index cd8b6e657b94..e0814d214048 100644
--- a/Documentation/driver-api/driver-model/devres.rst
+++ b/Documentation/driver-api/driver-model/devres.rst
@@ -285,7 +285,8 @@ I2C
IIO
devm_iio_device_alloc()
devm_iio_device_register()
- devm_iio_kfifo_allocate()
+ devm_iio_dmaengine_buffer_setup()
+ devm_iio_kfifo_buffer_setup()
devm_iio_triggered_buffer_setup()
devm_iio_trigger_alloc()
devm_iio_trigger_register()
@@ -309,6 +310,7 @@ IOMAP
devm_ioremap()
devm_ioremap_uc()
devm_ioremap_wc()
+ devm_ioremap_np()
devm_ioremap_resource() : checks resource, requests memory region, ioremaps
devm_ioremap_resource_wc()
devm_platform_ioremap_resource() : calls devm_ioremap_resource() for platform device
diff --git a/Documentation/driver-api/iio/buffers.rst b/Documentation/driver-api/iio/buffers.rst
index 3ddebddc02ca..e83026aebe97 100644
--- a/Documentation/driver-api/iio/buffers.rst
+++ b/Documentation/driver-api/iio/buffers.rst
@@ -28,24 +28,26 @@ IIO buffer setup
The meta information associated with a channel reading placed in a buffer is
called a scan element. The important bits configuring scan elements are
exposed to userspace applications via the
-:file:`/sys/bus/iio/iio:device{X}/scan_elements/*` directory. This file contains
+:file:`/sys/bus/iio/iio:device{X}/scan_elements/` directory. This directory contains
attributes of the following form:
* :file:`enable`, used for enabling a channel. If and only if its attribute
is non *zero*, then a triggered capture will contain data samples for this
channel.
+* :file:`index`, the scan_index of the channel.
* :file:`type`, description of the scan element data storage within the buffer
and hence the form in which it is read from user space.
- Format is [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] .
+ Format is [be|le]:[s|u]bits/storagebits[Xrepeat][>>shift] .
+
* *be* or *le*, specifies big or little endian.
* *s* or *u*, specifies if signed (2's complement) or unsigned.
* *bits*, is the number of valid data bits.
* *storagebits*, is the number of bits (after padding) that it occupies in the
- buffer.
- * *shift*, if specified, is the shift that needs to be applied prior to
- masking out unused bits.
+ buffer.
* *repeat*, specifies the number of bits/storagebits repetitions. When the
- repeat element is 0 or 1, then the repeat value is omitted.
+ repeat element is 0 or 1, then the repeat value is omitted.
+ * *shift*, if specified, is the shift that needs to be applied prior to
+ masking out unused bits.
For example, a driver for a 3-axis accelerometer with 12 bit resolution where
data is stored in two 8-bits registers as follows::
@@ -122,4 +124,3 @@ More details
.. kernel-doc:: include/linux/iio/buffer.h
.. kernel-doc:: drivers/iio/industrialio-buffer.c
:export:
-
diff --git a/Documentation/driver-api/serial/cyclades_z.rst b/Documentation/driver-api/serial/cyclades_z.rst
deleted file mode 100644
index 532ff67e2f1c..000000000000
--- a/Documentation/driver-api/serial/cyclades_z.rst
+++ /dev/null
@@ -1,11 +0,0 @@
-================
-Cyclades-Z notes
-================
-
-The Cyclades-Z must have firmware loaded onto the card before it will
-operate. This operation should be performed during system startup,
-
-The firmware, loader program and the latest device driver code are
-available from Cyclades at
-
- ftp://ftp.cyclades.com/pub/cyclades/cyclades-z/linux/
diff --git a/Documentation/driver-api/serial/index.rst b/Documentation/driver-api/serial/index.rst
index 33ad10d05b26..21351b8c95a4 100644
--- a/Documentation/driver-api/serial/index.rst
+++ b/Documentation/driver-api/serial/index.rst
@@ -17,7 +17,6 @@ Serial drivers
.. toctree::
:maxdepth: 1
- cyclades_z
moxa-smartio
n_gsm
rocket
diff --git a/Documentation/driver-api/serial/rocket.rst b/Documentation/driver-api/serial/rocket.rst
deleted file mode 100644
index 23761eae4282..000000000000
--- a/Documentation/driver-api/serial/rocket.rst
+++ /dev/null
@@ -1,185 +0,0 @@
-================================================
-Comtrol(tm) RocketPort(R)/RocketModem(TM) Series
-================================================
-
-Device Driver for the Linux Operating System
-============================================
-
-Product overview
-----------------
-
-This driver provides a loadable kernel driver for the Comtrol RocketPort
-and RocketModem PCI boards. These boards provide, 2, 4, 8, 16, or 32
-high-speed serial ports or modems. This driver supports up to a combination
-of four RocketPort or RocketModems boards in one machine simultaneously.
-This file assumes that you are using the RocketPort driver which is
-integrated into the kernel sources.
-
-The driver can also be installed as an external module using the usual
-"make;make install" routine. This external module driver, obtainable
-from the Comtrol website listed below, is useful for updating the driver
-or installing it into kernels which do not have the driver configured
-into them. Installations instructions for the external module
-are in the included README and HW_INSTALL files.
-
-RocketPort ISA and RocketModem II PCI boards currently are only supported by
-this driver in module form.
-
-The RocketPort ISA board requires I/O ports to be configured by the DIP
-switches on the board. See the section "ISA Rocketport Boards" below for
-information on how to set the DIP switches.
-
-You pass the I/O port to the driver using the following module parameters:
-
-board1:
- I/O port for the first ISA board
-board2:
- I/O port for the second ISA board
-board3:
- I/O port for the third ISA board
-board4:
- I/O port for the fourth ISA board
-
-There is a set of utilities and scripts provided with the external driver
-(downloadable from http://www.comtrol.com) that ease the configuration and
-setup of the ISA cards.
-
-The RocketModem II PCI boards require firmware to be loaded into the card
-before it will function. The driver has only been tested as a module for this
-board.
-
-Installation Procedures
------------------------
-
-RocketPort/RocketModem PCI cards require no driver configuration, they are
-automatically detected and configured.
-
-The RocketPort driver can be installed as a module (recommended) or built
-into the kernel. This is selected, as for other drivers, through the `make config`
-command from the root of the Linux source tree during the kernel build process.
-
-The RocketPort/RocketModem serial ports installed by this driver are assigned
-device major number 46, and will be named /dev/ttyRx, where x is the port number
-starting at zero (ex. /dev/ttyR0, /devttyR1, ...). If you have multiple cards
-installed in the system, the mapping of port names to serial ports is displayed
-in the system log at /var/log/messages.
-
-If installed as a module, the module must be loaded. This can be done
-manually by entering "modprobe rocket". To have the module loaded automatically
-upon system boot, edit a `/etc/modprobe.d/*.conf` file and add the line
-"alias char-major-46 rocket".
-
-In order to use the ports, their device names (nodes) must be created with mknod.
-This is only required once, the system will retain the names once created. To
-create the RocketPort/RocketModem device names, use the command
-"mknod /dev/ttyRx c 46 x" where x is the port number starting at zero.
-
-For example::
-
- > mknod /dev/ttyR0 c 46 0
- > mknod /dev/ttyR1 c 46 1
- > mknod /dev/ttyR2 c 46 2
-
-The Linux script MAKEDEV will create the first 16 ttyRx device names (nodes)
-for you::
-
- >/dev/MAKEDEV ttyR
-
-ISA Rocketport Boards
----------------------
-
-You must assign and configure the I/O addresses used by the ISA Rocketport
-card before installing and using it. This is done by setting a set of DIP
-switches on the Rocketport board.
-
-
-Setting the I/O address
------------------------
-
-Before installing RocketPort(R) or RocketPort RA boards, you must find
-a range of I/O addresses for it to use. The first RocketPort card
-requires a 68-byte contiguous block of I/O addresses, starting at one
-of the following: 0x100h, 0x140h, 0x180h, 0x200h, 0x240h, 0x280h,
-0x300h, 0x340h, 0x380h. This I/O address must be reflected in the DIP
-switches of *all* of the Rocketport cards.
-
-The second, third, and fourth RocketPort cards require a 64-byte
-contiguous block of I/O addresses, starting at one of the following
-I/O addresses: 0x100h, 0x140h, 0x180h, 0x1C0h, 0x200h, 0x240h, 0x280h,
-0x2C0h, 0x300h, 0x340h, 0x380h, 0x3C0h. The I/O address used by the
-second, third, and fourth Rocketport cards (if present) are set via
-software control. The DIP switch settings for the I/O address must be
-set to the value of the first Rocketport cards.
-
-In order to distinguish each of the card from the others, each card
-must have a unique board ID set on the dip switches. The first
-Rocketport board must be set with the DIP switches corresponding to
-the first board, the second board must be set with the DIP switches
-corresponding to the second board, etc. IMPORTANT: The board ID is
-the only place where the DIP switch settings should differ between the
-various Rocketport boards in a system.
-
-The I/O address range used by any of the RocketPort cards must not
-conflict with any other cards in the system, including other
-RocketPort cards. Below, you will find a list of commonly used I/O
-address ranges which may be in use by other devices in your system.
-On a Linux system, "cat /proc/ioports" will also be helpful in
-identifying what I/O addresses are being used by devices on your
-system.
-
-Remember, the FIRST RocketPort uses 68 I/O addresses. So, if you set it
-for 0x100, it will occupy 0x100 to 0x143. This would mean that you
-CAN NOT set the second, third or fourth board for address 0x140 since
-the first 4 bytes of that range are used by the first board. You would
-need to set the second, third, or fourth board to one of the next available
-blocks such as 0x180.
-
-RocketPort and RocketPort RA SW1 Settings::
-
- +-------------------------------+
- | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
- +-------+-------+---------------+
- | Unused| Card | I/O Port Block|
- +-------------------------------+
-
- DIP Switches DIP Switches
- 7 8 6 5
- =================== ===================
- On On UNUSED, MUST BE ON. On On First Card <==== Default
- On Off Second Card
- Off On Third Card
- Off Off Fourth Card
-
- DIP Switches I/O Address Range
- 4 3 2 1 Used by the First Card
- =====================================
- On Off On Off 100-143
- On Off Off On 140-183
- On Off Off Off 180-1C3 <==== Default
- Off On On Off 200-243
- Off On Off On 240-283
- Off On Off Off 280-2C3
- Off Off On Off 300-343
- Off Off Off On 340-383
- Off Off Off Off 380-3C3
-
-Reporting Bugs
---------------
-
-For technical support, please provide the following
-information: Driver version, kernel release, distribution of
-kernel, and type of board you are using. Error messages and log
-printouts port configuration details are especially helpful.
-
-USA:
- :Phone: (612) 494-4100
- :FAX: (612) 494-4199
- :email: support@comtrol.com
-
-Comtrol Europe:
- :Phone: +44 (0) 1 869 323-220
- :FAX: +44 (0) 1 869 323-211
- :email: support@comtrol.co.uk
-
-Web: http://www.comtrol.com
-FTP: ftp.comtrol.com
diff --git a/Documentation/driver-api/surface_aggregator/client.rst b/Documentation/driver-api/surface_aggregator/client.rst
index 26d13085a117..e519d374c378 100644
--- a/Documentation/driver-api/surface_aggregator/client.rst
+++ b/Documentation/driver-api/surface_aggregator/client.rst
@@ -248,7 +248,7 @@ This example defines a function
.. code-block:: c
- int __ssam_tmp_perf_mode_set(struct ssam_controller *ctrl, const __le32 *arg);
+ static int __ssam_tmp_perf_mode_set(struct ssam_controller *ctrl, const __le32 *arg);
executing the specified request, with the controller passed in when calling
said function. In this example, the argument is provided via the ``arg``
@@ -296,7 +296,7 @@ This invocation of the macro defines a function
.. code-block:: c
- int ssam_bat_get_sta(struct ssam_device *sdev, __le32 *ret);
+ static int ssam_bat_get_sta(struct ssam_device *sdev, __le32 *ret);
executing the specified request, using the device IDs and controller given
in the client device. The full list of such macros for client devices is:
diff --git a/Documentation/driver-api/surface_aggregator/clients/dtx.rst b/Documentation/driver-api/surface_aggregator/clients/dtx.rst
new file mode 100644
index 000000000000..e7e7c20007f0
--- /dev/null
+++ b/Documentation/driver-api/surface_aggregator/clients/dtx.rst
@@ -0,0 +1,718 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+.. |__u16| replace:: :c:type:`__u16 <__u16>`
+.. |sdtx_event| replace:: :c:type:`struct sdtx_event <sdtx_event>`
+.. |sdtx_event_code| replace:: :c:type:`enum sdtx_event_code <sdtx_event_code>`
+.. |sdtx_base_info| replace:: :c:type:`struct sdtx_base_info <sdtx_base_info>`
+.. |sdtx_device_mode| replace:: :c:type:`struct sdtx_device_mode <sdtx_device_mode>`
+
+======================================================
+User-Space DTX (Clipboard Detachment System) Interface
+======================================================
+
+The ``surface_dtx`` driver is responsible for proper clipboard detachment
+and re-attachment handling. To this end, it provides the ``/dev/surface/dtx``
+device file, through which it can interface with a user-space daemon. This
+daemon is then ultimately responsible for determining and taking necessary
+actions, such as unmounting devices attached to the base,
+unloading/reloading the graphics-driver, user-notifications, etc.
+
+There are two basic communication principles used in this driver: Commands
+(in other parts of the documentation also referred to as requests) and
+events. Commands are sent to the EC and may have a different implications in
+different contexts. Events are sent by the EC upon some internal state
+change. Commands are always driver-initiated, whereas events are always
+initiated by the EC.
+
+.. contents::
+
+Nomenclature
+============
+
+* **Clipboard:**
+ The detachable upper part of the Surface Book, housing the screen and CPU.
+
+* **Base:**
+ The lower part of the Surface Book from which the clipboard can be
+ detached, optionally (model dependent) housing the discrete GPU (dGPU).
+
+* **Latch:**
+ The mechanism keeping the clipboard attached to the base in normal
+ operation and allowing it to be detached when requested.
+
+* **Silently ignored commands:**
+ The command is accepted by the EC as a valid command and acknowledged
+ (following the standard communication protocol), but the EC does not act
+ upon it, i.e. ignores it.e upper part of the
+
+
+Detachment Process
+==================
+
+Warning: This part of the documentation is based on reverse engineering and
+testing and thus may contain errors or be incomplete.
+
+Latch States
+------------
+
+The latch mechanism has two major states: *open* and *closed*. In the
+*closed* state (default), the clipboard is secured to the base, whereas in
+the *open* state, the clipboard can be removed by a user.
+
+The latch can additionally be locked and, correspondingly, unlocked, which
+can influence the detachment procedure. Specifically, this locking mechanism
+is intended to prevent the dGPU, positioned in the base of the device, from
+being hot-unplugged while in use. More details can be found in the
+documentation for the detachment procedure below. By default, the latch is
+unlocked.
+
+Detachment Procedure
+--------------------
+
+Note that the detachment process is governed fully by the EC. The
+``surface_dtx`` driver only relays events from the EC to user-space and
+commands from user-space to the EC, i.e. it does not influence this process.
+
+The detachment process is started with the user pressing the *detach* button
+on the base of the device or executing the ``SDTX_IOCTL_LATCH_REQUEST`` IOCTL.
+Following that:
+
+1. The EC turns on the indicator led on the detach-button, sends a
+ *detach-request* event (``SDTX_EVENT_REQUEST``), and awaits further
+ instructions/commands. In case the latch is unlocked, the led will flash
+ green. If the latch has been locked, the led will be solid red
+
+2. The event is, via the ``surface_dtx`` driver, relayed to user-space, where
+ an appropriate user-space daemon can handle it and send instructions back
+ to the EC via IOCTLs provided by this driver.
+
+3. The EC waits for instructions from user-space and acts according to them.
+ If the EC does not receive any instructions in a given period, it will
+ time out and continue as follows:
+
+ - If the latch is unlocked, the EC will open the latch and the clipboard
+ can be detached from the base. This is the exact behavior as without
+ this driver or any user-space daemon. See the ``SDTX_IOCTL_LATCH_CONFIRM``
+ description below for more details on the follow-up behavior of the EC.
+
+ - If the latch is locked, the EC will *not* open the latch, meaning the
+ clipboard cannot be detached from the base. Furthermore, the EC sends
+ an cancel event (``SDTX_EVENT_CANCEL``) detailing this with the cancel
+ reason ``SDTX_DETACH_TIMEDOUT`` (see :ref:`events` for details).
+
+Valid responses by a user-space daemon to a detachment request event are:
+
+- Execute ``SDTX_IOCTL_LATCH_REQUEST``. This will immediately abort the
+ detachment process. Furthermore, the EC will send a detach-request event,
+ similar to the user pressing the detach-button to cancel said process (see
+ below).
+
+- Execute ``SDTX_IOCTL_LATCH_CONFIRM``. This will cause the EC to open the
+ latch, after which the user can separate clipboard and base.
+
+ As this changes the latch state, a *latch-status* event
+ (``SDTX_EVENT_LATCH_STATUS``) will be sent once the latch has been opened
+ successfully. If the EC fails to open the latch, e.g. due to hardware
+ error or low battery, a latch-cancel event (``SDTX_EVENT_CANCEL``) will be
+ sent with the cancel reason indicating the specific failure.
+
+ If the latch is currently locked, the latch will automatically be
+ unlocked before it is opened.
+
+- Execute ``SDTX_IOCTL_LATCH_HEARTBEAT``. This will reset the internal timeout.
+ No other actions will be performed, i.e. the detachment process will neither
+ be completed nor canceled, and the EC will still be waiting for further
+ responses.
+
+- Execute ``SDTX_IOCTL_LATCH_CANCEL``. This will abort the detachment process,
+ similar to ``SDTX_IOCTL_LATCH_REQUEST``, described above, or the button
+ press, described below. A *generic request* event (``SDTX_EVENT_REQUEST``)
+ is send in response to this. In contrast to those, however, this command
+ does not trigger a new detachment process if none is currently in
+ progress.
+
+- Do nothing. The detachment process eventually times out as described in
+ point 3.
+
+See :ref:`ioctls` for more details on these responses.
+
+It is important to note that, if the user presses the detach button at any
+point when a detachment operation is in progress (i.e. after the EC has sent
+the initial *detach-request* event (``SDTX_EVENT_REQUEST``) and before it
+received the corresponding response concluding the process), the detachment
+process is canceled on the EC-level and an identical event is being sent.
+Thus a *detach-request* event, by itself, does not signal the start of the
+detachment process.
+
+The detachment process may further be canceled by the EC due to hardware
+failures or a low clipboard battery. This is done via a cancel event
+(``SDTX_EVENT_CANCEL``) with the corresponding cancel reason.
+
+
+User-Space Interface Documentation
+==================================
+
+Error Codes and Status Values
+-----------------------------
+
+Error and status codes are divided into different categories, which can be
+used to determine if the status code is an error, and, if it is, the
+severity and type of that error. The current categories are:
+
+.. flat-table:: Overview of Status/Error Categories.
+ :widths: 2 1 3
+ :header-rows: 1
+
+ * - Name
+ - Value
+ - Short Description
+
+ * - ``STATUS``
+ - ``0x0000``
+ - Non-error status codes.
+
+ * - ``RUNTIME_ERROR``
+ - ``0x1000``
+ - Non-critical runtime errors.
+
+ * - ``HARDWARE_ERROR``
+ - ``0x2000``
+ - Critical hardware failures.
+
+ * - ``UNKNOWN``
+ - ``0xF000``
+ - Unknown error codes.
+
+Other categories are reserved for future use. The ``SDTX_CATEGORY()`` macro
+can be used to determine the category of any status value. The
+``SDTX_SUCCESS()`` macro can be used to check if the status value is a
+success value (``SDTX_CATEGORY_STATUS``) or if it indicates a failure.
+
+Unknown status or error codes sent by the EC are assigned to the ``UNKNOWN``
+category by the driver and may be implemented via their own code in the
+future.
+
+Currently used error codes are:
+
+.. flat-table:: Overview of Error Codes.
+ :widths: 2 1 1 3
+ :header-rows: 1
+
+ * - Name
+ - Category
+ - Value
+ - Short Description
+
+ * - ``SDTX_DETACH_NOT_FEASIBLE``
+ - ``RUNTIME``
+ - ``0x1001``
+ - Detachment not feasible due to low clipboard battery.
+
+ * - ``SDTX_DETACH_TIMEDOUT``
+ - ``RUNTIME``
+ - ``0x1002``
+ - Detachment process timed out while the latch was locked.
+
+ * - ``SDTX_ERR_FAILED_TO_OPEN``
+ - ``HARDWARE``
+ - ``0x2001``
+ - Failed to open latch.
+
+ * - ``SDTX_ERR_FAILED_TO_REMAIN_OPEN``
+ - ``HARDWARE``
+ - ``0x2002``
+ - Failed to keep latch open.
+
+ * - ``SDTX_ERR_FAILED_TO_CLOSE``
+ - ``HARDWARE``
+ - ``0x2003``
+ - Failed to close latch.
+
+Other error codes are reserved for future use. Non-error status codes may
+overlap and are generally only unique within their use-case:
+
+.. flat-table:: Latch Status Codes.
+ :widths: 2 1 1 3
+ :header-rows: 1
+
+ * - Name
+ - Category
+ - Value
+ - Short Description
+
+ * - ``SDTX_LATCH_CLOSED``
+ - ``STATUS``
+ - ``0x0000``
+ - Latch is closed/has been closed.
+
+ * - ``SDTX_LATCH_OPENED``
+ - ``STATUS``
+ - ``0x0001``
+ - Latch is open/has been opened.
+
+.. flat-table:: Base State Codes.
+ :widths: 2 1 1 3
+ :header-rows: 1
+
+ * - Name
+ - Category
+ - Value
+ - Short Description
+
+ * - ``SDTX_BASE_DETACHED``
+ - ``STATUS``
+ - ``0x0000``
+ - Base has been detached/is not present.
+
+ * - ``SDTX_BASE_ATTACHED``
+ - ``STATUS``
+ - ``0x0001``
+ - Base has been attached/is present.
+
+Again, other codes are reserved for future use.
+
+.. _events:
+
+Events
+------
+
+Events can be received by reading from the device file. They are disabled by
+default and have to be enabled by executing ``SDTX_IOCTL_EVENTS_ENABLE``
+first. All events follow the layout prescribed by |sdtx_event|. Specific
+event types can be identified by their event code, described in
+|sdtx_event_code|. Note that other event codes are reserved for future use,
+thus an event parser must be able to handle any unknown/unsupported event
+types gracefully, by relying on the payload length given in the event header.
+
+Currently provided event types are:
+
+.. flat-table:: Overview of DTX events.
+ :widths: 2 1 1 3
+ :header-rows: 1
+
+ * - Name
+ - Code
+ - Payload
+ - Short Description
+
+ * - ``SDTX_EVENT_REQUEST``
+ - ``1``
+ - ``0`` bytes
+ - Detachment process initiated/aborted.
+
+ * - ``SDTX_EVENT_CANCEL``
+ - ``2``
+ - ``2`` bytes
+ - EC canceled detachment process.
+
+ * - ``SDTX_EVENT_BASE_CONNECTION``
+ - ``3``
+ - ``4`` bytes
+ - Base connection state changed.
+
+ * - ``SDTX_EVENT_LATCH_STATUS``
+ - ``4``
+ - ``2`` bytes
+ - Latch status changed.
+
+ * - ``SDTX_EVENT_DEVICE_MODE``
+ - ``5``
+ - ``2`` bytes
+ - Device mode changed.
+
+Individual events in more detail:
+
+``SDTX_EVENT_REQUEST``
+^^^^^^^^^^^^^^^^^^^^^^
+
+Sent when a detachment process is started or, if in progress, aborted by the
+user, either via a detach button press or a detach request
+(``SDTX_IOCTL_LATCH_REQUEST``) being sent from user-space.
+
+Does not have any payload.
+
+``SDTX_EVENT_CANCEL``
+^^^^^^^^^^^^^^^^^^^^^
+
+Sent when a detachment process is canceled by the EC due to unfulfilled
+preconditions (e.g. clipboard battery too low to detach) or hardware
+failure. The reason for cancellation is given in the event payload detailed
+below and can be one of
+
+* ``SDTX_DETACH_TIMEDOUT``: Detachment timed out while the latch was locked.
+ The latch has neither been opened nor unlocked.
+
+* ``SDTX_DETACH_NOT_FEASIBLE``: Detachment not feasible due to low clipboard
+ battery.
+
+* ``SDTX_ERR_FAILED_TO_OPEN``: Could not open the latch (hardware failure).
+
+* ``SDTX_ERR_FAILED_TO_REMAIN_OPEN``: Could not keep the latch open (hardware
+ failure).
+
+* ``SDTX_ERR_FAILED_TO_CLOSE``: Could not close the latch (hardware failure).
+
+Other error codes in this context are reserved for future use.
+
+These codes can be classified via the ``SDTX_CATEGORY()`` macro to discern
+between critical hardware errors (``SDTX_CATEGORY_HARDWARE_ERROR``) or
+runtime errors (``SDTX_CATEGORY_RUNTIME_ERROR``), the latter of which may
+happen during normal operation if certain preconditions for detachment are
+not given.
+
+.. flat-table:: Detachment Cancel Event Payload
+ :widths: 1 1 4
+ :header-rows: 1
+
+ * - Field
+ - Type
+ - Description
+
+ * - ``reason``
+ - |__u16|
+ - Reason for cancellation.
+
+``SDTX_EVENT_BASE_CONNECTION``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sent when the base connection state has changed, i.e. when the base has been
+attached, detached, or detachment has become infeasible due to low clipboard
+battery. The new state and, if a base is connected, ID of the base is
+provided as payload of type |sdtx_base_info| with its layout presented
+below:
+
+.. flat-table:: Base-Connection-Change Event Payload
+ :widths: 1 1 4
+ :header-rows: 1
+
+ * - Field
+ - Type
+ - Description
+
+ * - ``state``
+ - |__u16|
+ - Base connection state.
+
+ * - ``base_id``
+ - |__u16|
+ - Type of base connected (zero if none).
+
+Possible values for ``state`` are:
+
+* ``SDTX_BASE_DETACHED``,
+* ``SDTX_BASE_ATTACHED``, and
+* ``SDTX_DETACH_NOT_FEASIBLE``.
+
+Other values are reserved for future use.
+
+``SDTX_EVENT_LATCH_STATUS``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sent when the latch status has changed, i.e. when the latch has been opened,
+closed, or an error occurred. The current status is provided as payload:
+
+.. flat-table:: Latch-Status-Change Event Payload
+ :widths: 1 1 4
+ :header-rows: 1
+
+ * - Field
+ - Type
+ - Description
+
+ * - ``status``
+ - |__u16|
+ - Latch status.
+
+Possible values for ``status`` are:
+
+* ``SDTX_LATCH_CLOSED``,
+* ``SDTX_LATCH_OPENED``,
+* ``SDTX_ERR_FAILED_TO_OPEN``,
+* ``SDTX_ERR_FAILED_TO_REMAIN_OPEN``, and
+* ``SDTX_ERR_FAILED_TO_CLOSE``.
+
+Other values are reserved for future use.
+
+``SDTX_EVENT_DEVICE_MODE``
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sent when the device mode has changed. The new device mode is provided as
+payload:
+
+.. flat-table:: Device-Mode-Change Event Payload
+ :widths: 1 1 4
+ :header-rows: 1
+
+ * - Field
+ - Type
+ - Description
+
+ * - ``mode``
+ - |__u16|
+ - Device operation mode.
+
+Possible values for ``mode`` are:
+
+* ``SDTX_DEVICE_MODE_TABLET``,
+* ``SDTX_DEVICE_MODE_LAPTOP``, and
+* ``SDTX_DEVICE_MODE_STUDIO``.
+
+Other values are reserved for future use.
+
+.. _ioctls:
+
+IOCTLs
+------
+
+The following IOCTLs are provided:
+
+.. flat-table:: Overview of DTX IOCTLs
+ :widths: 1 1 1 1 4
+ :header-rows: 1
+
+ * - Type
+ - Number
+ - Direction
+ - Name
+ - Description
+
+ * - ``0xA5``
+ - ``0x21``
+ - ``-``
+ - ``EVENTS_ENABLE``
+ - Enable events for the current file descriptor.
+
+ * - ``0xA5``
+ - ``0x22``
+ - ``-``
+ - ``EVENTS_DISABLE``
+ - Disable events for the current file descriptor.
+
+ * - ``0xA5``
+ - ``0x23``
+ - ``-``
+ - ``LATCH_LOCK``
+ - Lock the latch.
+
+ * - ``0xA5``
+ - ``0x24``
+ - ``-``
+ - ``LATCH_UNLOCK``
+ - Unlock the latch.
+
+ * - ``0xA5``
+ - ``0x25``
+ - ``-``
+ - ``LATCH_REQUEST``
+ - Request clipboard detachment.
+
+ * - ``0xA5``
+ - ``0x26``
+ - ``-``
+ - ``LATCH_CONFIRM``
+ - Confirm clipboard detachment request.
+
+ * - ``0xA5``
+ - ``0x27``
+ - ``-``
+ - ``LATCH_HEARTBEAT``
+ - Send heartbeat signal to EC.
+
+ * - ``0xA5``
+ - ``0x28``
+ - ``-``
+ - ``LATCH_CANCEL``
+ - Cancel detachment process.
+
+ * - ``0xA5``
+ - ``0x29``
+ - ``R``
+ - ``GET_BASE_INFO``
+ - Get current base/connection information.
+
+ * - ``0xA5``
+ - ``0x2A``
+ - ``R``
+ - ``GET_DEVICE_MODE``
+ - Get current device operation mode.
+
+ * - ``0xA5``
+ - ``0x2B``
+ - ``R``
+ - ``GET_LATCH_STATUS``
+ - Get current device latch status.
+
+``SDTX_IOCTL_EVENTS_ENABLE``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IO(0xA5, 0x22)``.
+
+Enable events for the current file descriptor. Events can be obtained by
+reading from the device, if enabled. Events are disabled by default.
+
+``SDTX_IOCTL_EVENTS_DISABLE``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IO(0xA5, 0x22)``.
+
+Disable events for the current file descriptor. Events can be obtained by
+reading from the device, if enabled. Events are disabled by default.
+
+``SDTX_IOCTL_LATCH_LOCK``
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IO(0xA5, 0x23)``.
+
+Locks the latch, causing the detachment procedure to abort without opening
+the latch on timeout. The latch is unlocked by default. This command will be
+silently ignored if the latch is already locked.
+
+``SDTX_IOCTL_LATCH_UNLOCK``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IO(0xA5, 0x24)``.
+
+Unlocks the latch, causing the detachment procedure to open the latch on
+timeout. The latch is unlocked by default. This command will not open the
+latch when sent during an ongoing detachment process. It will be silently
+ignored if the latch is already unlocked.
+
+``SDTX_IOCTL_LATCH_REQUEST``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IO(0xA5, 0x25)``.
+
+Generic latch request. Behavior depends on the context: If no
+detachment-process is active, detachment is requested. Otherwise the
+currently active detachment-process will be aborted.
+
+If a detachment process is canceled by this operation, a generic detachment
+request event (``SDTX_EVENT_REQUEST``) will be sent.
+
+This essentially behaves the same as a detachment button press.
+
+``SDTX_IOCTL_LATCH_CONFIRM``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IO(0xA5, 0x26)``.
+
+Acknowledges and confirms a latch request. If sent during an ongoing
+detachment process, this command causes the latch to be opened immediately.
+The latch will also be opened if it has been locked. In this case, the latch
+lock is reset to the unlocked state.
+
+This command will be silently ignored if there is currently no detachment
+procedure in progress.
+
+``SDTX_IOCTL_LATCH_HEARTBEAT``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IO(0xA5, 0x27)``.
+
+Sends a heartbeat, essentially resetting the detachment timeout. This
+command can be used to keep the detachment process alive while work required
+for the detachment to succeed is still in progress.
+
+This command will be silently ignored if there is currently no detachment
+procedure in progress.
+
+``SDTX_IOCTL_LATCH_CANCEL``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IO(0xA5, 0x28)``.
+
+Cancels detachment in progress (if any). If a detachment process is canceled
+by this operation, a generic detachment request event
+(``SDTX_EVENT_REQUEST``) will be sent.
+
+This command will be silently ignored if there is currently no detachment
+procedure in progress.
+
+``SDTX_IOCTL_GET_BASE_INFO``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IOR(0xA5, 0x29, struct sdtx_base_info)``.
+
+Get the current base connection state (i.e. attached/detached) and the type
+of the base connected to the clipboard. This is command essentially provides
+a way to query the information provided by the base connection change event
+(``SDTX_EVENT_BASE_CONNECTION``).
+
+Possible values for ``struct sdtx_base_info.state`` are:
+
+* ``SDTX_BASE_DETACHED``,
+* ``SDTX_BASE_ATTACHED``, and
+* ``SDTX_DETACH_NOT_FEASIBLE``.
+
+Other values are reserved for future use.
+
+``SDTX_IOCTL_GET_DEVICE_MODE``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IOR(0xA5, 0x2A, __u16)``.
+
+Returns the device operation mode, indicating if and how the base is
+attached to the clipboard. This is command essentially provides a way to
+query the information provided by the device mode change event
+(``SDTX_EVENT_DEVICE_MODE``).
+
+Returned values are:
+
+* ``SDTX_DEVICE_MODE_LAPTOP``
+* ``SDTX_DEVICE_MODE_TABLET``
+* ``SDTX_DEVICE_MODE_STUDIO``
+
+See |sdtx_device_mode| for details. Other values are reserved for future
+use.
+
+
+``SDTX_IOCTL_GET_LATCH_STATUS``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Defined as ``_IOR(0xA5, 0x2B, __u16)``.
+
+Get the current latch status or (presumably) the last error encountered when
+trying to open/close the latch. This is command essentially provides a way
+to query the information provided by the latch status change event
+(``SDTX_EVENT_LATCH_STATUS``).
+
+Returned values are:
+
+* ``SDTX_LATCH_CLOSED``,
+* ``SDTX_LATCH_OPENED``,
+* ``SDTX_ERR_FAILED_TO_OPEN``,
+* ``SDTX_ERR_FAILED_TO_REMAIN_OPEN``, and
+* ``SDTX_ERR_FAILED_TO_CLOSE``.
+
+Other values are reserved for future use.
+
+A Note on Base IDs
+------------------
+
+Base types/IDs provided via ``SDTX_EVENT_BASE_CONNECTION`` or
+``SDTX_IOCTL_GET_BASE_INFO`` are directly forwarded from the EC in the lower
+byte of the combined |__u16| value, with the driver storing the EC type from
+which this ID comes in the high byte (without this, base IDs over different
+types of ECs may be overlapping).
+
+The ``SDTX_DEVICE_TYPE()`` macro can be used to determine the EC device
+type. This can be one of
+
+* ``SDTX_DEVICE_TYPE_HID``, for Surface Aggregator Module over HID, and
+
+* ``SDTX_DEVICE_TYPE_SSH``, for Surface Aggregator Module over Surface Serial
+ Hub.
+
+Note that currently only the ``SSH`` type EC is supported, however ``HID``
+type is reserved for future use.
+
+Structures and Enums
+--------------------
+
+.. kernel-doc:: include/uapi/linux/surface_aggregator/dtx.h
+
+API Users
+=========
+
+A user-space daemon utilizing this API can be found at
+https://github.com/linux-surface/surface-dtx-daemon.
diff --git a/Documentation/driver-api/surface_aggregator/clients/index.rst b/Documentation/driver-api/surface_aggregator/clients/index.rst
index 3ccabce23271..98ea9946b8a2 100644
--- a/Documentation/driver-api/surface_aggregator/clients/index.rst
+++ b/Documentation/driver-api/surface_aggregator/clients/index.rst
@@ -11,6 +11,7 @@ This is the documentation for client drivers themselves. Refer to
:maxdepth: 1
cdev
+ dtx
san
.. only:: subproject and html
diff --git a/Documentation/driver-api/usb/usb.rst b/Documentation/driver-api/usb/usb.rst
index 078e981e2b16..543e70434da2 100644
--- a/Documentation/driver-api/usb/usb.rst
+++ b/Documentation/driver-api/usb/usb.rst
@@ -109,15 +109,16 @@ well as to make sure they aren't relying on some HCD-specific behavior.
USB-Standard Types
==================
-In ``<linux/usb/ch9.h>`` you will find the USB data types defined in
-chapter 9 of the USB specification. These data types are used throughout
-USB, and in APIs including this host side API, gadget APIs, usb character
-devices and debugfs interfaces.
+In ``drivers/usb/common/common.c`` and ``drivers/usb/common/debug.c`` you
+will find the USB data types defined in chapter 9 of the USB specification.
+These data types are used throughout USB, and in APIs including this host
+side API, gadget APIs, usb character devices and debugfs interfaces.
-.. kernel-doc:: include/linux/usb/ch9.h
- :internal:
+.. kernel-doc:: drivers/usb/common/common.c
+ :export:
-.. _usb_header:
+.. kernel-doc:: drivers/usb/common/debug.c
+ :export:
Host-Side Data Types and Macros
===============================
diff --git a/Documentation/driver-api/xilinx/eemi.rst b/Documentation/driver-api/xilinx/eemi.rst
index 9dcbc6f18d75..c1bc47b9000d 100644
--- a/Documentation/driver-api/xilinx/eemi.rst
+++ b/Documentation/driver-api/xilinx/eemi.rst
@@ -16,35 +16,8 @@ components running across different processing clusters on a chip or
device to communicate with a power management controller (PMC) on a
device to issue or respond to power management requests.
-EEMI ops is a structure containing all eemi APIs supported by Zynq MPSoC.
-The zynqmp-firmware driver maintain all EEMI APIs in zynqmp_eemi_ops
-structure. Any driver who want to communicate with PMC using EEMI APIs
-can call zynqmp_pm_get_eemi_ops().
-
-Example of EEMI ops::
-
- /* zynqmp-firmware driver maintain all EEMI APIs */
- struct zynqmp_eemi_ops {
- int (*get_api_version)(u32 *version);
- int (*query_data)(struct zynqmp_pm_query_data qdata, u32 *out);
- };
-
- static const struct zynqmp_eemi_ops eemi_ops = {
- .get_api_version = zynqmp_pm_get_api_version,
- .query_data = zynqmp_pm_query_data,
- };
-
-Example of EEMI ops usage::
-
- static const struct zynqmp_eemi_ops *eemi_ops;
- u32 ret_payload[PAYLOAD_ARG_CNT];
- int ret;
-
- eemi_ops = zynqmp_pm_get_eemi_ops();
- if (IS_ERR(eemi_ops))
- return PTR_ERR(eemi_ops);
-
- ret = eemi_ops->query_data(qdata, ret_payload);
+Any driver who wants to communicate with PMC using EEMI APIs use the
+functions provided for each function.
IOCTL
------