diff options
Diffstat (limited to 'Documentation/filesystems/nfs/localio.rst')
-rw-r--r-- | Documentation/filesystems/nfs/localio.rst | 357 |
1 files changed, 357 insertions, 0 deletions
diff --git a/Documentation/filesystems/nfs/localio.rst b/Documentation/filesystems/nfs/localio.rst new file mode 100644 index 000000000000..bd1967e2eab3 --- /dev/null +++ b/Documentation/filesystems/nfs/localio.rst @@ -0,0 +1,357 @@ +=========== +NFS LOCALIO +=========== + +Overview +======== + +The LOCALIO auxiliary RPC protocol allows the Linux NFS client and +server to reliably handshake to determine if they are on the same +host. Select "NFS client and server support for LOCALIO auxiliary +protocol" in menuconfig to enable CONFIG_NFS_LOCALIO in the kernel +config (both CONFIG_NFS_FS and CONFIG_NFSD must also be enabled). + +Once an NFS client and server handshake as "local", the client will +bypass the network RPC protocol for read, write and commit operations. +Due to this XDR and RPC bypass, these operations will operate faster. + +The LOCALIO auxiliary protocol's implementation, which uses the same +connection as NFS traffic, follows the pattern established by the NFS +ACL protocol extension. + +The LOCALIO auxiliary protocol is needed to allow robust discovery of +clients local to their servers. In a private implementation that +preceded use of this LOCALIO protocol, a fragile sockaddr network +address based match against all local network interfaces was attempted. +But unlike the LOCALIO protocol, the sockaddr-based matching didn't +handle use of iptables or containers. + +The robust handshake between local client and server is just the +beginning, the ultimate use case this locality makes possible is the +client is able to open files and issue reads, writes and commits +directly to the server without having to go over the network. The +requirement is to perform these loopback NFS operations as efficiently +as possible, this is particularly useful for container use cases +(e.g. kubernetes) where it is possible to run an IO job local to the +server. + +The performance advantage realized from LOCALIO's ability to bypass +using XDR and RPC for reads, writes and commits can be extreme, e.g.: + +fio for 20 secs with directio, qd of 8, 16 libaio threads: + - With LOCALIO: + 4K read: IOPS=979k, BW=3825MiB/s (4011MB/s)(74.7GiB/20002msec) + 4K write: IOPS=165k, BW=646MiB/s (678MB/s)(12.6GiB/20002msec) + 128K read: IOPS=402k, BW=49.1GiB/s (52.7GB/s)(982GiB/20002msec) + 128K write: IOPS=11.5k, BW=1433MiB/s (1503MB/s)(28.0GiB/20004msec) + + - Without LOCALIO: + 4K read: IOPS=79.2k, BW=309MiB/s (324MB/s)(6188MiB/20003msec) + 4K write: IOPS=59.8k, BW=234MiB/s (245MB/s)(4671MiB/20002msec) + 128K read: IOPS=33.9k, BW=4234MiB/s (4440MB/s)(82.7GiB/20004msec) + 128K write: IOPS=11.5k, BW=1434MiB/s (1504MB/s)(28.0GiB/20011msec) + +fio for 20 secs with directio, qd of 8, 1 libaio thread: + - With LOCALIO: + 4K read: IOPS=230k, BW=898MiB/s (941MB/s)(17.5GiB/20001msec) + 4K write: IOPS=22.6k, BW=88.3MiB/s (92.6MB/s)(1766MiB/20001msec) + 128K read: IOPS=38.8k, BW=4855MiB/s (5091MB/s)(94.8GiB/20001msec) + 128K write: IOPS=11.4k, BW=1428MiB/s (1497MB/s)(27.9GiB/20001msec) + + - Without LOCALIO: + 4K read: IOPS=77.1k, BW=301MiB/s (316MB/s)(6022MiB/20001msec) + 4K write: IOPS=32.8k, BW=128MiB/s (135MB/s)(2566MiB/20001msec) + 128K read: IOPS=24.4k, BW=3050MiB/s (3198MB/s)(59.6GiB/20001msec) + 128K write: IOPS=11.4k, BW=1430MiB/s (1500MB/s)(27.9GiB/20001msec) + +FAQ +=== + +1. What are the use cases for LOCALIO? + + a. Workloads where the NFS client and server are on the same host + realize improved IO performance. In particular, it is common when + running containerised workloads for jobs to find themselves + running on the same host as the knfsd server being used for + storage. + +2. What are the requirements for LOCALIO? + + a. Bypass use of the network RPC protocol as much as possible. This + includes bypassing XDR and RPC for open, read, write and commit + operations. + b. Allow client and server to autonomously discover if they are + running local to each other without making any assumptions about + the local network topology. + c. Support the use of containers by being compatible with relevant + namespaces (e.g. network, user, mount). + d. Support all versions of NFS. NFSv3 is of particular importance + because it has wide enterprise usage and pNFS flexfiles makes use + of it for the data path. + +3. Why doesn’t LOCALIO just compare IP addresses or hostnames when + deciding if the NFS client and server are co-located on the same + host? + + Since one of the main use cases is containerised workloads, we cannot + assume that IP addresses will be shared between the client and + server. This sets up a requirement for a handshake protocol that + needs to go over the same connection as the NFS traffic in order to + identify that the client and the server really are running on the + same host. The handshake uses a secret that is sent over the wire, + and can be verified by both parties by comparing with a value stored + in shared kernel memory if they are truly co-located. + +4. Does LOCALIO improve pNFS flexfiles? + + Yes, LOCALIO complements pNFS flexfiles by allowing it to take + advantage of NFS client and server locality. Policy that initiates + client IO as closely to the server where the data is stored naturally + benefits from the data path optimization LOCALIO provides. + +5. Why not develop a new pNFS layout to enable LOCALIO? + + A new pNFS layout could be developed, but doing so would put the + onus on the server to somehow discover that the client is co-located + when deciding to hand out the layout. + There is value in a simpler approach (as provided by LOCALIO) that + allows the NFS client to negotiate and leverage locality without + requiring more elaborate modeling and discovery of such locality in a + more centralized manner. + +6. Why is having the client perform a server-side file OPEN, without + using RPC, beneficial? Is the benefit pNFS specific? + + Avoiding the use of XDR and RPC for file opens is beneficial to + performance regardless of whether pNFS is used. Especially when + dealing with small files its best to avoid going over the wire + whenever possible, otherwise it could reduce or even negate the + benefits of avoiding the wire for doing the small file I/O itself. + Given LOCALIO's requirements the current approach of having the + client perform a server-side file open, without using RPC, is ideal. + If in the future requirements change then we can adapt accordingly. + +7. Why is LOCALIO only supported with UNIX Authentication (AUTH_UNIX)? + + Strong authentication is usually tied to the connection itself. It + works by establishing a context that is cached by the server, and + that acts as the key for discovering the authorisation token, which + can then be passed to rpc.mountd to complete the authentication + process. On the other hand, in the case of AUTH_UNIX, the credential + that was passed over the wire is used directly as the key in the + upcall to rpc.mountd. This simplifies the authentication process, and + so makes AUTH_UNIX easier to support. + +8. How do export options that translate RPC user IDs behave for LOCALIO + operations (eg. root_squash, all_squash)? + + Export options that translate user IDs are managed by nfsd_setuser() + which is called by nfsd_setuser_and_check_port() which is called by + __fh_verify(). So they get handled exactly the same way for LOCALIO + as they do for non-LOCALIO. + +9. How does LOCALIO make certain that object lifetimes are managed + properly given NFSD and NFS operate in different contexts? + + See the detailed "NFS Client and Server Interlock" section below. + +RPC +=== + +The LOCALIO auxiliary RPC protocol consists of a single "UUID_IS_LOCAL" +RPC method that allows the Linux NFS client to verify the local Linux +NFS server can see the nonce (single-use UUID) the client generated and +made available in nfs_common. This protocol isn't part of an IETF +standard, nor does it need to be considering it is Linux-to-Linux +auxiliary RPC protocol that amounts to an implementation detail. + +The UUID_IS_LOCAL method encodes the client generated uuid_t in terms of +the fixed UUID_SIZE (16 bytes). The fixed size opaque encode and decode +XDR methods are used instead of the less efficient variable sized +methods. + +The RPC program number for the NFS_LOCALIO_PROGRAM is 400122 (as assigned +by IANA, see https://www.iana.org/assignments/rpc-program-numbers/ ): +Linux Kernel Organization 400122 nfslocalio + +The LOCALIO protocol spec in rpcgen syntax is:: + + /* raw RFC 9562 UUID */ + #define UUID_SIZE 16 + typedef u8 uuid_t<UUID_SIZE>; + + program NFS_LOCALIO_PROGRAM { + version LOCALIO_V1 { + void + NULL(void) = 0; + + void + UUID_IS_LOCAL(uuid_t) = 1; + } = 1; + } = 400122; + +LOCALIO uses the same transport connection as NFS traffic. As such, +LOCALIO is not registered with rpcbind. + +NFS Common and Client/Server Handshake +====================================== + +fs/nfs_common/nfslocalio.c provides interfaces that enable an NFS client +to generate a nonce (single-use UUID) and associated short-lived +nfs_uuid_t struct, register it with nfs_common for subsequent lookup and +verification by the NFS server and if matched the NFS server populates +members in the nfs_uuid_t struct. The NFS client then uses nfs_common to +transfer the nfs_uuid_t from its nfs_uuids to the nn->nfsd_serv +clients_list from the nfs_common's uuids_list. See: +fs/nfs/localio.c:nfs_local_probe() + +nfs_common's nfs_uuids list is the basis for LOCALIO enablement, as such +it has members that point to nfsd memory for direct use by the client +(e.g. 'net' is the server's network namespace, through it the client can +access nn->nfsd_serv with proper rcu read access). It is this client +and server synchronization that enables advanced usage and lifetime of +objects to span from the host kernel's nfsd to per-container knfsd +instances that are connected to nfs client's running on the same local +host. + +NFS Client and Server Interlock +=============================== + +LOCALIO provides the nfs_uuid_t object and associated interfaces to +allow proper network namespace (net-ns) and NFSD object refcounting: + + We don't want to keep a long-term counted reference on each NFSD's + net-ns in the client because that prevents a server container from + completely shutting down. + + So we avoid taking a reference at all and rely on the per-cpu + reference to the server (detailed below) being sufficient to keep + the net-ns active. This involves allowing the NFSD's net-ns exit + code to iterate all active clients and clear their ->net pointers + (which are needed to find the per-cpu-refcount for the nfsd_serv). + + Details: + + - Embed nfs_uuid_t in nfs_client. nfs_uuid_t provides a list_head + that can be used to find the client. It does add the 16-byte + uuid_t to nfs_client so it is bigger than needed (given that + uuid_t is only used during the initial NFS client and server + LOCALIO handshake to determine if they are local to each other). + If that is really a problem we can find a fix. + + - When the nfs server confirms that the uuid_t is local, it moves + the nfs_uuid_t onto a per-net-ns list in NFSD's nfsd_net. + + - When each server's net-ns is shutting down - in a "pre_exit" + handler, all these nfs_uuid_t have their ->net cleared. There is + an rcu_synchronize() call between pre_exit() handlers and exit() + handlers so any caller that sees nfs_uuid_t ->net as not NULL can + safely manage the per-cpu-refcount for nfsd_serv. + + - The client's nfs_uuid_t is passed to nfsd_open_local_fh() so it + can safely dereference ->net in a private rcu_read_lock() section + to allow safe access to the associated nfsd_net and nfsd_serv. + +So LOCALIO required the introduction and use of NFSD's percpu_ref to +interlock nfsd_destroy_serv() and nfsd_open_local_fh(), to ensure each +nn->nfsd_serv is not destroyed while in use by nfsd_open_local_fh(), and +warrants a more detailed explanation: + + nfsd_open_local_fh() uses nfsd_serv_try_get() before opening its + nfsd_file handle and then the caller (NFS client) must drop the + reference for the nfsd_file and associated nn->nfsd_serv using + nfs_file_put_local() once it has completed its IO. + + This interlock working relies heavily on nfsd_open_local_fh() being + afforded the ability to safely deal with the possibility that the + NFSD's net-ns (and nfsd_net by association) may have been destroyed + by nfsd_destroy_serv() via nfsd_shutdown_net() -- which is only + possible given the nfs_uuid_t ->net pointer managemenet detailed + above. + +All told, this elaborate interlock of the NFS client and server has been +verified to fix an easy to hit crash that would occur if an NFSD +instance running in a container, with a LOCALIO client mounted, is +shutdown. Upon restart of the container and associated NFSD the client +would go on to crash due to NULL pointer dereference that occurred due +to the LOCALIO client's attempting to nfsd_open_local_fh(), using +nn->nfsd_serv, without having a proper reference on nn->nfsd_serv. + +NFS Client issues IO instead of Server +====================================== + +Because LOCALIO is focused on protocol bypass to achieve improved IO +performance, alternatives to the traditional NFS wire protocol (SUNRPC +with XDR) must be provided to access the backing filesystem. + +See fs/nfs/localio.c:nfs_local_open_fh() and +fs/nfsd/localio.c:nfsd_open_local_fh() for the interface that makes +focused use of select nfs server objects to allow a client local to a +server to open a file pointer without needing to go over the network. + +The client's fs/nfs/localio.c:nfs_local_open_fh() will call into the +server's fs/nfsd/localio.c:nfsd_open_local_fh() and carefully access +both the associated nfsd network namespace and nn->nfsd_serv in terms of +RCU. If nfsd_open_local_fh() finds that the client no longer sees valid +nfsd objects (be it struct net or nn->nfsd_serv) it returns -ENXIO +to nfs_local_open_fh() and the client will try to reestablish the +LOCALIO resources needed by calling nfs_local_probe() again. This +recovery is needed if/when an nfsd instance running in a container were +to reboot while a LOCALIO client is connected to it. + +Once the client has an open nfsd_file pointer it will issue reads, +writes and commits directly to the underlying local filesystem (normally +done by the nfs server). As such, for these operations, the NFS client +is issuing IO to the underlying local filesystem that it is sharing with +the NFS server. See: fs/nfs/localio.c:nfs_local_doio() and +fs/nfs/localio.c:nfs_local_commit(). + +Security +======== + +Localio is only supported when UNIX-style authentication (AUTH_UNIX, aka +AUTH_SYS) is used. + +Care is taken to ensure the same NFS security mechanisms are used +(authentication, etc) regardless of whether LOCALIO or regular NFS +access is used. The auth_domain established as part of the traditional +NFS client access to the NFS server is also used for LOCALIO. + +Relative to containers, LOCALIO gives the client access to the network +namespace the server has. This is required to allow the client to access +the server's per-namespace nfsd_net struct. With traditional NFS, the +client is afforded this same level of access (albeit in terms of the NFS +protocol via SUNRPC). No other namespaces (user, mount, etc) have been +altered or purposely extended from the server to the client. + +Testing +======= + +The LOCALIO auxiliary protocol and associated NFS LOCALIO read, write +and commit access have proven stable against various test scenarios: + +- Client and server both on the same host. + +- All permutations of client and server support enablement for both + local and remote client and server. + +- Testing against NFS storage products that don't support the LOCALIO + protocol was also performed. + +- Client on host, server within a container (for both v3 and v4.2). + The container testing was in terms of podman managed containers and + includes successful container stop/restart scenario. + +- Formalizing these test scenarios in terms of existing test + infrastructure is on-going. Initial regular coverage is provided in + terms of ktest running xfstests against a LOCALIO-enabled NFS loopback + mount configuration, and includes lockdep and KASAN coverage, see: + https://evilpiepirate.org/~testdashboard/ci?user=snitzer&branch=snitm-nfs-next + https://github.com/koverstreet/ktest + +- Various kdevops testing (in terms of "Chuck's BuildBot") has been + performed to regularly verify the LOCALIO changes haven't caused any + regressions to non-LOCALIO NFS use cases. + +- All of Hammerspace's various sanity tests pass with LOCALIO enabled + (this includes numerous pNFS and flexfiles tests). |