diff options
Diffstat (limited to 'Documentation/filesystems/nfs/nfs.txt')
-rw-r--r-- | Documentation/filesystems/nfs/nfs.txt | 98 |
1 files changed, 98 insertions, 0 deletions
diff --git a/Documentation/filesystems/nfs/nfs.txt b/Documentation/filesystems/nfs/nfs.txt new file mode 100644 index 000000000000..f50f26ce6cd0 --- /dev/null +++ b/Documentation/filesystems/nfs/nfs.txt @@ -0,0 +1,98 @@ + +The NFS client +============== + +The NFS version 2 protocol was first documented in RFC1094 (March 1989). +Since then two more major releases of NFS have been published, with NFSv3 +being documented in RFC1813 (June 1995), and NFSv4 in RFC3530 (April +2003). + +The Linux NFS client currently supports all the above published versions, +and work is in progress on adding support for minor version 1 of the NFSv4 +protocol. + +The purpose of this document is to provide information on some of the +upcall interfaces that are used in order to provide the NFS client with +some of the information that it requires in order to fully comply with +the NFS spec. + +The DNS resolver +================ + +NFSv4 allows for one server to refer the NFS client to data that has been +migrated onto another server by means of the special "fs_locations" +attribute. See + http://tools.ietf.org/html/rfc3530#section-6 +and + http://tools.ietf.org/html/draft-ietf-nfsv4-referrals-00 + +The fs_locations information can take the form of either an ip address and +a path, or a DNS hostname and a path. The latter requires the NFS client to +do a DNS lookup in order to mount the new volume, and hence the need for an +upcall to allow userland to provide this service. + +Assuming that the user has the 'rpc_pipefs' filesystem mounted in the usual +/var/lib/nfs/rpc_pipefs, the upcall consists of the following steps: + + (1) The process checks the dns_resolve cache to see if it contains a + valid entry. If so, it returns that entry and exits. + + (2) If no valid entry exists, the helper script '/sbin/nfs_cache_getent' + (may be changed using the 'nfs.cache_getent' kernel boot parameter) + is run, with two arguments: + - the cache name, "dns_resolve" + - the hostname to resolve + + (3) After looking up the corresponding ip address, the helper script + writes the result into the rpc_pipefs pseudo-file + '/var/lib/nfs/rpc_pipefs/cache/dns_resolve/channel' + in the following (text) format: + + "<ip address> <hostname> <ttl>\n" + + Where <ip address> is in the usual IPv4 (123.456.78.90) or IPv6 + (ffee:ddcc:bbaa:9988:7766:5544:3322:1100, ffee::1100, ...) format. + <hostname> is identical to the second argument of the helper + script, and <ttl> is the 'time to live' of this cache entry (in + units of seconds). + + Note: If <ip address> is invalid, say the string "0", then a negative + entry is created, which will cause the kernel to treat the hostname + as having no valid DNS translation. + + + + +A basic sample /sbin/nfs_cache_getent +===================================== + +#!/bin/bash +# +ttl=600 +# +cut=/usr/bin/cut +getent=/usr/bin/getent +rpc_pipefs=/var/lib/nfs/rpc_pipefs +# +die() +{ + echo "Usage: $0 cache_name entry_name" + exit 1 +} + +[ $# -lt 2 ] && die +cachename="$1" +cache_path=${rpc_pipefs}/cache/${cachename}/channel + +case "${cachename}" in + dns_resolve) + name="$2" + result="$(${getent} hosts ${name} | ${cut} -f1 -d\ )" + [ -z "${result}" ] && result="0" + ;; + *) + die + ;; +esac +echo "${result} ${name} ${ttl}" >${cache_path} + |