summaryrefslogtreecommitdiffstats
path: root/Documentation/fpga/fpga-mgr.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/fpga/fpga-mgr.txt')
-rw-r--r--Documentation/fpga/fpga-mgr.txt43
1 files changed, 29 insertions, 14 deletions
diff --git a/Documentation/fpga/fpga-mgr.txt b/Documentation/fpga/fpga-mgr.txt
index ce3e84fa9023..86ee5078fd03 100644
--- a/Documentation/fpga/fpga-mgr.txt
+++ b/Documentation/fpga/fpga-mgr.txt
@@ -18,31 +18,37 @@ API Functions:
To program the FPGA from a file or from a buffer:
-------------------------------------------------
- int fpga_mgr_buf_load(struct fpga_manager *mgr, u32 flags,
+ int fpga_mgr_buf_load(struct fpga_manager *mgr,
+ struct fpga_image_info *info,
const char *buf, size_t count);
Load the FPGA from an image which exists as a buffer in memory.
- int fpga_mgr_firmware_load(struct fpga_manager *mgr, u32 flags,
+ int fpga_mgr_firmware_load(struct fpga_manager *mgr,
+ struct fpga_image_info *info,
const char *image_name);
Load the FPGA from an image which exists as a file. The image file must be on
-the firmware search path (see the firmware class documentation).
-
-For both these functions, flags == 0 for normal full reconfiguration or
-FPGA_MGR_PARTIAL_RECONFIG for partial reconfiguration. If successful, the FPGA
-ends up in operating mode. Return 0 on success or a negative error code.
+the firmware search path (see the firmware class documentation). If successful,
+the FPGA ends up in operating mode. Return 0 on success or a negative error
+code.
+A FPGA design contained in a FPGA image file will likely have particulars that
+affect how the image is programmed to the FPGA. These are contained in struct
+fpga_image_info. Currently the only such particular is a single flag bit
+indicating whether the image is for full or partial reconfiguration.
To get/put a reference to a FPGA manager:
-----------------------------------------
struct fpga_manager *of_fpga_mgr_get(struct device_node *node);
+ struct fpga_manager *fpga_mgr_get(struct device *dev);
+
+Given a DT node or device, get an exclusive reference to a FPGA manager.
void fpga_mgr_put(struct fpga_manager *mgr);
-Given a DT node, get an exclusive reference to a FPGA manager or release
-the reference.
+Release the reference.
To register or unregister the low level FPGA-specific driver:
@@ -70,8 +76,11 @@ struct device_node *mgr_node = ...
char *buf = ...
int count = ...
+/* struct with information about the FPGA image to program. */
+struct fpga_image_info info;
+
/* flags indicates whether to do full or partial reconfiguration */
-int flags = 0;
+info.flags = 0;
int ret;
@@ -79,7 +88,7 @@ int ret;
struct fpga_manager *mgr = of_fpga_mgr_get(mgr_node);
/* Load the buffer to the FPGA */
-ret = fpga_mgr_buf_load(mgr, flags, buf, count);
+ret = fpga_mgr_buf_load(mgr, &info, buf, count);
/* Release the FPGA manager */
fpga_mgr_put(mgr);
@@ -96,8 +105,11 @@ struct device_node *mgr_node = ...
/* FPGA image is in this file which is in the firmware search path */
const char *path = "fpga-image-9.rbf"
+/* struct with information about the FPGA image to program. */
+struct fpga_image_info info;
+
/* flags indicates whether to do full or partial reconfiguration */
-int flags = 0;
+info.flags = 0;
int ret;
@@ -105,7 +117,7 @@ int ret;
struct fpga_manager *mgr = of_fpga_mgr_get(mgr_node);
/* Get the firmware image (path) and load it to the FPGA */
-ret = fpga_mgr_firmware_load(mgr, flags, path);
+ret = fpga_mgr_firmware_load(mgr, &info, path);
/* Release the FPGA manager */
fpga_mgr_put(mgr);
@@ -157,7 +169,10 @@ The programming sequence is:
2. .write (may be called once or multiple times)
3. .write_complete
-The .write_init function will prepare the FPGA to receive the image data.
+The .write_init function will prepare the FPGA to receive the image data. The
+buffer passed into .write_init will be atmost .initial_header_size bytes long,
+if the whole bitstream is not immediately available then the core code will
+buffer up at least this much before starting.
The .write function writes a buffer to the FPGA. The buffer may be contain the
whole FPGA image or may be a smaller chunk of an FPGA image. In the latter